1
|
Wang J, Lu J, Li B, Liu X, Wang R, Du P, Yu S, Yang Z, Yu Y. New Engineered-Chimeric Botulinum Neurotoxin Mutant Acts as an Effective Bivalent Vaccine Against Botulinum Neurotoxin Serotype A and E. Immunology 2025; 174:113-127. [PMID: 39354747 DOI: 10.1111/imm.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024] Open
Abstract
Botulinum neurotoxins (BoNTs), including serotypes A and E, are potent biotoxins known to cause human poisoning. In addition to the critical protective antigen found in the full BoNT molecule, the receptor binding domain (Hc domain), BoNTs also harbour another essential protective antigen-the light chain-translocation domain (L-HN domain). Leveraging these pivotal protective antigens, we genetically engineered a series of inactivated chimeric molecules incorporating L-HN and Hc domains of BoNT/A and E. The structure of these chimeric molecules, mirror BoNT/A and E, but are devoid of enzyme activity. Experimental findings demonstrated that a lead candidate mEL-HN-mAHc harnessing the inactivated protease LCHN/E with the mutated gangliosides binding site Hc/A (mE-mA) elicited robust immune protection against BoNT/A and E simultaneously in a mouse model, requiring low immune dosages and minimal immunisations. Moreover, mE-mA exhibited high protective efficacy against BoNT/A and E in guinea pigs and New Zealand white rabbits, resulting in elevated neutralising antibody titres. Furthermore, mE-mA proved to be a more stable and safer vaccine compared to formaldehyde-inactivated toxoid. Our data underscore the genetically engineered mE-mA as a highly effective bivalent vaccine against BoNT/A and E, paving the way for the development of polyvalent vaccines against biotoxins.
Collapse
Affiliation(s)
- Jingrong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jiansheng Lu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Bolin Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaoyu Liu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Rong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Du
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Shuo Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Zhixin Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yunzhou Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
2
|
Li BL, Wang JR, Liu XY, Lu JS, Wang R, Du P, Yu S, Pang XB, Yu YZ, Yang ZX. Tetanus toxin and botulinum neurotoxin-derived fusion molecules are effective bivalent vaccines. Appl Microbiol Biotechnol 2023; 107:7197-7211. [PMID: 37741939 DOI: 10.1007/s00253-023-12796-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Tetanus toxin (TeNT) and botulinum neurotoxins (BoNTs) are neuroprotein toxins, with the latter being the most toxic known protein. They are structurally similar and contain three functional domains: an N-terminal catalytic domain (light chain), an internal heavy-chain translocation domain (HN domain), and a C-terminal heavy chain receptor binding domain (Hc domain or RBD). In this study, fusion functional domain molecules consisting of the TeNT RBD (THc) and the BoNT/A RBD (AHc) (i.e., THc-Linker-AHc and AHc-Linker-THc) were designed, prepared, and identified. The interaction of each Hc domain and the ganglioside receptor (GT1b) or the receptor synaptic vesicle glycoprotein 2 (SV2) was explored in vitro. Their immune response characteristics and protective efficacy were investigated in animal models. The recombinant THc-linker-AHc and AHc-linker-THc proteins with the binding activity had the correct size and structure, thus representing novel subunit vaccines. THc-linker-AHc and AHc-linker-THc induced high levels of specific neutralizing antibodies, and showed strong immune protective efficacy against both toxins. The high antibody titers against the two novel fusion domain molecules and against individual THc and AHc suggested that the THc and AHc domains, as antigens in the fusion functional domain molecules, do not interact with each other and retain their full key epitopes responsible for inducing neutralizing antibodies. Thus, the recombinant THc-linker-AHc and AHc-linker-THc molecules are strong and effective bivalent biotoxin vaccines, protecting against two biotoxins simultaneously. Our experimental design will be valuable to develop recombinant double-RBD fusion molecules as potent bivalent subunit vaccines against bio-toxins. KEY POINTS: • Double-RBD fusion molecules from two toxins had the correct structure and activity. • THc-linker-AHc and AHc-linker-THc efficiently protected against both biotoxins. • Such bivalent biotoxin vaccines based on the RBD are a valuable experimental design.
Collapse
Affiliation(s)
- Bo-Lin Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Jing-Rong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Xu-Yang Liu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
- Pharmaceutical College, Henan University, Kaifeng, 475001, China
| | - Jian-Sheng Lu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Rong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Peng Du
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Shuo Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China
| | - Xiao-Bin Pang
- Pharmaceutical College, Henan University, Kaifeng, 475001, China.
| | - Yun-Zhou Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China.
| | - Zhi-Xin Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Beijing, 100071, China.
| |
Collapse
|
3
|
Liu XY, Wei DK, Li ZY, Lu JS, Xie XM, Yu YZ, Pang XB. Immunogenicity and immunoprotection of the functional TL-HN fragment derived from tetanus toxin. Vaccine 2023; 41:6834-6841. [PMID: 37816654 DOI: 10.1016/j.vaccine.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
Tetanus toxin (TeNT) is a protein toxin produced by Clostridium tetani bacteria, which causes hyperreflexia and rhabdomyolysis by spastic paralysis. Like botulinum neurotoxin, TeNT comprises a heavy chain (HC) and a light chain (LC) linked via an interchain disulfide bond, which include the following three functional domains: a receptor-binding domain (Hc), a translocation domain (HN), and a catalytic domain (LC). Herein, we produced and characterized three functional domains of TeNT and three types of TeNT-derived L-HN fragments (TL-HN, TL-GS-HN and TL-2A-HN), which contained L and HN domains but lacked the Hc domain. The immunological effects of these different functional domains or fragments of TeNT were explored in an animal model. Our investigations showed the TL-HN functional fragment provided the best immunoprotection among all the TeNT functional domains. The TL-HN fragment, as a protective antigen, induced the highest levels of neutralizing antibodies, indicating that it might contain some crucial epitopes. Further experiments revealed that the protective effect of TL-HN was superior to that of the THc, TL, or THN fragments, either individually or in combination. Therefore, the TL-HN fragment exerts an important function in immune protection against tetanus toxin, providing a good basis for the development of TeNT vaccines or antibodies, and could serve as a promising subunit vaccine to replace THc or tetanus toxoid (TT).
Collapse
Affiliation(s)
- Xu-Yang Liu
- Pharmaceutical College, Henan University, Kaifeng 475001, China; Beijing Institute of Biotechnology, Beijing 100071, China
| | - Dong-Kui Wei
- Pharmaceutical College, Henan University, Kaifeng 475001, China; Beijing Institute of Biotechnology, Beijing 100071, China
| | - Zhi-Ying Li
- Pharmaceutical College, Henan University, Kaifeng 475001, China; Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jian-Sheng Lu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xin-Mei Xie
- Pharmaceutical College, Henan University, Kaifeng 475001, China.
| | - Yun-Zhou Yu
- Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Xiao-Bin Pang
- Pharmaceutical College, Henan University, Kaifeng 475001, China.
| |
Collapse
|
4
|
De-Simone SG, Napoleão-Pêgo P, Lechuga GC, Carvalho JPRS, Gomes LR, Cardozo SV, Morel CM, Provance DW, Silva FRD. High-Throughput IgG Epitope Mapping of Tetanus Neurotoxin: Implications for Immunotherapy and Vaccine Design. Toxins (Basel) 2023; 15:toxins15040239. [PMID: 37104177 PMCID: PMC10146279 DOI: 10.3390/toxins15040239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 04/28/2023] Open
Abstract
Tetanus is an acute, fatal disease caused by exotoxins released from Clostridium tetani during infections. A protective humoral immune response can be induced by vaccinations with pediatric and booster combinatorial vaccines that contain inactivated tetanus neurotoxin (TeNT) as a major antigen. Although some epitopes in TeNT have been described using various approaches, a comprehensive list of its antigenic determinants that are involved with immunity has not been elucidated. To this end, a high-resolution analysis of the linear B-cell epitopes in TeNT was performed using antibodies generated in vaccinated children. Two hundred sixty-four peptides that cover the entire coding sequence of the TeNT protein were prepared in situ on a cellulose membrane through SPOT synthesis and probed with sera from children vaccinated (ChVS) with a triple DTP-vaccine to map continuous B-cell epitopes, which were further characterized and validated using immunoassays. Forty-four IgG epitopes were identified. Four (TT-215-218) were chemically synthesized as multiple antigen peptides (MAPs) and used in peptide ELISAs to screen post-pandemic DTP vaccinations. The assay displayed a high performance with high sensitivity (99.99%) and specificity (100%). The complete map of linear IgG epitopes induced by vaccination with inactivated TeNT highlights three key epitopes involved in the efficacy of the vaccine. Antibodies against epitope TT-8/G can block enzymatic activity, and those against epitopes TT-41/G and TT-43/G can interfere with TeNT binding to neuronal cell receptors. We further show that four of the epitopes identified can be employed in peptide ELISAs to assess vaccine coverage. Overall, the data suggest a set of select epitopes to engineer new, directed vaccines.
Collapse
Affiliation(s)
- Salvatore G De-Simone
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Diseases of Neglected Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Diseases of Neglected Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Guilherme C Lechuga
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Diseases of Neglected Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - João P R S Carvalho
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Diseases of Neglected Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| | - Larissa R Gomes
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Diseases of Neglected Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Sergian V Cardozo
- Department of Health, Graduate Program in Translational Biomedicine (BIOTRANS), University of Grande Rio (UNIGRANRIO), Caxias 25071-202, RJ, Brazil
| | - Carlos M Morel
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Diseases of Neglected Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - David W Provance
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Diseases of Neglected Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Flavio R da Silva
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Diseases of Neglected Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
5
|
Adjuvant effect of mesoporous silica SBA-15 on anti-diphtheria and anti-tetanus humoral immune response. Biologicals 2022; 80:18-26. [DOI: 10.1016/j.biologicals.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/25/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
|
6
|
Houy C, Ming M, Ettorre L, Jin R, Thangavadivel N, Chen T, Su J, Gajewska B. Epitope Profiling of Diphtheria Toxoid Provides Enhanced Monitoring for Consistency Testing during Manufacturing Process Changes. Vaccines (Basel) 2022; 10:vaccines10050775. [PMID: 35632531 PMCID: PMC9147534 DOI: 10.3390/vaccines10050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
In the vaccine industry, multiple physicochemical, immunological, in vitro and in vivo analytical methods are applied throughout the manufacturing process to characterize and monitor the quality of vaccines. Presented here is the Single Epitope Antigenicity Test (SEAT), an innovative, quantitative epitope profiling method which provides an extended immunochemical analysis for diphtheria toxoid (DTxd) to be used for consistency testing during manufacturing process changes. The method uses BioLayer Interferometry (BLI) and a panel of monoclonal antibodies (mAbs) to independently assess nine individual antigenic sites of DTxd. The panel includes mAbs which are functional, bind distinct sites on DTxd and are able to distinguish intact DTxd from that which has been exposed to heat treatment. The SEAT method was qualified for precision, accuracy, and linearity, and was used to define a preliminary comparability range for DTxd made using the current manufacturing process. DTxd lots manufactured using alternate processes were assessed in the context of this range to determine the impact on DTxd antigenicity. Epitope profiling by SEAT provides quantitative information on the integrity of multiple important antigenic regions of DTxd, and therefore represents a valuable tool in a comprehensive analytical test package which can be used to support manufacturing process changes for vaccines.
Collapse
Affiliation(s)
- Camille Houy
- Correspondence: ; Tel.: +1-476-667-2700 (ext. 7629)
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Martínez
Ceron MC, Ávila L, Giudicessi SL, Minoia JM, Fingermann M, Camperi SA, Albericio F, Cascone O. Fully Automated Screening of a Combinatorial Library to Avoid False Positives: Application to Tetanus Toxoid Ligand Identification. ACS OMEGA 2021; 6:18756-18762. [PMID: 34337215 PMCID: PMC8319927 DOI: 10.1021/acsomega.1c01814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/02/2021] [Indexed: 05/12/2023]
Abstract
Peptide ligands are widely used in protein purification by affinity chromatography. Here, we applied a fully automated two-stage library screening method that avoids false positive peptidyl-bead selection and applied it to tetanus toxoid purification. The first library screening was performed using only sulforhodamine (a fluorescent dye), and fluorescent beads were isolated automatically by flow cytometry and discarded. A second screening was then performed with the rest of the library, using the target protein (tetanus toxoid)-rhodamine conjugate. This time, fluorescent beads were isolated, and peptide sequences were identified by matrix-assisted laser desorption/ionization tandem mass spectrometry. Those appearing with greater frequency were synthesized and immobilized on agarose to evaluate a range of chromatographic purification conditions. The affinity matrix PTx1-agarose (Ac-Leu-Arg-Val-Tyr-His-Gly-Gly-Ala-Gly-Lys-agarose) showed the best performance when 20 mM sodium phosphate, 0.05% Tween 20, pH 5.9 as adsorption buffer and 100 mM Tris-HCl, 100 mM NaCl, pH 8.0 as elution buffer were used. A pure tetanus toxoid (Ttx) was loaded on a chromatographic column filled with the PTx1 matrix, and 96% adsorption was achieved, with a K d of 9.18 ± 0.07 nmol/L and a q m of 1.31 ± 0.029 μmol Ttx/mL matrix. Next, a Clostridium tetani culture supernatant treated with formaldehyde (to obtain the toxoid) was applied as a sample. The sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed a band, identified by electrospray ionization mass spectrometry as the Ttx, that appeared only in the elution fraction, where an S-layer protein was also detected.
Collapse
Affiliation(s)
- María C. Martínez
Ceron
- Facultad
de Farmacia y Bioquímica, Cátedra de Biotecnología, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
- Instituto
de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Junín 956, 1113 Buenos
Aires, Argentina
- . Tel.: +54 11
5287-4671
| | - Lucía Ávila
- Instituto
Nacional de Producción de Biológicos, ANLIS “Dr.
Carlos G. Malbrán”, Av. Vélez Sársfield 563, 1282 Buenos Aires, Argentina
| | - Silvana L. Giudicessi
- Facultad
de Farmacia y Bioquímica, Cátedra de Biotecnología, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
- Instituto
de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Junín 956, 1113 Buenos
Aires, Argentina
| | - Juan M. Minoia
- Facultad
de Farmacia y Bioquímica, Cátedra de Biotecnología, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
- Instituto
de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Junín 956, 1113 Buenos
Aires, Argentina
| | - Matías Fingermann
- Instituto
Nacional de Producción de Biológicos, ANLIS “Dr.
Carlos G. Malbrán”, Av. Vélez Sársfield 563, 1282 Buenos Aires, Argentina
- CONICET, Godoy Cruz
2290, 1425 Buenos
Aires, Argentina
| | - Silvia A. Camperi
- Facultad
de Farmacia y Bioquímica, Cátedra de Biotecnología, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
- Instituto
de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Junín 956, 1113 Buenos
Aires, Argentina
| | - Fernando Albericio
- Institute
for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine,
Department of Organic Chemistry, University
of Barcelona, 08028 Barcelona, Spain
- School
of Chemistry & Physics, University of
Kwazulu-Natal, 4001 Durban, South Africa
| | - Osvaldo Cascone
- Facultad
de Farmacia y Bioquímica, Cátedra de Biotecnología, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
- Instituto
de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Junín 956, 1113 Buenos
Aires, Argentina
- Instituto
Nacional de Producción de Biológicos, ANLIS “Dr.
Carlos G. Malbrán”, Av. Vélez Sársfield 563, 1282 Buenos Aires, Argentina
| |
Collapse
|
8
|
Sartori GP, da Costa A, Macarini FLDS, Mariano DOC, Pimenta DC, Spencer PJ, Nali LHDS, Galisteo AJ. Characterization and evaluation of the enzymatic activity of tetanus toxin submitted to cobalt-60 gamma radiation. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200140. [PMID: 33995513 PMCID: PMC8092855 DOI: 10.1590/1678-9199-jvatitd-2020-0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Tetanus toxin blocks the release of the inhibitory neurotransmitters in the central nervous system and causes tetanus and its main form of prevention is through vaccination. The vaccine is produced by inactivation of tetanus toxin with formaldehyde, which may cause side effects. An alternative way is the use of ionizing radiation for inactivation of the toxin and also to improve the potential immunogenic response and to reduce the post-vaccination side effects. Therefore, the aim of this study was to characterize the tetanus toxin structure after different doses of ionizing radiation of 60Co. METHODS Irradiated and native tetanus toxin was characterized by SDS PAGE in reducing and non-reducing conditions and MALD-TOF. Enzymatic activity was measured by FRET substrate. Also, antigenic properties were assessed by ELISA and Western Blot data. RESULTS Characterization analysis revealed gradual modification on the tetanus toxin structure according to doses increase. Also, fragmentation and possible aggregations of the protein fragments were observed in higher doses. In the analysis of peptide preservation by enzymatic digestion and mass spectrometry, there was a slight modification in the identification up to the dose of 4 kGy. At subsequent doses, peptide identification was minimal. The analysis of the enzymatic activity by fluorescence showed 35 % attenuation in the activity even at higher doses. In the antigenic evaluation, anti-tetanus toxin antibodies were detected against the irradiated toxins at the different doses, with a gradual decrease as the dose increased, but remaining at satisfactory levels. CONCLUSION Ionizing radiation promoted structural changes in the tetanus toxin such as fragmentation and/or aggregation and attenuation of enzymatic activity as the dose increased, but antigenic recognition of the toxin remained at good levels indicating its possible use as an immunogen. However, studies of enzymatic activity of tetanus toxin irradiated with doses above 8 kGy should be further analyzed.
Collapse
Affiliation(s)
- Giselle Pacifico Sartori
- Laboratory of Protozoology, Institute of Tropical Medicine,
University of São Paulo (IMT/FMUSP), São Paulo, SP, Brazil
| | - Andréa da Costa
- Laboratory of Protozoology, Institute of Tropical Medicine,
University of São Paulo (IMT/FMUSP), São Paulo, SP, Brazil
| | | | | | | | - Patrick Jack Spencer
- Biotechnology Center, Nuclear and Energy Research Institute
(IPEN/CNEN/SP), São Paulo, SP, Brazil
| | | | - Andrés Jimenez Galisteo
- Laboratory of Protozoology, Institute of Tropical Medicine,
University of São Paulo (IMT/FMUSP), São Paulo, SP, Brazil
- LIM49, Hospital das Clínicas HCFMUSP, School of Medicine, University
of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
9
|
De-Simone SG, Gomes LR, Napoleão-Pêgo P, Lechuga GC, de Pina JS, da Silva FR. Epitope Mapping of the Diphtheria Toxin and Development of an ELISA-Specific Diagnostic Assay. Vaccines (Basel) 2021; 9:313. [PMID: 33810325 PMCID: PMC8066203 DOI: 10.3390/vaccines9040313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/06/2023] Open
Abstract
Background: The diphtheria toxoid antigen is a major component in pediatric and booster combination vaccines and is known to raise a protective humoral immune response upon vaccination. Although antibodies are considered critical for diphtheria protection, little is known about the antigenic determinants that maintain humoral immunity. Methods: One-hundred and twelve 15 mer peptides covering the entire sequence of diphtheria toxin (DTx) protein were prepared by SPOT synthesis. The immunoreactivity of membrane-bound peptides with sera from mice immunized with a triple DTP vaccine allowed mapping of continuous B-cell epitopes, topological studies, multiantigen peptide (MAP) synthesis, and Enzyme-Linked Immunosorbent Assay (ELISA) development. Results: Twenty epitopes were identified, with two being in the signal peptide, five in the catalytic domain (CD), seven in the HBFT domain, and five in the receptor-binding domain (RBD). Two 17 mer (CB/Tx-2/12 and CB/DTx-4-13) derived biepitope peptides linked by a Gly-Gly spacer were chemically synthesized. The peptides were used as antigens to coat ELISA plates and assayed with human (huVS) and mice vaccinated sera (miVS) for in vitro diagnosis of diphtheria. The assay proved to be highly sensitive (99.96%) and specific (100%) for huVS and miVS and, when compared with a commercial ELISA test, demonstrated a high performance. Conclusions: Our work displayed the complete picture of the linear B cell IgG response epitope of the DTx responsible for the protective effect and demonstrated sufficient specificity and eligibility for phase IIB studies of some epitopes to develop new and fast diagnostic assays.
Collapse
Affiliation(s)
- Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDNP), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (P.N.-P.); (G.C.L.); (J.S.d.P.); (F.R.d.S.)
- Molecular and Cellular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, Brazil
| | - Larissa Rodrigues Gomes
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDNP), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (P.N.-P.); (G.C.L.); (J.S.d.P.); (F.R.d.S.)
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDNP), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (P.N.-P.); (G.C.L.); (J.S.d.P.); (F.R.d.S.)
| | - Guilherme Curty Lechuga
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDNP), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (P.N.-P.); (G.C.L.); (J.S.d.P.); (F.R.d.S.)
| | - Jorge Soares de Pina
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDNP), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (P.N.-P.); (G.C.L.); (J.S.d.P.); (F.R.d.S.)
| | - Flavio Rocha da Silva
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDNP), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (P.N.-P.); (G.C.L.); (J.S.d.P.); (F.R.d.S.)
| |
Collapse
|
10
|
Kennedy RB, Ovsyannikova IG, Palese P, Poland GA. Current Challenges in Vaccinology. Front Immunol 2020; 11:1181. [PMID: 32670279 PMCID: PMC7329983 DOI: 10.3389/fimmu.2020.01181] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
The development of vaccines, which prime the immune system to respond to future infections, has led to global declines in morbidity and mortality from dreadful infectious communicable diseases. However, many pathogens of public health importance are highly complex and/or rapidly evolving, posing unique challenges to vaccine development. Several of these challenges include an incomplete understanding of how immunity develops, host and pathogen genetic variability, and an increased societal skepticism regarding vaccine safety. In particular, new high-dimensional omics technologies, aided by bioinformatics, are driving new vaccine development (vaccinomics). Informed by recent insights into pathogen biology, host genetic diversity, and immunology, the increasing use of genomic approaches is leading to new models and understanding of host immune system responses that may provide solutions in the rapid development of novel vaccine candidates.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Peter Palese
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
11
|
Identification of Formaldehyde-Induced Modifications in Diphtheria Toxin. J Pharm Sci 2019; 109:543-557. [PMID: 31678246 DOI: 10.1016/j.xphs.2019.10.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023]
Abstract
Diphtheria toxoid is produced by detoxification of diphtheria toxin with formaldehyde. This study was performed to elucidate the chemical nature and location of formaldehyde-induced modifications in diphtheria toxoid. Diphtheria toxin was chemically modified using 4 different reactions with the following reagents: (1) formaldehyde and NaCNBH3, (2) formaldehyde, (3) formaldehyde and NaCNBH3 followed by formaldehyde and glycine, and (4) formaldehyde and glycine. The modifications were studied by SDS-PAGE, primary amino group determination, and liquid chromatography-electrospray mass spectrometry of chymotryptic digests. Reaction 1 resulted in quantitative dimethylation of all lysine residues. Reaction 2 caused intramolecular cross-links, including the NAD+-binding cavity and the receptor-binding site. Moreover, A fragments and B fragments were cross-linked by formaldehyde on part of the diphtheria toxoid molecules. Reaction 3 resulted in formaldehyde-glycine attachments, including in shielded areas of the protein. The detoxification reaction typically used for vaccine preparation (reaction 4) resulted in a combination of intramolecular cross-links and formaldehyde-glycine attachments. Both the NAD+-binding cavity and the receptor-binding site of diphtheria toxin were chemically modified. Although CD4+ T-cell epitopes were affected to some extent, one universal CD4+ T-cell epitope remained almost completely unaltered by the treatment with formaldehyde and glycine.
Collapse
|
12
|
Lim CY, Granger JH, Porter MD. SERS detection of Clostridium botulinum neurotoxin serotypes A and B in buffer and serum: Towards the development of a biodefense test platform. Anal Chim Acta X 2018; 1:100002. [PMID: 33186413 PMCID: PMC7587037 DOI: 10.1016/j.acax.2018.100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/10/2018] [Indexed: 01/30/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are classified at a highest degree of threat in biodefense, due largely to their high lethality. With the growing risk of biowarfare, the shortcomings of the gold standard test for these neurotoxins, the mouse bioassay, have underscored the need to develop alternative diagnostic testing strategies. This paper reports on the detection of inactivated Clostridium botulinum neurotoxin serotype A (BoNT-A) and serotype B (BoNT-B), the two most important markers of botulism infection, by using a sandwich immunoassay, gold nanoparticle labels, and surface-enhanced Raman scattering (SERS) within the context of two threat scenarios. The first scenario mimics part of the analysis needed in response to a “white powder” threat by measuring both neurotoxins in phosphate-buffered saline (PBS), a biocompatible solvent often used to recover markers dispersed in a powdered matrix. The second scenario detects the two neurotoxins in spiked human serum to assess the clinical potential of the platform. The overall goal is to develop a test applicable to both scenarios in terms of projections of required levels of detection. We demonstrate the ability to measure BoNT-A and BoNT-B in PBS at a limit of detection (LoD) of 700 pg/mL (5 pM) and 84 pg/mL (0.6 pM), respectively, and in human serum at 1200 pg/mL (8 pM) and 91 pg/mL (0.6 pM), respectively, with a time to result under 24 h. The steps required to transform this platform into an onsite biodefense screening tool that can simultaneously and rapidly detect (<1 h) these and other agents are briefly discussed. Raman-based immunoassays can successfully detect botulism neurotoxins. Limits of detection for botulism neurotoxins A/B rival those of the mouse bioassay. Serum and liquid extracts are suitable sample matrices for the Raman assay.
Collapse
Affiliation(s)
- China Y Lim
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84112-5001, USA
| | - Jennifer H Granger
- Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112-5001, USA
| | - Marc D Porter
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84112-5001, USA.,Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112-5001, USA.,Department of Chemistry, University of Utah, Salt Lake City, UT, 84112-5001, USA
| |
Collapse
|
13
|
Grasse M, Meryk A, Miggitsch C, Grubeck-Loebenstein B. GM-CSF improves the immune response to the diphtheria-component in a multivalent vaccine. Vaccine 2018; 36:4672-4680. [PMID: 29961602 PMCID: PMC7116485 DOI: 10.1016/j.vaccine.2018.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022]
Abstract
Multivalent tetanus and diphtheria toxoid containing vaccines belong to the most frequently applied vaccines. However, there is an imbalance in the degree of protection against the two antigens with insufficient long-term protection against diphtheria, particularly in the elderly population. We have previously reported a positive correlation between granulocyte macrophage-colony stimulating factor (GM-CSF) and the production of diphtheria-specific antibodies. Therefore, in the present study we analyzed the effects of in vivo applied recombinant GM-CSF on immunization with multivalent tetanus/diphtheria vaccine in mice of different age. In vivo application of GM-CSF lead to enhanced production of diphtheria-specific antibodies as well as more diphtheria-specific CD4+ T cells following vaccination with multivalent tetanus/diphtheria vaccine. In contrast, the humoral and cellular immune response to the tetanus component was unaltered. Furthermore, application of GM-CSF resulted in more splenic CD11b+ dendritic cells (DCs) with a higher MHC-II expression. GM-CSF also induced a stronger recruitment of CD11b+ DCs to the injected muscle. Most remarkably, GM-CSF was able to boost the diphtheria-specific immune response to the multivalent vaccine in aged mice. This study demonstrates that local administration of GM-CSF is able to improve immune responsiveness to the diphtheria component of multivalent tetanus/diphtheria vaccine in young and old mice. This information could be useful for the future design of vaccines for the elderly.
Collapse
Affiliation(s)
- Marco Grasse
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | - Andreas Meryk
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | - Carina Miggitsch
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
14
|
|