1
|
Yang Q, Zhang Z, Chen Z, Wang Y, Chen Y, Zheng J, Li R, Li L, Mo L, Liang Q, Chen F, Wang J, Li X. Flot2 deficiency facilitates B cell-mediated inflammatory responses and endotoxic shock. Immunology 2023; 170:567-578. [PMID: 37688314 DOI: 10.1111/imm.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Sepsis is a life-threatening disease characterized by multiple organ dysfunction. B cells play a pivotal role in sepsis. Here, we first observed the significantly reduced Flot2 gene expression in B cells from patients with bacterial sepsis and endotoxin-induced septic mice. However, the effects of Flot2 on sepsis and B-cell immunity remain unknown. Thus, we sorted B cells from Flot2 knockout (Flot2-/- ) mice, RNA-seq revealed significantly upregulated effector B cell (Beff) cytokines such as Il6, Il1b and Cxcl10 after Flot2 deficiency, while it showed no effect on the expression of regulatory B cell (Breg) cytokines such as Il10, Tgfb. Consistently, elevated Beff cytokine IL-6 and unchanged Breg cytokine IL-10 were shown in B cells from Flot2-/- mice. Similar results were subsequently observed in B cell-specific Flot2 knockout chimeric mice. Notably, Flot2 deficiency aggravated sepsis with increased lung injury and shortened survival time in vivo by facilitating Beffs but not Bregs. Taken together, our data identify Flot2 as a novel controller of B cells, Flot2 deficiency amplifies inflammation by affecting Beffs to participate in the pathogenesis and progression of sepsis.
Collapse
Affiliation(s)
- Qin Yang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhenhua Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziye Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yan Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiehuang Zheng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ruopeng Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lihong Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lixia Mo
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qinghe Liang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fengsheng Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Zhang S, Wei Y, Liu J, Zhuang Y. MiR-940 Serves as a Diagnostic Biomarker in Patients with Sepsis and Regulates Sepsis-Induced Inflammation and Myocardial Dysfunction. J Inflamm Res 2021; 14:4567-4574. [PMID: 34526802 PMCID: PMC8437419 DOI: 10.2147/jir.s316169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/14/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Sepsis is a heterogeneous syndrome with a life-long threat caused by infection. This study aimed to investigate the clinical function of miR-940 and its influence on cardiomyocyte models. Methods The relative expression of miR-940 was assessed by qRT-PCR and the roles in the clinical diagnosis of miR-940 were revealed by the ROC curve. The relationship between miR-940 and clinical parameters was validated by Pearson analysis. The sepsis rat models were established by treatment with cecal ligation and perforation (CLP) and clinical items including left ventricular systolic pressure (LVSP), left ventricular and end-diastolic pressure (LVEDP), maximum rate of increase/decrease in left ventricular blood pressure (± dp/dtmax) as well as troponin (cTnl), creatine kinase isoenzyme (CK-MB), TNF-α, IL-1β, and IL-6 were detected. Results The finding of qRT-PCR accentuated that the relative expression of miR-940 was significantly decreased in sepsis patients and CLP-stimulated models. The ROC curve proposed that miR-940 could be a satisfactory diagnostic biomarker for sepsis patients. Pearson analysis reinforced the expression of miR-940 was negatively associated with the PCT, WBC, CRP, Scr, SOFA score, and APACHE II score. The outcome of CLP-steered rat verified that overexpression of miR-940 inhibited the detrimental effects of CLP on myocardial dysfunction and inflammation reactions. Conclusion The downregulation of miR-940 was reported and it might be an underlying diagnostic marker in sepsis patients. Overexpression of miR-940 protected myocardial function from damage and inflammation induced by CLP.
Collapse
Affiliation(s)
- Shijuan Zhang
- Department of Critical Care Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, 262500, People's Republic of China
| | - Yuhong Wei
- Department of Gastroenterology First Ward, Yidu Central Hospital of Weifang, Weifang, Shandong, 262500, People's Republic of China
| | - Jinxia Liu
- Department of Neurology First Ward, Yidu Central Hospital of Weifang, Weifang, Shandong, 262500, People's Republic of China
| | - Yutian Zhuang
- Department of Critical Care Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, 262500, People's Republic of China
| |
Collapse
|
3
|
Pierrakos C, Velissaris D, Bisdorff M, Marshall JC, Vincent JL. Biomarkers of sepsis: time for a reappraisal. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:287. [PMID: 32503670 PMCID: PMC7273821 DOI: 10.1186/s13054-020-02993-5] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Sepsis biomarkers can have important diagnostic, therapeutic, and prognostic functions. In a previous review, we identified 3370 references reporting on 178 different biomarkers related to sepsis. In the present review, we evaluate the progress in the research of sepsis biomarkers. METHODS Using the same methodology as in our previous review, we searched the PubMed database from 2009 until September 2019 using the terms "Biomarker" AND "Sepsis." There were no restrictions by age or language, and all studies, clinical and experimental, were included. RESULTS We retrieved a total of 5367 new references since our previous review. We identified 258 biomarkers, 80 of which were new compared to our previous list. The majority of biomarkers have been evaluated in fewer than 5 studies, with 81 (31%) being assessed in just a single study. Apart from studies of C-reactive protein (CRP) or procalcitonin (PCT), only 26 biomarkers have been assessed in clinical studies with more than 300 participants. Forty biomarkers have been compared to PCT and/or CRP for their diagnostic value; 9 were shown to have a better diagnostic value for sepsis than either or both of these biomarkers. Forty-four biomarkers have been evaluated for a role in answering a specific clinical question rather than for their general diagnostic or prognostic properties in sepsis. CONCLUSIONS The number of biomarkers being identified is still increasing although at a slower rate than in the past. Most of the biomarkers have not been well-studied; in particular, the clinical role of these biomarkers needs to be better evaluated.
Collapse
Affiliation(s)
- Charalampos Pierrakos
- Intensive Care Department, Brugmann University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Max Bisdorff
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - John C Marshall
- Surgery/Critical Care Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
| |
Collapse
|
4
|
PDS5B regulates cell proliferation and motility via upregulation of Ptch2 in pancreatic cancer cells. Cancer Lett 2019; 460:65-74. [PMID: 31233836 DOI: 10.1016/j.canlet.2019.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022]
Abstract
Pds5b (precocious dissociation of sisters 5B) is involved in both tumorigenesis and cancer progression; however, the functions and molecular mechanisms of Pds5b in pancreatic cancer (PC) are unknown. Several approaches were conducted to investigate the molecular basis of Pds5b-related PC progression, including transfection, MTT, FACS, western blotting, wound healing assay, transwell chamber invasion assay, and immunohistochemical methods. Pds5b overexpression inhibited cell growth and induced apoptosis, whereas the inhibition of Pds5b promoted growth of PC cells. Moreover, Pds5b overexpression inhibited cell migration and invasion, while the downregulation of Pds5b enhanced cell motility. Furthermore, reduced Pds5b expression was associated with survival in PC patients. Mechanistically, Pds5b positively regulated the expression of Ptch2 to influence the Sonic hedgehog signaling pathway. Consistently, Ptch2 downregulation enhanced cell growth, migration, and invasion, while inhibiting cell apoptosis. Notably, the downregulation of Ptch2 abolished Pds5b-mediated anti-tumor activity in PC cells. Strikingly, Pds5b expression was positively associated with levels of Ptch2 in PC patient samples, suggesting that the Pds5b/Ptch2 axis regulates cell proliferation and invasion in PC cells. Our findings indicate that targeting Pds5b and Ptch2 may represent a novel therapeutic approach for PC.
Collapse
|
5
|
Cross D, Drury R, Hill J, Pollard AJ. Epigenetics in Sepsis: Understanding Its Role in Endothelial Dysfunction, Immunosuppression, and Potential Therapeutics. Front Immunol 2019; 10:1363. [PMID: 31275313 PMCID: PMC6591469 DOI: 10.3389/fimmu.2019.01363] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
Sepsis has a complex pathophysiology in which both excessive and refractory inflammatory responses are hallmark features. Pro-inflammatory cytokine responses during the early stages are responsible for significant endothelial dysfunction, loss of endothelial integrity, and organ failure. In addition, it is now well-established that a substantial number of sepsis survivors experience ongoing immunological derangement and immunosuppression following a septic episode. The underpinning mechanisms of these phenomena are incompletely understood yet they contribute to a significant proportion of sepsis-associated mortality. Epigenetic mechanisms including DNA methylation, histone modifications, and non-coding RNAs, have an increasingly clear role in modulating inflammatory and other immunological processes. Recent evidence suggests epigenetic mechanisms are extensively perturbed as sepsis progresses, and particularly play a role in endothelial dysfunction and immunosuppression. Whilst therapeutic modulation of the epigenome is still in its infancy, there is substantial evidence from animal models that this approach could reap benefits. In this review, we summarize research elucidating the role of these mechanisms in several aspects of sepsis pathophysiology including tissue injury and immunosuppression. We also evaluate pre-clinical evidence for the use of "epi-therapies" in the treatment of poly-microbial sepsis.
Collapse
Affiliation(s)
- Deborah Cross
- Oxford Vaccine Group, Department of Paediatrics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|