1
|
Zhou P, Zhang Q, Yang Y, Chen D, Jongkaewwattana A, Jin H, Zhou H, Luo R. Avian TRIM13 attenuates antiviral innate immunity by targeting MAVS for autophagic degradation. Autophagy 2024:1-17. [PMID: 39508267 DOI: 10.1080/15548627.2024.2426114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
MAVS (mitochondrial antiviral signaling protein) is a crucial adaptor in antiviral innate immunity that must be tightly regulated to maintain immune homeostasis. In this study, we identified the duck Anas platyrhynchos domesticus TRIM13 (ApdTRIM13) as a novel negative regulator of duck MAVS (ApdMAVS) that mediates the antiviral innate immune response. Upon infection with RNA viruses, ApdTRIM13 expression increased, and it specifically binds to ApdMAVS through its TM domain, facilitating the degradation of ApdMAVS in a manner independent of E3 ligase activity. Furthermore, ApdTRIM13 recruits the autophagic cargo receptor duck SQSTM1 (ApdSQSTM1), which facilitates its interaction with ApdMAVS independent of ubiquitin signaling, and subsequently delivers ApdMAVS to phagophores for degradation. Depletion of ApdSQSTM1 reduces ApdTRIM13-mediated autophagic degradation of ApdMAVS, thereby enhancing the antiviral immune response. Collectively, our findings reveal a novel mechanism by which ApdTRIM13 regulates type I interferon production by targeting ApdMAVS for selective autophagic degradation mediated by ApdSQSTM1, providing insights into the crosstalk between selective autophagy and innate immune responses in avian species.Abbreviation: 3-MA: 3-methyladenine; ATG5: autophagy related 5; baf A1: bafilomycin A1; BECN1: beclin 1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CARD: caspase recruitment domain; co-IP: co-immunoprecipitation; DEFs: duck embryonic fibroblasts; DTMUV: duck Tembusu virus; eGFP: enhanced green fluorescent protein; hpi: hours post infection; IFIH1/MDA5: interferon induced with helicase C domain 1; IFN: interferon; IKBKE/IKKε: inhibitor of nuclear factor kappa B kinase subunit epsilon; IP: immunoprecipitation; IRF7: interferon regulatory factor 7; ISRE: interferon-stimulated response element; mAb: monoclonal antibody; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NFKB: nuclear factor kappa B; pAb: polyclonal antibody; poly(I:C): Polyriboinosinic polyribocytidylic acid; RIGI: RNA sensor RIG-I; RLR: RIGI-like-receptor; SeV: sendai virus; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TCID50: 50% tissue culture infectious dose; TM: tansmembrane; TOLLIP: toll interacting protein; TRIM: tripartite motif containing; UBA: ubiquitin-associated domain; Ub: ubiquitin; VSV: vesicular stomatitis virus; WT: wild type.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Qingxiang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Yueshan Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Dong Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| |
Collapse
|
2
|
Zhou P, Ma B, Gao Y, Xu Y, Li Z, Jin H, Luo R. Epidemiology, genetic diversity, and evolutionary dynamics of Tembusu virus. Arch Virol 2023; 168:262. [PMID: 37773423 DOI: 10.1007/s00705-023-05885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/02/2023] [Indexed: 10/01/2023]
Abstract
Tembusu virus (TMUV) is an emerging pathogenic flavivirus associated with acute egg-drop and fatal encephalitis in domestic waterfowl. Since its initial identification in mosquitoes in 1955, TMUV has been confirmed to infect ducks, pigeons, sparrows, geese, and chickens, posing a significant threat to the poultry industry. Here, we sequenced two DTMUV strains isolated in 2019 and systematically investigated the possible origin, genetic relationships, evolutionary dynamics, and transmission patterns of TMUV based on complete virus genome sequences in the public database. We found that TMUV can be divided into four major clusters: TMUV, cluster 1, cluster 2, and cluster 3. Interestingly, we found that cluster 2.2 (within cluster 2) is the most commonly involved in interspecies transmission events, and subcluster 2.1.2 (within cluster 2.1) is currently the most prevalent cluster circulating in Asia. Notably, we also identified three positively selected sites in the E and NS1 proteins, which may be involved in virus replication, immune evasion, and host adaptation. Finally, phylogeographic analysis revealed that cluster dispersal originated in Southeast Asia and that short-distance transmission events have occurred frequently. Altogether, these data provide novel insights into the evolution and dispersal of TMUV, facilitating the development of rapid diagnostics, vaccines, and therapeutics against TMUV infection.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Bin Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Yuan Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Yumin Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Zhuofei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| |
Collapse
|
3
|
van Bree JW, Visser I, Duyvestyn JM, Aguilar-Bretones M, Marshall EM, van Hemert MJ, Pijlman GP, van Nierop GP, Kikkert M, Rockx BH, Miesen P, Fros JJ. Novel approaches for the rapid development of rationally designed arbovirus vaccines. One Health 2023; 16:100565. [PMID: 37363258 PMCID: PMC10288159 DOI: 10.1016/j.onehlt.2023.100565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Vector-borne diseases, including those transmitted by mosquitoes, account for more than 17% of infectious diseases worldwide. This number is expected to rise with an increased spread of vector mosquitoes and viruses due to climate change and man-made alterations to ecosystems. Among the most common, medically relevant mosquito-borne infections are those caused by arthropod-borne viruses (arboviruses), especially members of the genera Flavivirus and Alphavirus. Arbovirus infections can cause severe disease in humans, livestock and wildlife. Severe consequences from infections include congenital malformations as well as arthritogenic, haemorrhagic or neuroinvasive disease. Inactivated or live-attenuated vaccines (LAVs) are available for a small number of arboviruses; however there are no licensed vaccines for the majority of these infections. Here we discuss recent developments in pan-arbovirus LAV approaches, from site-directed attenuation strategies targeting conserved determinants of virulence to universal strategies that utilize genome-wide re-coding of viral genomes. In addition to these approaches, we discuss novel strategies targeting mosquito saliva proteins that play an important role in virus transmission and pathogenesis in vertebrate hosts. For rapid pre-clinical evaluations of novel arbovirus vaccine candidates, representative in vitro and in vivo experimental systems are required to assess the desired specific immune responses. Here we discuss promising models to study attenuation of neuroinvasion, neurovirulence and virus transmission, as well as antibody induction and potential for cross-reactivity. Investigating broadly applicable vaccination strategies to target the direct interface of the vertebrate host, the mosquito vector and the viral pathogen is a prime example of a One Health strategy to tackle human and animal diseases.
Collapse
Affiliation(s)
- Joyce W.M. van Bree
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Imke Visser
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jo M. Duyvestyn
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Eleanor M. Marshall
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Barry H.G. Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
4
|
Duck TRIM35 Promotes Tembusu Virus Replication by Interfering with RIG-I-Mediated Antiviral Signaling in Duck Embryo Fibroblasts. Microbiol Spectr 2022; 10:e0385822. [PMID: 36445078 PMCID: PMC9769614 DOI: 10.1128/spectrum.03858-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In China, the duck industry has been severely impacted by the newly emerging duck Tembusu virus (DTMUV). For DTMUV to successfully infect host cells, it employs several strategies that subvert the host's innate immune response. It has been found that several viral proteins encoded by DTMUV have strategically targeted the crucial molecules of the RIG-I-like Receptor (RLR) signaling pathway to antagonize host antiviral responses. However, it is not well known how the host proteins manipulated by DTMUV contribute to innate immune evasion. The present study reports that duck TRIM35 (duTRIM35) antagonizes DTMUV-induced innate immune responses by targeting duck RIG-I (duRIG-I) in duck embryo fibroblasts. A significant increase in duTRIM35 expression occurred during DTMUV infection. DuTRIM35 overexpression suppressed DTMUV-triggered expression of interferon beta (IFN-β) and interferon-stimulated genes (ISGs), promoting viral replication, whereas knockdown of duTRIM35 augments the innate immune response, reducing viral replication. Furthermore, duTRIM35 significantly impaired the IFN-β expression mediated by duRIG-I but not by other RLR signaling molecules. Mechanistically, duTRIM35 interfered with duRIG-I-duTRIM25 interaction and impeded duTRIM25-mediated duRIG-I ubiquitination by interacting with both duRIG-I and duTRIM25. Our findings indicate that duTRIM35 expression induced by DTMUV infection interfered with the duRIG-I-mediated antiviral response, illustrating a novel strategy in which DTMUV can evade the host's innate immunity. IMPORTANCE Duck Tembusu virus (DTMUV), an emerging flavivirus pathogen causing a substantial drop in egg production and severe neurological disorders in duck populations, has led to massive economic losses in the global duck industry. DTMUV has employed various strategies to subvert the host's innate immune response to establish a productive infection in host cells. In this study, we report that duck TRIM35 (duTRIM35) expression was upregulated upon DTMUV infection in vitro and in vivo, and its expression antagonized DTMUV-induced innate immune responses by targeting duck RIG-I (duRIG-I) in duck embryo fibroblasts. Further studies suggest that duTRIM35 interfered with duRIG-I-duTRIM25 interaction and impeded duTRIM25-mediated duRIG-I ubiquitination by interacting with both duRIG-I and duTRIM25. Together, these results revealed that duTRIM35 expression induced by DTMUV infection downregulated duRIG-I-mediated host antiviral response, which elucidated a novel strategy of DTMUV for innate immune evasion.
Collapse
|
5
|
Tembusu Virus Nonstructural Protein 2B Antagonizes Type I Interferon Production by Targeting MAVS for Degradation. J Virol 2022; 96:e0081622. [PMID: 35867574 PMCID: PMC9327690 DOI: 10.1128/jvi.00816-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tembusu virus (TMUV) is a newly emerged avian flavivirus that has caused severe egg-drop syndrome and fatal encephalitis in domestic ducks. It has spread widely throughout the main duck-producing areas in Asia, resulting in substantial economic losses to the duck industry. Previous studies have reported that TMUV has evolved several strategies to counteract the duck's innate immune responses to successfully establish infection in its host cells. However, the mechanisms underlying this phenomenon have not been elucidated. Here, we discovered that TMUV-encoded NS2B is a negative regulator of poly(I:C)-induced duck interferon-β (IFN-β) expression. Mechanistically, TMUV NS2B was found to interact specifically with the mitochondrial antiviral-signaling protein (duMAVS). Consequently, duMAVS was degraded through the K48-linked ubiquitination and proteasomal pathway, leading to the interruption of the RIG-I-like receptor (RLR) signaling. Further analyses also identified K321, K354, K398, and K411 as crucial residues for NS2B-mediated ubiquitination and degradation of duMAVS. Additionally, we demonstrated that NS2B functions by recruiting the E3 ubiquitin ligase duck membrane-associated RING-CH-type finger 5 (duMARCH5) to modify duMAVS via polyubiquitination, blocking the duMAVS-mediated innate immune response and promoting TMUV replication. Taken together, our findings revealed a novel mechanism by which TMUV evades the duck's antiviral innate immune responses. IMPORTANCE Tembusu virus (TMUV), an emerging pathogenic flavivirus, has spread to most duck farming areas in Asia since 2010, causing significant economic losses to the duck industry. Recently, TMUV has expanded its host range and may pose a potential threat to mammals, including humans. Understanding the interaction between TMUV and its host is essential for the development of effective vaccines and therapeutics. Here, we show that NS2B encoded by TMUV inhibits IFN production by interacting with duck MAVS (duMAVS) to mediate ubiquitination and proteasomal degradation. Further studies suggest that the E3 ubiquitin ligase duck membrane-associated RING-CH-type finger 5 (duMARCH5) is recruited by NS2B to mediate proteasomal degradation of duMAVS. As a result, the innate immune response triggered by the RIG-I-like receptor (RLR) is disrupted, facilitating viral replication. Overall, our results reveal a novel mechanism by which TMUV evades host innate immunity and provide new therapeutic strategies to prevent TMUV infection.
Collapse
|
6
|
Deng H, Xin N, Zeng F, Wen F, Yi H, Ma C, Huang S, Zhang G, Chen Y. A novel amino acid site of N protein could affect the PRRSV-2 replication by regulating the viral RNA transcription. BMC Vet Res 2022; 18:171. [PMID: 35546407 PMCID: PMC9092334 DOI: 10.1186/s12917-022-03274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background Finding the key amino acid sites that could affect viral biological properties or protein functions has always been a topic of substantial interest in virology. The nucleocapsid (N) protein is one of the principal proteins of the porcine reproductive and respiratory syndrome virus (PRRSV) and plays a vital role in the virus life cycle. The N protein has only 123 or 128 amino acids, some of key amino acid sites which could affect the protein functions or impair the viral biological characteristics have been identified. In this research, our objective was to find out whether there are other novel amino acid sites of the N protein can affect N protein functions or PRRSV-2 replication. Results In this study, we found mutated the serine78 and serine 99of the nucleocapsid (N) protein can reduce the N-induced expression of IL-10 mRNA; Then, by using reverse genetics system, we constructed and rescued the mutant viruses, namely, A78 and A99.The IFA result proved that the mutations did not affect the rescue of the PRRSV-2. However, the results of the multistep growth kinetics and qPCR assays indicated that, compared with the viral replication ability, the titres and gRNA levels of A78 were significantly decreased compared with the wild-type. Further study showed that a single amino acid change from serine to alanine at position 78 of the N protein could abrogates the level of viral genomic and subgenomic RNAs. It means the mutation could significant decrease the viral replication efficiency in vitro. Conclusions Our results suggest that the serine78 of N protein is a key site which could affect the N protein function and PRRSV replication ability. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03274-9.
Collapse
Affiliation(s)
- Hua Deng
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Ning Xin
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Fancong Zeng
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Feng Wen
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Heyou Yi
- MOA Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Chunquan Ma
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Shujian Huang
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Guihong Zhang
- MOA Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Yao Chen
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China.
| |
Collapse
|