1
|
Peng S, Hu L, Ge W, Deng J, Yao L, Li H, Xu D, Mo H. ChIP-Seq Analysis of AtfA Interactions in Aspergillus flavus Reveals Its Involvement in Aflatoxin Metabolism and Virulence Under Oxidative Stress. Int J Mol Sci 2024; 25:12213. [PMID: 39596279 PMCID: PMC11594458 DOI: 10.3390/ijms252212213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The risk of Aspergillus flavus contamination is expanding with global warming. Targeting the pathogenicity of A. flavus at its source and diminishing its colonization within the host may be a potential control strategy. Oxidative stress transcription factor AtfA plays a pivotal role in A. flavus pathogenicity by combating reactive oxygen species (ROS) generated by host immune cells. This study employed chromatin immunoprecipitation sequencing to elucidate the binding sites and epigenetic mechanisms of AtfA under oxidative stress. Among the total 1022 identified potential AtfA-binding peaks, a 10-bp region predominated by 5'-DRTGTTGCAA-3', which is highly similar to the AP-1 binding motif was predicted. The significantly regulated genes exhibited a variety of biological functions, including regulation of filamentous growth, response to extracellular stimulus, and regulation of gene expression. Moreover, AtfA indirectly influenced these processes via the MAPK signaling pathway, carbon metabolism, and fatty acid metabolism in response to oxidative stress. The absence of atfA contributed to the decrease in the growth and development, sporulation, AFB1 biosynthesis, and invasion ability of A. flavus under oxidative stress. These findings suggest that AtfA is critical to overcome oxidative stress induced by the host immune cells during the infection, providing a novel target for early prevention of A. flavus contamination.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dan Xu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.P.); (L.H.); (W.G.); (J.D.); (L.Y.); (H.L.)
| | - Haizhen Mo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.P.); (L.H.); (W.G.); (J.D.); (L.Y.); (H.L.)
| |
Collapse
|
2
|
Wu D, Yang C, Yao Y, Ma D, Lin H, Hao L, Xin W, Ye K, Sun M, Hu Y, Yang Y, Zhuang Z. SntB triggers the antioxidant pathways to regulate development and aflatoxin biosynthesis in Aspergillus flavus. eLife 2024; 13:RP94743. [PMID: 39499647 PMCID: PMC11537487 DOI: 10.7554/elife.94743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
The epigenetic reader SntB was identified as an important transcriptional regulator of growth, development, and secondary metabolite synthesis in Aspergillus flavus. However, the underlying molecular mechanism is still unclear. In this study, by gene deletion and complementation, we found SntB is essential for mycelia growth, conidial production, sclerotia formation, aflatoxin synthesis, and host colonization. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analysis revealed that SntB played key roles in oxidative stress response of A. flavus, influencing related gene activity, especially catC encoding catalase. SntB regulated the expression activity of catC with or without oxidative stress, and was related to the expression level of the secretory lipase (G4B84_008359). The deletion of catC showed that CatC participated in the regulation of fungal morphogenesis, reactive oxygen species (ROS) level, and aflatoxin production, and that CatC significantly regulated fungal sensitive reaction and AFB1 yield under oxidative stress. Our study revealed the potential machinery that SntB regulated fungal morphogenesis, mycotoxin anabolism, and fungal virulence through the axle of from H3K36me3 modification to fungal virulence and mycotoxin biosynthesis. The results of this study shed light into the SntB-mediated transcript regulation pathways of fungal mycotoxin anabolism and virulence, which provided potential strategy to control the contamination of A. flavus and its aflatoxins.
Collapse
Affiliation(s)
- Dandan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Chi Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
- Institute of Edible Mushroom, Fujian Academy of Agricultural SciencesFuzhouChina
| | - Yanfang Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Dongmei Ma
- College of Animal Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Ling Hao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS)BeijingChina
| | - Kangfu Ye
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Minghui Sun
- College of Animal Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Yule Hu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Yanling Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
3
|
Zhang Y, Yu W, Lu Y, Wu Y, Ouyang Z, Tu Y, He B. Epigenetic Regulation of Fungal Secondary Metabolism. J Fungi (Basel) 2024; 10:648. [PMID: 39330408 PMCID: PMC11433216 DOI: 10.3390/jof10090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Secondary metabolism is one of the important mechanisms by which fungi adapt to their living environment and promote survival and reproduction. Recent studies have shown that epigenetic regulation, such as DNA methylation, histone modifications, and non-coding RNAs, plays key roles in fungal secondary metabolism and affect fungal growth, survival, and pathogenicity. This review describes recent advances in the study of epigenetic regulation of fungal secondary metabolism. We discuss the way in which epigenetic markers respond to environmental changes and stimulate the production of biologically active compounds by fungi, and the feasibility of these new findings applied to develop new antifungal strategies and optimize secondary metabolism. In addition, we have deliberated on possible future directions of research in this field. A deeper understanding of epigenetic regulatory networks is a key focus for future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yayi Tu
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| | - Bin He
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| |
Collapse
|
4
|
Wei Z, Shu D, Hou X, Li T, Li Z, Luo D, Yang J, Tan H. Normal distribution of H3K9me3 occupancy co-mediated by histone methyltransferase BcDIM5 and histone deacetylase BcHda1 maintains stable ABA synthesis in Botrytis cinerea TB-31. Front Microbiol 2024; 15:1339576. [PMID: 38500582 PMCID: PMC10944950 DOI: 10.3389/fmicb.2024.1339576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/02/2024] [Indexed: 03/20/2024] Open
Abstract
Abscisic acid (ABA) is a conserved and important "sesquiterpene signaling molecule" widely distributed in different organisms with unique biological functions. ABA coordinates reciprocity and competition between microorganisms and their hosts. In addition, ABA also regulates immune and stress responses in plants and animals. Therefore, ABA has a wide range of applications in agriculture, medicine and related fields. The plant pathogenic ascomycete B. cinerea has been extensively studied as a model strain for ABA production. Nevertheless, there is a relative dearth of research regarding the regulatory mechanism governing ABA biosynthesis in B. cinerea. Here, we discovered that H3K9 methyltransferase BcDIM5 is physically associated with the H3K14 deacetylase BcHda1. Deletion of Bcdim5 and Bchda1 in the high ABA-producing B. cinerea TB-31 led to severe impairment of ABA synthesis. The combined analysis of RNA-seq and ChIP-seq has revealed that the absence of BcDIM5 and BcHda1 has resulted in significant global deficiencies in the normal distribution and level of H3K9me3 modification. In addition, we found that the cause of the decreased ABA production in the ΔBcdim5 and ΔBchda1 mutants was due to cluster gene repression caused by the emergence of hyper-H3K9me3 in the ABA gene cluster. We concluded that the ABA gene cluster is co-regulated by BcDIM5 and BcHda1, which are essential for the normal distribution of the B. cinerea TB-31 ABA gene cluster H3K9me3. This work expands our understanding of the complex regulatory network of ABA biosynthesis and provides a theoretical basis for genetic improvement of high-yielding ABA strains.
Collapse
Affiliation(s)
- Zhao Wei
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dan Shu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaonan Hou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Tianfu Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhemin Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Di Luo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jie Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hong Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
5
|
Xie R, Zhang B, Tumukunde E, Zhuang Z, Yuan J, Wang S. Succinylated acetyl-CoA carboxylase contributes to aflatoxin biosynthesis, morphology development, and pathogenicity in Aspergillus flavus. Int J Food Microbiol 2024; 413:110585. [PMID: 38246023 DOI: 10.1016/j.ijfoodmicro.2024.110585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Acetyl-CoA carboxylase (ACC), which catalyzes acetyl-CoA to produce malonyl-CoA, is crucial for the synthesis of mycotoxins, ergosterol, and fatty acids in various genera. However, its biofunction in Aspergillus flavus has not been reported. In this study, the accA gene was deleted and site-mutated to explore the influence of ACC on sporulation, sclerotium formation, and aflatoxin B1 (AFB1) biosynthesis. The results revealed that ACC positively regulated conidiation and sclerotium formation, but negatively regulated AFB1 production. In addition, we found that ACC is a succinylated protein, and mutation of lysine at position 990 of ACC to glutamic acid or arginine (accAK990E or accAK990R) changed the succinylation level of ACC. The accAK990E and accAK990R mutations (to imitate the succinylation and desuccinylation at K990 of ACC, respectively) downregulated fungal conidiation and sclerotium formation while increasing AFB1 production, revealing that the K990 is an important site for ACC's biofunction. These results provide valuable perspectives for future mechanism studies of the emerging roles of succinylated ACC in the regulation of the A. flavus phenotype, which is advantageous for the prevention and control of A. flavus hazards.
Collapse
Affiliation(s)
- Rui Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, School of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Bei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, School of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Elisabeth Tumukunde
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, School of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Zhenhong Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, School of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Jun Yuan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, School of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, School of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China.
| |
Collapse
|
6
|
Xu M, Sun Z, Shi H, Yue J, Xiong X, Wu Z, Kou Y, Tao Z. Two H3K36 methyltransferases differentially associate with transcriptional activity and enrichment of facultative heterochromatin in rice blast fungus. ABIOTECH 2024; 5:1-16. [PMID: 38576437 PMCID: PMC10987451 DOI: 10.1007/s42994-023-00127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/17/2023] [Indexed: 04/06/2024]
Abstract
Di- and tri-methylation of lysine 36 on histone H3 (H3K36me2/3) is catalysed by histone methyltransferase Set2, which plays an essential role in transcriptional regulation. Although there is a single H3K36 methyltransferase in yeast and higher eukaryotes, two H3K36 methyltransferases, Ash1 and Set2, were present in many filamentous fungi. However, their roles in H3K36 methylation and transcriptional regulation remained unclear. Combined with methods of RNA-seq and ChIP-seq, we revealed that both Ash1 and Set2 are redundantly required for the full H3K36me2/3 activity in Magnaporthe oryzae, which causes the devastating worldwide rice blast disease. Ash1 and Set2 distinguish genomic H3K36me2/3-marked regions and are differentially associated with repressed and activated transcription, respectively. Furthermore, Ash1-catalysed H3K36me2 was co-localized with H3K27me3 at the chromatin, and Ash1 was required for the enrichment and transcriptional silencing of H3K27me3-occupied genes. With the different roles of Ash1 and Set2, in H3K36me2/3 enrichment and transcriptional regulation on the stress-responsive genes, they differentially respond to various stresses in M. oryzae. Overall, we reveal a novel mechanism by which two H3K36 methyltransferases catalyze H3K36me2/3 that differentially associate with transcriptional activities and contribute to enrichment of facultative heterochromatin in eukaryotes. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00127-3.
Collapse
Affiliation(s)
- Mengting Xu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Ziyue Sun
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Huanbin Shi
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310021 China
| | - Jiangnan Yue
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Xiaohui Xiong
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Zhongling Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Yanjun Kou
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310021 China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
7
|
Yang C, Wu D, Lin H, Ma D, Fu W, Yao Y, Pan X, Wang S, Zhuang Z. Role of RNA Modifications, Especially m6A, in Aflatoxin Biosynthesis of Aspergillus flavus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:726-741. [PMID: 38112282 DOI: 10.1021/acs.jafc.3c05926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
RNA modifications play key roles in eukaryotes, but the functions in Aspergillus flavus are still unknown. Temperature has been reported previously to be a critical environmental factor that regulates the aflatoxin production of A. flavus, but much remains to be learned about the molecular networks. Here, we demonstrated that 12 kinds of RNA modifications in A. flavus were significantly changed under 29 °C compared to 37 °C incubation; among them, m6A was further verified by a colorimetric method. Then, the transcriptome-wide m6A methylome and m6A-altered genes were comprehensively illuminated through methylated RNA immunoprecipitation sequencing and RNA sequencing, from which 22 differentially methylated and expressed transcripts under 29 °C were screened out. It is especially notable that AFCA_009549, an aflatoxin biosynthetic pathway gene (aflQ), and the m6A methylation of its 332nd adenine in the mRNA significantly affect aflatoxin biosynthesis in A. flavus both on media and crop kernels. The content of sterigmatocystin in both ΔaflQ and aflQA332C strains was significantly higher than that in the WT strain. Together, these findings reveal that RNA modifications are associated with secondary metabolite biosynthesis of A. flavus.
Collapse
Affiliation(s)
- Chi Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
| | - Dandan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Ma
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wangzhuo Fu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfang Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaohua Pan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Huang Z, Wu D, Yang S, Fu W, Ma D, Yao Y, Lin H, Yuan J, Yang Y, Zhuang Z. Regulation of Fungal Morphogenesis and Pathogenicity of Aspergillus flavus by Hexokinase AfHxk1 through Its Domain Hexokinase_2. J Fungi (Basel) 2023; 9:1077. [PMID: 37998882 PMCID: PMC10671980 DOI: 10.3390/jof9111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
As a filamentous pathogenic fungus with high-yield of aflatoxin B1, Aspergillus flavus is commonly found in various agricultural products. It is crucial to develop effective strategies aimed at the prevention of the contamination of A. flavus and aflatoxin. Hexokinase AfHxk1 is a critical enzyme in fungal glucose metabolism. However, the role of AfHxk1 in A. flavus development, aflatoxin biosynthesis, and virulence has not yet been explored. In this study, afHxk1 gene deletion mutant (ΔafHxk1), complementary strain (Com-afHxk1), and the domain deletion strains (afHxk1ΔD1 and afHxk1ΔD2) were constructed by homologous recombination. Phenotype study and RT-qPCR revealed that AfHxk1 upregulates mycelium growth and spore and sclerotia formation, but downregulates AFB1 biosynthesis through related classical signaling pathways. Invading models and environmental stress analysis revealed that through involvement in carbon source utilization, conidia germination, and the sensitivity response of A. flavus to a series of environmental stresses, AfHxk1 deeply participates in the regulation of pathogenicity of A. flavus to crop kernels and Galleria mellonella larvae. The construction of domain deletion strains, afHxk1ΔD1 and afHxk1ΔD2, further revealed that AfHxk1 regulates the morphogenesis, mycotoxin biosynthesis, and the fungal pathogenicity mainly through its domain, Hexokinase_2. The results of this study revealed the biological role of AfHxk1 in Aspergillus spp., and might provide a novel potential target for the early control of the contamination of A. flavus.
Collapse
Affiliation(s)
- Zongting Huang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Dandan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Sile Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Wangzhuo Fu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Dongmei Ma
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanfang Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Yanling Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| |
Collapse
|
9
|
Hao L, Zhang M, Yang C, Pan X, Wu D, Lin H, Ma D, Yao Y, Fu W, Chang J, Yang Y, Zhuang Z. The epigenetic regulator Set9 harmonizes fungal development, secondary metabolism, and colonization capacity of Aspergillus flavus. Int J Food Microbiol 2023; 403:110298. [PMID: 37392609 DOI: 10.1016/j.ijfoodmicro.2023.110298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/17/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
As a widely distributed food-borne pathogenic fungus, Aspergillus flavus and its secondary metabolites, mainly aflatoxin B1 (AFB1), pose a great danger to humans. It is urgent to reveal the complex regulatory network of toxigenic and virulence of this fungus. The bio-function of Set9, a SET-domain-containing histone methyltransferase, is still unknown in A. flavus. By genetic engineering means, this study revealed that, through catalyzing H4K20me2 and -me3, Set9 is involved in fungal growth, reproduction, and mycotoxin production via the orthodox regulation pathway, and regulates fungal colonization on crop kernels through adjusting fungal sensitivity reactions to oxidation stress and cell wall integrity stress. Further domain deletion and point mutation inferred that the SET domain is the core element in catalyzing H4K20 methylation, and D200 site of the domain is the key amino acid in the active center of the methyltransferase. Combined with RNA-seq analysis, this study revealed that Set9 regulates the aflatoxin gene cluster by the AflR-like protein (ALP), other than traditional AflR. This study revealed the epigenetic regulation mechanism of fungal morphogenesis, secondary metabolism, and pathogenicity of A. flavus mediated by the H4K20-methyltransferase Set9, which might provide a potential new target for early prevention of contamination of A. flavus and its deadly mycotoxins.
Collapse
Affiliation(s)
- Ling Hao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengjuan Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chi Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Xiaohua Pan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Propagated Sensation along Meridian, Fujian Academy of Chinese Medical Sciences, Fuzhou 350003, China
| | - Dandan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Ma
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfang Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wangzhuo Fu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiarui Chang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanling Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Zhang X, Noberini R, Vai A, Bonaldi T, Seidl MF, Collemare J. Detection and quantification of the histone code in the fungal genus Aspergillus. Fungal Genet Biol 2023; 167:103800. [PMID: 37146898 DOI: 10.1016/j.fgb.2023.103800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
In eukaryotes, the combination of different histone post-translational modifications (PTMs) - the histone code - impacts the chromatin organization as compact and transcriptionally silent heterochromatin or accessible and transcriptionally active euchromatin. Although specific histone PTMs have been studied in fungi, an overview of histone PTMs and their relative abundance is still lacking. Here, we used mass spectrometry to detect and quantify histone PTMs in three fungal species belonging to three distinct taxonomic sections of the genus Aspergillus (Aspergillus niger, Aspergillus nidulans (two strains), and Aspergillus fumigatus). We overall detected 23 different histone PTMs, including a majority of lysine methylations and acetylations, and 23 co-occurrence patterns of multiple histone PTMs. Among those, we report for the first time the detection of H3K79me1, H3K79me2, and H4K31ac in Aspergilli. Although all three species harbour the same PTMs, we found significant differences in the relative abundance of H3K9me1/2/3, H3K14ac, H3K36me1 and H3K79me1, as well as the co-occurrence of acetylation on both K18 and K23 of histone H3 in a strain-specific manner. Our results provide novel insights about the underexplored complexity of the histone code in filamentous fungi, and its functional implications on genome architecture and gene regulation.
Collapse
Affiliation(s)
- Xin Zhang
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Alessandro Vai
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Haematology-Oncology, University of Milano, Via Santa Sofia 9/1, 20122 Milano, Italy.
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Jérȏme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
11
|
Pan X, Hao L, Yang C, Lin H, Wu D, Chen X, Zhang M, Ma D, Wang Y, Fu W, Yao Y, Wang S, Zhuang Z. SWD1 epigenetically chords fungal morphogenesis, aflatoxin biosynthesis, metabolism, and virulence of Aspergillus flavus. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131542. [PMID: 37172387 DOI: 10.1016/j.jhazmat.2023.131542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/14/2023]
Abstract
As the main producer of aflatoxins, Aspergillus flavus is also one of the most important causes of invasive and non-invasive aspergillosis. Therefore, it is crucial to unravel the regulatory mechanisms of growth, metabolism, and pathogenicity of A. flavus. SWD1 is highly conserved across species for maintaining COMPASS methyltransferase activity, but the bio-function of SWD1 in A. flavus has not been explored. Through genetic analysis, this study revealed that SWD1 is involved in fungal morphogenesis and AFB1 biosynthesis by regulating the orthodox pathways through H3K4me1-3. Stresses sensitivity and crop models analysis revealed that SWD1 is a key regulator for the resistance of A. flavus to adapt to extreme adverse environments and to colonize crop kernels. It also revealed that the WD40 domain and 25 aa highly conserved sequence are indispensable for SWD1 in the regulation of mycotoxin bio-synthesis and fungal virulence. Metabolomic analysis inferred that SWD1 is crucial for the biosynthesis of numerous primary and secondary metabolites, regulates biological functions by reshaping the whole metabolic process, and may inhibit fungal virulence by inducing the apoptosis of mycelia through the inducer sphingosine. This study elucidates the epigenetic mechanism of SWD1 in regulating fungal pathogenicity and mycotoxin biosynthesis, and provides a potential novel target for controlling the virulence of A. flavus.
Collapse
Affiliation(s)
- Xiaohua Pan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Propagated Sensation along Meridian, Fujian Academy of Chinese Medical Sciences, Fuzhou 350003, China
| | - Ling Hao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chi Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dandan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuan Chen
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengjuan Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Ma
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wangzhuo Fu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfang Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|