1
|
Pandey A, Roy JK. Rab11 maintains the undifferentiated state of adult midgut precursors via DPP pathway. Exp Cell Res 2024; 439:114092. [PMID: 38754617 DOI: 10.1016/j.yexcr.2024.114092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Asymmetric stem cell divisions play instrumental roles in the maintenance, growth and differentiation of organs. Failure of asymmetric stem cell divisions may result in an array of developmental disorders, including cancer. It is well established that the gene, inscuteable, acts as the upstream component of asymmetric cell divisions. In Drosophila larval midgut, a founder adult midgut precursor (AMP) experiences an asymmetric division to instruct its first daughter to become a peripheral cell that serves as a niche where the AMP and its future daughters can remain undifferentiated. The present study demonstrates that inscuteable expressing stem cells require Rab11, a conserved small Ras-like GTPase, for proper proliferation and differentiation. As insc-GAL4 mediated Rab11RNAi in Drosophila larval and adult midguts show the disruption of the niche microenvironment of adult midgut precursors as well as elevated DPP signalling at the larval stage, which is associated with aberrant over-proliferation and early differentiation of larval AMPs and adult intestinal stem cells. The observed connections between Rab11, larval AMP proliferation, niche establishment, and DPP signalling highlight the potential for Rab11 to serve as a key regulatory factor in maintaining tissue homeostasis and balanced cellular growth.
Collapse
Affiliation(s)
- Akanksha Pandey
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Yoon J, Garo J, Lee M, Sun J, Hwang YS, Daar IO. Rab11fip5 regulates telencephalon development via ephrinB1 recycling. Development 2021; 148:dev196527. [PMID: 33462110 PMCID: PMC7875491 DOI: 10.1242/dev.196527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022]
Abstract
Rab11 family-interacting protein 5 (Rab11fip5) is an adaptor protein that binds to the small GTPase Rab11, which has an important function in endosome recycling and trafficking of cellular proteins to the plasma membrane. Rab11fip5 is involved in many cellular processes, such as cytoskeleton rearrangement, iron uptake and exocytosis in neuroendocrine cells, and is also known as a candidate gene for autism-spectrum disorder. However, the role of Rab11fip5 during early embryonic development is not clearly understood. In this study, we identified Rab11fip5 as a protein that interacts with ephrinB1, a transmembrane ligand for Eph receptors. The PDZ binding motif in ephrinB1 and the Rab-binding domain in Rab11fip5 are necessary for their interaction in a complex. EphrinB1 and Rab11fip5 display overlapping expression in the telencephalon of developing amphibian embryos. The loss of Rab11fip5 function causes a reduction in telencephalon size and a decrease in the expression level of ephrinB1. Moreover, morpholino oligonucleotide-mediated knockdown of Rab11fip5 decreases cell proliferation in the telencephalon. The overexpression of ephrinB1 rescues these defects, suggesting that ephrinB1 recycling by the Rab11/Rab11fip5 complex is crucial for proper telencephalon development.
Collapse
Affiliation(s)
- Jaeho Yoon
- Cancer and Developmental Biology Laboratory (CDBL), Center for Cancer Research (CCR) - Frederick, National Cancer Institute, Frederick, MD 21702, USA
| | - Jerlin Garo
- Cancer and Developmental Biology Laboratory (CDBL), Center for Cancer Research (CCR) - Frederick, National Cancer Institute, Frederick, MD 21702, USA
| | - Moonsup Lee
- Cancer and Developmental Biology Laboratory (CDBL), Center for Cancer Research (CCR) - Frederick, National Cancer Institute, Frederick, MD 21702, USA
| | - Jian Sun
- Cancer and Developmental Biology Laboratory (CDBL), Center for Cancer Research (CCR) - Frederick, National Cancer Institute, Frederick, MD 21702, USA
| | - Yoo-Seok Hwang
- Cancer and Developmental Biology Laboratory (CDBL), Center for Cancer Research (CCR) - Frederick, National Cancer Institute, Frederick, MD 21702, USA
| | - Ira O Daar
- Cancer and Developmental Biology Laboratory (CDBL), Center for Cancer Research (CCR) - Frederick, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
3
|
Xiao X, Ni Y, Yu C, Li L, Mao B, Yang Y, Zheng D, Silvestrini B, Cheng CY. Src family kinases (SFKs) and cell polarity in the testis. Semin Cell Dev Biol 2018; 81:46-53. [PMID: 29174914 PMCID: PMC5988912 DOI: 10.1016/j.semcdb.2017.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/02/2023]
Abstract
Non-receptor Src family kinases (SFKs), most notably c-Src and c-Yes, are recently shown to be expressed by Sertoli and/or germ cells in adult rat testes. Studies have shown that SFKs are involved in modulating the cell cytoskeletal function, and involved in endocytic vesicle-mediated protein endocytosis, transcytosis and/or recycling as well as intracellular protein degradation events. Furthermore, a knockdown to SFKs, in particular c-Yes, has shown to induce defects in spermatid polarity. These findings, coupled with emerging evidence in the field, thus prompt us to critically evaluate them to put forth a developing concept regarding the role of SFKs and cell polarity, which will become a basis to design experiments for future investigations.
Collapse
Affiliation(s)
- Xiang Xiao
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065
| | - Ya Ni
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Chenhuan Yu
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Linxi Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzho, Zhejiang 325035, China
| | - Baiping Mao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzho, Zhejiang 325035, China
| | - Yue Yang
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Dongwang Zheng
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | | | - C. Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065
| |
Collapse
|