1
|
Ayukawa S, Kamoshita N, Maruyama T. Epithelial recognition and elimination against aberrant cells. Semin Immunopathol 2024; 45:521-532. [PMID: 38411739 DOI: 10.1007/s00281-024-01001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
Epithelial cells, which are non-immune cells, not only function as a physical defence barrier but also continuously monitor and eliminate aberrant epithelial cells in their vicinity. In other words, it has become evident that epithelial cells possess immune cell-like functions. In fact, recent research has revealed that epithelial cells recognise the Major Histocompatibility Complex I (MHC-I) of aberrant cells as a mechanism for surveillance. This cellular defence mechanism of epithelial cells probably detects aberrant cells more promptly than the conventional immune response, making it a novel and primary biological defence. Furthermore, there is the potential for this new immune-like biological defence mechanism to establish innovative treatment for disease prevention, leading to increasing anticipation for its future medical applications. In this review, we aim to summarise the recognition and attack mechanisms of aberrant cells by epithelial cells in mammals, with a particular focus on the field of cancer. Additionally, we discuss the potential therapeutic applications of epithelial cell-based defence against cancer, including novel prophylactic treatment methods based on molecular mechanisms.
Collapse
Affiliation(s)
- Shiyu Ayukawa
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Department of Medical Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - Nagisa Kamoshita
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Takeshi Maruyama
- Department of Medical Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Tokyo, Japan.
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan.
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan.
| |
Collapse
|
2
|
Marco S, Neilson M, Moore M, Perez-Garcia A, Hall H, Mitchell L, Lilla S, Blanco GR, Hedley A, Zanivan S, Norman JC. Nuclear-capture of endosomes depletes nuclear G-actin to promote SRF/MRTF activation and cancer cell invasion. Nat Commun 2021; 12:6829. [PMID: 34819513 PMCID: PMC8613289 DOI: 10.1038/s41467-021-26839-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
Signals are relayed from receptor tyrosine kinases (RTKs) at the cell surface to effector systems in the cytoplasm and nucleus, and coordination of this process is important for the execution of migratory phenotypes, such as cell scattering and invasion. The endosomal system influences how RTK signalling is coded, but the ways in which it transmits these signals to the nucleus to influence gene expression are not yet clear. Here we show that hepatocyte growth factor, an activator of MET (an RTK), promotes Rab17- and clathrin-dependent endocytosis of EphA2, another RTK, followed by centripetal transport of EphA2-positive endosomes. EphA2 then mediates physical capture of endosomes on the outer surface of the nucleus; a process involving interaction between the nuclear import machinery and a nuclear localisation sequence in EphA2's cytodomain. Nuclear capture of EphA2 promotes RhoG-dependent phosphorylation of the actin-binding protein, cofilin to oppose nuclear import of G-actin. The resulting depletion of nuclear G-actin drives transcription of Myocardin-related transcription factor (MRTF)/serum-response factor (SRF)-target genes to implement cell scattering and the invasive behaviour of cancer cells.
Collapse
Affiliation(s)
- Sergi Marco
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | | | | | - Arantxa Perez-Garcia
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland, UK
| | - Holly Hall
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | | | - Sergio Lilla
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | | | - Ann Hedley
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | - Sara Zanivan
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland, UK
| | - Jim C Norman
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
3
|
Massimini M, Romanucci M, De Maria R, Della Salda L. An Update on Molecular Pathways Regulating Vasculogenic Mimicry in Human Osteosarcoma and Their Role in Canine Oncology. Front Vet Sci 2021; 8:722432. [PMID: 34631854 PMCID: PMC8494780 DOI: 10.3389/fvets.2021.722432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Canine tumors are valuable comparative models for human counterparts, especially to explore novel biomarkers and to understand pathways and processes involved in metastasis. Vasculogenic mimicry (VM) is a unique property of malignant cancer cells which promote metastasis. Thus, it represents an opportunity to investigate both the molecular mechanisms and the therapeutic targets of a crucial phenotypic malignant switch. Although this biological process has been largely investigated in different human cancer types, including osteosarcoma, it is still largely unknown in veterinary pathology, where it has been mainly explored in canine mammary tumors. The presence of VM in human osteosarcoma is associated with poor clinical outcome, reduced patient survival, and increased risk of metastasis and it shares the main pathways involved in other type of human tumors. This review illustrates the main findings concerning the VM process in human osteosarcoma, search for the related current knowledge in canine pathology and oncology, and potential involvement of multiple pathways in VM formation, in order to provide a basis for future investigations on VM in canine tumors.
Collapse
|
4
|
Cell-Extrinsic Differentiation Block Mediated by EphA3 in Pre-Leukaemic Thymus Contributes to Disease Progression. Cancers (Basel) 2021; 13:cancers13153858. [PMID: 34359759 PMCID: PMC8345401 DOI: 10.3390/cancers13153858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary The NUP98-HOXD13 (NHD13) mouse is a model of T-cell leukaemia (T-ALL) featuring a pre-leukemic phase, in which T-cell progenitors from the thymus of an NHD13 mouse can engraft into the thymus of a recipient mouse—an ability that normal T-cell progenitors do not possess. However, loss of this engraftment ability (by deletion of the Lyl1 gene) did not result in any loss of leukemogenesis activity, indicating the activity of redundant oncogenic pathways in this model. Having observed an overexpression of the EphA3 protein in the NHD13 thymocytes, we hypothesized that this gene might be involved in a redundant leukaemogenic pathway. Deletion of EphA3 did not affect the engraftment ability of the thymocytes, but did reduce the incidence of T-ALL. We thus uncovered a distinct mechanism of leukaemogenesis, which we believe operates in parallel to that mediated by Lyl1. Abstract We recently characterised the NUP98-HOXD13 (NHD13) mouse as a model of T-cell pre-leukaemia, featuring thymocytes that can engraft in recipient animals and progress to T-cell acute lymphoblastic leukaemia (T-ALL). However, loss of this engraftment ability by deletion of Lyl1 did not result in any loss of leukemogenesis activity. In the present study, we observe that NHD13 thymocytes overexpress EPHA3, and we characterise thymocyte behaviour in NHD13 mice with deletion of EphA3, which show a markedly reduced incidence of T-ALL. Deletion of EphA3 from the NHD13 mice does not prevent the abnormal accumulation or transplantation ability of these thymocytes. However, upon transplantation, these cells are unable to block the normal progression of recipient wild type (WT) progenitor cells through the normal developmental pathway. This is in contrast to the EphA3+/+ NHD13 thymocytes, which block the progression of incoming WT progenitors past the DN1 stage. Therefore, EphA3 is not critical for classical self-renewal, but is essential for mediating an interaction between the abnormally self-renewing cells and healthy progenitors—an interaction that results in a failure of the healthy cells to differentiate normally. We speculate that this may orchestrate a loss of healthy cell competition, which in itself has been demonstrated to be oncogenic, and that this may explain the decrease in T-ALL incidence in the absence of EphA3. We suggest that pre-leukaemic self-renewal in this model is a complex interplay of cell-intrinsic and -extrinsic factors, and that multiple redundant pathways to leukaemogenesis are active.
Collapse
|
5
|
Hill W, Zaragkoulias A, Salvador-Barbero B, Parfitt GJ, Alatsatianos M, Padilha A, Porazinski S, Woolley TE, Morton JP, Sansom OJ, Hogan C. EPHA2-dependent outcompetition of KRASG12D mutant cells by wild-type neighbors in the adult pancreas. Curr Biol 2021; 31:2550-2560.e5. [PMID: 33891893 PMCID: PMC8231095 DOI: 10.1016/j.cub.2021.03.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022]
Abstract
As we age, our tissues are repeatedly challenged by mutational insult, yet cancer occurrence is a relatively rare event. Cells carrying cancer-causing genetic mutations compete with normal neighbors for space and survival in tissues. However, the mechanisms underlying mutant-normal competition in adult tissues and the relevance of this process to cancer remain incompletely understood. Here, we investigate how the adult pancreas maintains tissue health in vivo following sporadic expression of oncogenic Kras (KrasG12D), the key driver mutation in human pancreatic cancer. We find that when present in tissues in low numbers, KrasG12D mutant cells are outcompeted and cleared from exocrine and endocrine compartments in vivo. Using quantitative 3D tissue imaging, we show that before being cleared, KrasG12D cells lose cell volume, pack into round clusters, and E-cadherin-based cell-cell adhesions decrease at boundaries with normal neighbors. We identify EphA2 receptor as an essential signal in the clearance of KrasG12D cells from exocrine and endocrine tissues in vivo. In the absence of functional EphA2, KrasG12D cells do not alter cell volume or shape, E-cadherin-based cell-cell adhesions increase and KrasG12D cells are retained in tissues. The retention of KRasG12D cells leads to the early appearance of premalignant pancreatic intraepithelial neoplasia (PanINs) in tissues. Our data show that adult pancreas tissues remodel to clear KrasG12D cells and maintain tissue health. This study provides evidence to support a conserved functional role of EphA2 in Ras-driven cell competition in epithelial tissues and suggests that EphA2 is a novel tumor suppressor in pancreatic cancer.
Collapse
Affiliation(s)
- William Hill
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Andreas Zaragkoulias
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Beatriz Salvador-Barbero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Geraint J Parfitt
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Markella Alatsatianos
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Ana Padilha
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Sean Porazinski
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Thomas E Woolley
- School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, UK
| | - Jennifer P Morton
- CRUK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Owen J Sansom
- CRUK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Catherine Hogan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK.
| |
Collapse
|
6
|
Cioce M, Fazio VM. EphA2 and EGFR: Friends in Life, Partners in Crime. Can EphA2 Be a Predictive Biomarker of Response to Anti-EGFR Agents? Cancers (Basel) 2021; 13:cancers13040700. [PMID: 33572284 PMCID: PMC7915460 DOI: 10.3390/cancers13040700] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
The Eph receptors represent the largest group among Receptor Tyrosine kinase (RTK) families. The Eph/ephrin signaling axis plays center stage during development, and the deep perturbation of signaling consequent to its dysregulation in cancer reveals the multiplicity and complexity underlying its function. In the last decades, they have emerged as key players in solid tumors, including colorectal cancer (CRC); however, what causes EphA2 to switch between tumor-suppressive and tumor-promoting function is still an active theater of investigation. This review summarizes the recent advances in understanding EphA2 function in cancer, with detail on the molecular determinants of the oncogene-tumor suppressor switch function of EphA2. We describe tumor context-specific examples of EphA2 signaling and the emerging role EphA2 plays in supporting cancer-stem-cell-like populations and overcoming therapy-induced stress. In such a frame, we detail the interaction of the EphA2 and EGFR pathway in solid tumors, including colorectal cancer. We discuss the contribution of the EphA2 oncogenic signaling to the resistance to EGFR blocking agents, including cetuximab and TKIs.
Collapse
Affiliation(s)
- Mario Cioce
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Correspondence: (M.C.); (V.M.F.)
| | - Vito Michele Fazio
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
- Correspondence: (M.C.); (V.M.F.)
| |
Collapse
|
7
|
Nanavati BN, Yap AS, Teo JL. Symmetry Breaking and Epithelial Cell Extrusion. Cells 2020; 9:E1416. [PMID: 32517310 PMCID: PMC7349681 DOI: 10.3390/cells9061416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
Cell extrusion is a striking morphological event found in epithelia and endothelia. It is distinguished by two symmetry-breaking events: a loss of planar symmetry, as cells are extruded in either apical or basal directions; and loss of mechanochemical homogeneity within monolayers, as cells that are fated to be extruded become biochemically and mechanically distinct from their neighbors. Cell extrusion is elicited by many diverse events, from apoptosis to the expression of transforming oncogenes. Does the morphological outcome of extrusion reflect cellular processes that are common to these diverse biological phenomena? To address this question, in this review we compare the progress that has been made in understanding how extrusion is elicited by epithelial apoptosis and cell transformation.
Collapse
Affiliation(s)
| | - Alpha S. Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (B.N.N.); (J.L.T.)
| | | |
Collapse
|
8
|
Pelham CJ, Nagane M, Madan E. Cell competition in tumor evolution and heterogeneity: Merging past and present. Semin Cancer Biol 2019; 63:11-18. [PMID: 31323289 DOI: 10.1016/j.semcancer.2019.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
In many cases, cancers are difficult to eliminate because they develop resistance to a primary chemotherapy or targeted therapy. Tumors grow into diverse cell subpopulations, increasing the ability to resist elimination. The phenomenon of 'cell competition' describes our body's natural surveillance system to optimize tissue fitness by forcing viable but aberrant cells to undergo cell death. Cell competition is not simply comparison of cell division potential. Competition factors signal for 'loser' cell elimination and 'winner' cell dominance. New evidence demonstrates it is possible to restrict cancer growth by strengthening the cell fitness of surrounding healthy tissue via anti-apoptotic pathways. Hence, cell competition provides strong conceptual explanation for oncogenesis, tumor growth and suppression. Tumor heterogeneity is a hallmark of many cancers and establishes gradients in which competitive interactions are able to occur among tumor cell subpopulations as well as neighboring stromal tissue. Here we review cellular/molecular competition pathways in the context of tumor evolution, heterogeneity and response to interventions. We propose strategies to exploit these mediators and design novel broad-spectrum therapeutic approaches that eliminate cancer and enhance fitness of neighboring tissue to improve patient outcomes.
Collapse
Affiliation(s)
- Christopher J Pelham
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Masaki Nagane
- Department of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Esha Madan
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|
9
|
Madan E, Gogna R, Moreno E. Cell competition in development: information from flies and vertebrates. Curr Opin Cell Biol 2018; 55:150-157. [DOI: 10.1016/j.ceb.2018.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
|