1
|
Gong N, Tuo Y, Liu P. Identification and Mendelian randomization validation of pathogenic gene biomarkers in obstructive sleep apnea. Front Neurol 2024; 15:1442835. [PMID: 39220737 PMCID: PMC11363542 DOI: 10.3389/fneur.2024.1442835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background By 2020, obstructive sleep apnea (OSA), a prevalent respiratory disorder, had affected 26.6-43.2% of males and 8.7-27.8% of females worldwide. OSA is associated with conditions such as hypertension, diabetes, and tumor progression; however, the precise underlying pathways remain elusive. This study aims to identify genetic markers and molecular mechanisms of OSA to improve understanding and treatment strategies. Methods The GSE135917 dataset related to OSA was obtained from the GEO database. Differentially expressed genes (DEGs) were subsequently identified. Weighted gene co-expression network analysis (WGCNA) was conducted to pinpoint disease-associated genes. The intersection of these data enabled the identification of potential diagnostic DEGs. Further analyses included Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment studies, exploration of protein-protein interactions based on these genes, and an examination of immune infiltration. Mendelian randomization was employed to validate core genes against the Genome-Wide Association Study database. Results A total of 194 DEGs were identified in this study. WGCNA network analysis highlighted 2,502 DEGs associated with OSA. By intersecting these datasets, 53 diagnostic DEGs primarily involved in metabolic pathways were identified. Significant alterations were observed in immune cell populations, including memory B cells, plasma cells, naive CD4 T cells, M0 macrophages, and activated dendritic cells. CETN3, EEF1E1, PMM2, GTF2A2, and RRM2 emerged as hub genes implicated in the pathogenesis. A line graph model provides diagnostic insights. Mendelian randomization analysis confirmed a causal link between CETN3 and GTF2A2 with OSA. Conclusion Through WGCNA, this analysis uncovered significant genetic foundations of OSA, identifying 2,502 DEGs and 194 genes associated with the disorder. Among these, CETN3 and GTF2A2 were found to have causal relationships with OSA.
Collapse
Affiliation(s)
- Nianjin Gong
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yu Tuo
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Peijun Liu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
2
|
Zhang S, Yan C, Lu T, Fan Y, Ren Y, Zhao J, Shan X, Guan Y, Song P, Li D, Hu H. New insights into molecular features of the genome-wide AOX family and their responses to various stresses in common wheat (Triticum aestivum L.). Gene 2023; 888:147756. [PMID: 37659597 DOI: 10.1016/j.gene.2023.147756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023]
Abstract
Alternative oxidase (AOX) is an important terminal oxidase involved in the alternative oxidation pathway in plants, which is closely related to various biotic and abiotic stress responses. However, a comprehensive research on AOX gene family of wheat is still lacking. In this study, the members of wheat AOX (TaAOX) family were identified, and their molecular characteristics and gene expression patterns were systematically investigated. Seventeen TaAOX genes were identified from Chinese Spring (CS) genome, which were mapped on 7 chromosomes and mainly clustered on the long arm's distal end of the second homologous groups. Phylogenetic analysis showed that TaAOX genes were classified into four subgroups (Ia, Ib, Ic, and Id), and the Ia subgroup possessed the most members. Tandem duplication and segmental duplication events were found during the evolution of TaAOX genes and they were affected by purifying selection demonstrated by Ka/Ks analysis. The exon numbers of this family gene varied greatly from 1 to 9. Except for Ta3BSAOX14, all the proteins encoded by the other 16 TaAOX genes contained the amino acid residues of the key active sites in the AOX domain (cd01053). The expression patterns of TaAOX genes in various tissues and under abiotic and biotic stresses were analyzed using public transcriptome data, furthermore, qRT-PCR analysis was performed for some selected TaAOX genes, and the results suggested that most members of this gene family play an important role in response to different stresses in common wheat. Our results provide basic information and valuable reference for further exploring the gene function of TaAOX family by using gene editing, RNAi, VIGS, and other technologies.
Collapse
Affiliation(s)
- Shengli Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China.
| | - Cuiping Yan
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Tairui Lu
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Yuchao Fan
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Yueming Ren
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Jishun Zhao
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Xiaojing Shan
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Yuanyuan Guan
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Puwen Song
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| | - Dongfang Li
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Haiyan Hu
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China; Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, Henan, China
| |
Collapse
|
3
|
Savinkova LK, Sharypova EB, Kolchanov NA. On the Role of TATA Boxes and TATA-Binding Protein in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1000. [PMID: 36903861 PMCID: PMC10005294 DOI: 10.3390/plants12051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
For transcription initiation by RNA polymerase II (Pol II), all eukaryotes require assembly of basal transcription machinery on the core promoter, a region located approximately in the locus spanning a transcription start site (-50; +50 bp). Although Pol II is a complex multi-subunit enzyme conserved among all eukaryotes, it cannot initiate transcription without the participation of many other proteins. Transcription initiation on TATA-containing promoters requires the assembly of the preinitiation complex; this process is triggered by an interaction of TATA-binding protein (TBP, a component of the general transcription factor TFIID (transcription factor II D)) with a TATA box. The interaction of TBP with various TATA boxes in plants, in particular Arabidopsis thaliana, has hardly been investigated, except for a few early studies that addressed the role of a TATA box and substitutions in it in plant transcription systems. This is despite the fact that the interaction of TBP with TATA boxes and their variants can be used to regulate transcription. In this review, we examine the roles of some general transcription factors in the assembly of the basal transcription complex, as well as functions of TATA boxes of the model plant A. thaliana. We review examples showing not only the involvement of TATA boxes in the initiation of transcription machinery assembly but also their indirect participation in plant adaptation to environmental conditions in responses to light and other phenomena. Examples of an influence of the expression levels of A. thaliana TBP1 and TBP2 on morphological traits of the plants are also examined. We summarize available functional data on these two early players that trigger the assembly of transcription machinery. This information will deepen the understanding of the mechanisms underlying transcription by Pol II in plants and will help to utilize the functions of the interaction of TBP with TATA boxes in practice.
Collapse
|
4
|
Ding L, Zhao X, Xiong Q, Jiang X, Liu X, Ding K, Zhou P. Cdc25B is transcriptionally inhibited by IER5 through the NF-YB transcription factor in irradiation-treated HeLa cells. Toxicol Res (Camb) 2021; 10:875-884. [PMID: 34484679 DOI: 10.1093/toxres/tfab069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 12/09/2022] Open
Abstract
Cervical cancer (CC) is a type of pelvic malignant tumor that severely threatens women's health. Current evidence suggests that IER5, as a potential radiosensitizer, promotes irradiation-induced apoptosis in CC tissues in patients undergoing chemoradiotherapy. IER5 has been shown to be involved in the G2/M-phase transition. In the present study, we used Cdc25B as the breakthrough point to explore the underlying mechanism of IER5 in the cell cycle regulation of radiation-damaged HeLa cells. IER5 was evidently upregulated after irradiation, but Cdc25B was significantly downregulated. In monoclonal IER5-silenced HeLa cells, irradiation-induced downregulation of Cdc25B was attenuated. The effect of irradiation on Cdc25B promoter activity was determined by dual-luciferase reporter assays. The response elements on the Cdc25B promoter related to irradiation were predicted by JASPAR. These conserved sequences were mutated individually or in combination by splicing-by-overlap extension PCR, and their function was confirmed by dual-luciferase reporter assays. The enrichment efficiency of transcription factors after irradiation was determined by chromatin immunoprecipitation (ChIP) assay. Both Sp1/Sp3 and NF-YB binding sites were involved in irradiation-mediated regulation of Cdc25B. IER5 was involved in irradiation-mediated regulation of Cdc25B through the NF-YB binding site. Furthermore, ChIP assays showed that IER5 bound to the Cdc25B promoter, and the binding of IER5 to the Cdc25B promoter region in irradiation-induced HeLa cells induced the release of the coactivator p300 through interaction with NF-YB. Taken together, these findings indicate that IER5 is the transcriptional repressor that accelerates the downregulation of Cdc25B expression after irradiation.
Collapse
Affiliation(s)
- Lixin Ding
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088, P. R. China
| | - Xianzhe Zhao
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088, P. R. China
| | - Qiang Xiong
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088, P. R. China
| | - Xiaoyan Jiang
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088, P. R. China
| | - Xiaodan Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, P. R. China
| | - Kuke Ding
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088, P. R. China
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, P. R. China
| |
Collapse
|
5
|
Cherezov RO, Vorontsova JE, Simonova OB. TBP-Related Factor 2 as a Trigger for Robertsonian Translocations and Speciation. Int J Mol Sci 2020; 21:E8871. [PMID: 33238614 PMCID: PMC7700478 DOI: 10.3390/ijms21228871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
Robertsonian (centric-fusion) translocation is the form of chromosomal translocation in which two long arms of acrocentric chromosomes are fused to form one metacentric. These translocations reduce the number of chromosomes while preserving existing genes and are considered to contribute to speciation. We asked whether hypomorphic mutations in genes that disrupt the formation of pericentromeric regions could lead to centric fusion. TBP-related factor 2 (Trf2) encodes an alternative general transcription factor. A decrease of TRF2 expression disrupts the structure of the pericentromeric regions and prevents their association into chromocenter. We revealed several centric fusions in two lines of Drosophila melanogaster with weak Trf2 alleles in genetic experiments. We performed an RNAi-mediated knock-down of Trf2 in Drosophila and S2 cells and demonstrated that Trf2 upregulates expression of D1-one of the major genes responsible for chromocenter formation and nuclear integrity in Drosophila. Our data, for the first time, indicate that Trf2 may be involved in transcription program responsible for structuring of pericentromeric regions and may contribute to new karyotypes formation in particular by promoting centric fusion. Insight into the molecular mechanisms of Trf2 function and its new targets in different tissues will contribute to our understanding of its phenomenon.
Collapse
Affiliation(s)
| | | | - Olga B. Simonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, 119991 Moscow, Russia; (R.O.C.); (J.E.V.)
| |
Collapse
|
6
|
Nakamura S, Hira S, Kojima M, Kondo A, Mukai M. Expression of the core promoter factors TATA box binding protein and TATA box binding protein-related factor 2 in Drosophila germ cells and their distinct functions in germline development. Dev Growth Differ 2020; 62:540-553. [PMID: 33219538 DOI: 10.1111/dgd.12701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022]
Abstract
In Drosophila, the expression of germline genes is initiated in primordial germ cells (PGCs) and is known to be associated with germline establishment. However, the transcriptional regulation of germline genes remains elusive. Previously, we found that the BTB/POZ-Zn-finger protein, Mamo, is necessary for the expression of the germline gene, vasa, in PGCs. Moreover, truncated Mamo lacking the BTB/POZ domain (MamoAF) is a potent vasa activator. In this study, we investigated the genetic interaction between MamoAF and specific transcriptional regulators to gain insight into the transcriptional regulation of germline development. We identified a general transcription factor, TATA box binding protein (TBP)-associated factor 3 (TAF3/BIP2), and a member of the TBP-like proteins, TBP-related factor 2 (TRF2), as new genetic modifiers of MamoAF. In contrast to TRF2, TBP was found to show no genetic interaction with MamoAF, suggesting that Trf2 has a selective function. Therefore, we focused on Trf2 expression and investigated its function in germ cells. We found that Trf2 mRNA, rather than Tbp mRNA, was preferentially expressed in PGCs during embryogenesis. Depletion of TRF2 in PGCs resulted in decreased mRNA expression of vasa. RNA interference-mediated knockdown showed that, while Trf2 is required for maintenance of germ cells, Tbp is needed for their differentiation during oogenesis. Therefore, these results suggest that Trf2 and Tbp expression is differentially regulated in germ cells and that these factors have distinct functions in Drosophila germline development.
Collapse
Affiliation(s)
- Shoichi Nakamura
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Graduate School of Natural Science, Konan University, Kobe, Japan.,Institute for Integrative Neurosciences, Hyogo, Japan.,Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo, Japan
| | - Seiji Hira
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Graduate School of Natural Science, Konan University, Kobe, Japan.,Institute for Integrative Neurosciences, Hyogo, Japan
| | - Makoto Kojima
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Akane Kondo
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Graduate School of Natural Science, Konan University, Kobe, Japan
| | - Masanori Mukai
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan.,Graduate School of Natural Science, Konan University, Kobe, Japan.,Institute for Integrative Neurosciences, Hyogo, Japan
| |
Collapse
|
7
|
Parra-Marín O, López-Pacheco K, Hernández R, López-Villaseñor I. The highly diverse TATA box-binding proteins among protists: A review. Mol Biochem Parasitol 2020; 239:111312. [PMID: 32771681 DOI: 10.1016/j.molbiopara.2020.111312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/28/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
Transcription is the first step of gene expression regulation and is a fundamental mechanism for establishing the viability and development of a cell. The TATA box-binding protein (TBP) interaction with a TATA box in a promoter is one of the best studied mechanisms in transcription initiation. TBP is a transcription factor that is highly conserved from archaea to humans and is essential for the transcription initiated by each of the three RNA polymerases. In addition, the discovery of TBP-related factor 1 (TRF1) and other factors related to TBP shed light on the variability among transcription initiation complexes, thus demonstrating that the compositions of these complexes are, in fact, more complicated than originally believed. Despite these facts, the majority of studies on transcription have been performed on animal, plant and fungal cells, which serve as canonical models, and information regarding protist cells is relatively scarce. The aim of this work is to review the diversity of the TBPs that have been documented in protists and describe some of the specific features that differentiate them from their counterparts in higher eukaryotes.
Collapse
Affiliation(s)
- Olivia Parra-Marín
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Karla López-Pacheco
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Imelda López-Villaseñor
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| |
Collapse
|
8
|
The RNA Polymerase II Core Promoter in Drosophila. Genetics 2019; 212:13-24. [PMID: 31053615 DOI: 10.1534/genetics.119.302021] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/05/2019] [Indexed: 11/18/2022] Open
Abstract
Transcription by RNA polymerase II initiates at the core promoter, which is sometimes referred to as the "gateway to transcription." Here, we describe the properties of the RNA polymerase II core promoter in Drosophila The core promoter is at a strategic position in the expression of genes, as it is the site of convergence of the signals that lead to transcriptional activation. Importantly, core promoters are diverse in terms of their structure and function. They are composed of various combinations of sequence motifs such as the TATA box, initiator (Inr), and downstream core promoter element (DPE). Different types of core promoters are transcribed via distinct mechanisms. Moreover, some transcriptional enhancers exhibit specificity for particular types of core promoters. These findings indicate that the core promoter is a central component of the transcriptional apparatus that regulates gene expression.
Collapse
|
9
|
Kachaev ZM, Lebedeva LA, Shaposhnikov AV, Moresco JJ, Yates JR, Schedl P, Shidlovskii YV. Paip2 cooperates with Cbp80 at an active promoter and participates in RNA Polymerase II phosphorylation in Drosophila. FEBS Lett 2019; 593:1102-1112. [PMID: 31001806 DOI: 10.1002/1873-3468.13391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023]
Abstract
The Paip2 protein is a factor regulating mRNA translation and stability in the cytoplasm. It has also been found in the nuclei of several cell types in Drosophila. Here, we aim to elucidate the functions of Paip2 in the cell nucleus. We find that nuclear Paip2 is a component of an ~300-kDa protein complex. Paip2 interacts with mRNA capping factor and factors of RNA polymerase II (Pol II) transcription initiation and early elongation. Paip2 functionally cooperates with the Cbp80 subunit of the cap-binding complex, with both proteins ensuring proper Pol II C-terminal domain (CTD) Ser5 phosphorylation at the promoter. Thus, Paip2 is a novel player at the stage of mRNA capping and early Pol II elongation.
Collapse
Affiliation(s)
- Zaur M Kachaev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lyubov A Lebedeva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - James J Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Paul Schedl
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yulii V Shidlovskii
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University, Russia
| |
Collapse
|
10
|
Suzuki H, Okamoto-Katsuyama M, Suwa T, Maeda R, Tamura TA, Yamaguchi Y. TLP-mediated global transcriptional repression after double-strand DNA breaks slows down DNA repair and induces apoptosis. Sci Rep 2019; 9:4868. [PMID: 30890736 PMCID: PMC6425004 DOI: 10.1038/s41598-019-41057-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/18/2019] [Indexed: 11/16/2022] Open
Abstract
Transcription and DNA damage repair act in a coordinated manner. Recent studies have shown that double-strand DNA breaks (DSBs) are repaired in a transcription-coupled manner. Active transcription results in a faster recruitment of DSB repair factors and expedites DNA repair. On the other hand, transcription is repressed by DNA damage through multiple mechanisms. We previously reported that TLP, a TATA box-binding protein (TBP) family member that functions as a transcriptional regulator, is also involved in DNA damage-induced apoptosis. However, the mechanism by which TLP affects DNA damage response was largely unknown. Here we show that TLP-mediated global transcriptional repression after DSBs is crucial for apoptosis induction by DNA-damaging agents such as etoposide and doxorubicin. Compared to control cells, TLP-knockdown cells were resistant to etoposide-induced apoptosis and exhibited an elevated level of global transcription after etoposide exposure. DSBs were efficiently removed in transcriptionally hyperactive TLP-knockdown cells. However, forced transcriptional shutdown using transcriptional inhibitors α-amanitin and 5,6-dichloro-1-ß-D-ribofuranosylbenzimidazole (DRB) slowed down DSB repair and resensitized TLP-knockdown cells to etoposide. Taken together, these results indicate that TLP is a critical determinant as to how cells respond to DSBs and triggers apoptosis to cells that have sustained DNA damage.
Collapse
Affiliation(s)
- Hidefumi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8501, Japan
| | - Mayumi Okamoto-Katsuyama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8501, Japan
| | - Tetsufumi Suwa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8501, Japan
| | - Ryo Maeda
- Graduate School of Science, Chiba University, 1-33 Yayoicho, Chiba, 263-8522, Japan
| | - Taka-Aki Tamura
- Graduate School of Science, Chiba University, 1-33 Yayoicho, Chiba, 263-8522, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8501, Japan.
| |
Collapse
|
11
|
Schrenk C, Fetz V, Vallet C, Heiselmayer C, Schröder E, Hensel A, Hahlbrock A, Wünsch D, Goesswein D, Bier C, Habtemichael N, Schneider G, Stauber RH, Knauer SK. TFIIA transcriptional activity is controlled by a 'cleave-and-run' Exportin-1/Taspase 1-switch. J Mol Cell Biol 2018; 10:33-47. [PMID: 28992066 DOI: 10.1093/jmcb/mjx025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/09/2017] [Indexed: 12/24/2022] Open
Abstract
Transcription factor TFIIA is controlled by complex regulatory networks including proteolysis by the protease Taspase 1, though the full impact of cleavage remains elusive. Here, we demonstrate that in contrast to the general assumption, de novo produced TFIIA is rapidly confined to the cytoplasm via an evolutionary conserved nuclear export signal (NES, amino acids 21VINDVRDIFL30), interacting with the nuclear export receptor Exportin-1/chromosomal region maintenance 1 (Crm1). Chemical export inhibition or genetic inactivation of the NES not only promotes TFIIA's nuclear localization but also affects its transcriptional activity. Notably, Taspase 1 processing promotes TFIIA's nuclear accumulation by NES masking, and modulates its transcriptional activity. Moreover, TFIIA complex formation with the TATA box binding protein (TBP) is cooperatively enhanced by inhibition of proteolysis and nuclear export, leading to an increase of the cell cycle inhibitor p16INK, which is counteracted by prevention of TBP binding. We here identified a novel mechanism how proteolysis and nuclear transport cooperatively fine-tune transcriptional programs.
Collapse
Affiliation(s)
- Christian Schrenk
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Verena Fetz
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Cecilia Vallet
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Christina Heiselmayer
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Elisabeth Schröder
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Astrid Hensel
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Angelina Hahlbrock
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Désirée Wünsch
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Dorothee Goesswein
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Carolin Bier
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Negusse Habtemichael
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Günter Schneider
- University Hospital Klinikum rechts der Isar, II. Medizinische Klinik, Technical University München, 81675 Munich, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Shirley K Knauer
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
12
|
Babenko VN, Smagin DA, Kudryavtseva NN. RNA-Seq Mouse Brain Regions Expression Data Analysis: Focus on ApoE Functional Network. J Integr Bioinform 2017; 14:/j/jib.ahead-of-print/jib-2017-0024/jib-2017-0024.xml. [PMID: 28902624 PMCID: PMC6042815 DOI: 10.1515/jib-2017-0024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/21/2017] [Indexed: 12/17/2022] Open
Abstract
ApoE expression status was proved to be a highly specific marker of energy metabolism rate in the brain. Along with its neighbor, Translocase of Outer Mitochondrial Membrane 40 kDa (TOMM40) which is involved in mitochondrial metabolism, the corresponding genomic region constitutes the neuroenergetic hotspot. Using RNA-Seq data from a murine model of chronic stress a significant positive expression coordination of seven neighboring genes in ApoE locus in five brain regions was observed. ApoE maintains one of the highest absolute expression values genome-wide, implying that ApoE can be the driver of the neighboring gene expression alteration observed under stressful loads. Notably, we revealed the highly statistically significant increase of ApoE expression in the hypothalamus of chronically aggressive (FDR < 0.007) and defeated (FDR < 0.001) mice compared to the control. Correlation analysis revealed a close association of ApoE and proopiomelanocortin (Pomc) gene expression profiles implying the putative neuroendocrine stress response background of ApoE expression elevation therein.
Collapse
Affiliation(s)
- Vladimir N Babenko
- Modeling Neuropathology Laboratory, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry A Smagin
- Modeling Neuropathology Laboratory, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia N Kudryavtseva
- Modeling Neuropathology Laboratory, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
13
|
Maeda R, Tamashiro H, Takano K, Takahashi H, Suzuki H, Saito S, Kojima W, Adachi N, Ura K, Endo T, Tamura TA. TBP-like Protein (TLP) Disrupts the p53-MDM2 Interaction and Induces Long-lasting p53 Activation. J Biol Chem 2017; 292:3201-3212. [PMID: 28082682 DOI: 10.1074/jbc.m116.763318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/08/2017] [Indexed: 11/06/2022] Open
Abstract
Stress-induced activation of p53 is an essential cellular response to prevent aberrant cell proliferation and cancer development. The ubiquitin ligase MDM2 promotes p53 degradation and limits the duration of p53 activation. It remains unclear, however, how p53 persistently escapes MDM2-mediated negative control for making appropriate cell fate decisions. Here we report that TBP-like protein (TLP), a member of the TBP family, is a new regulatory factor for the p53-MDM2 interplay and thus for p53 activation. We found that TLP acts to stabilize p53 protein to ensure long-lasting p53 activation, leading to potentiation of p53-induced apoptosis and senescence after genotoxic stress. Mechanistically, TLP interferes with MDM2 binding and ubiquitination of p53. Moreover, single cell imaging analysis shows that TLP depletion accelerates MDM2-mediated nuclear export of p53. We further show that a cervical cancer-derived TLP mutant has less p53 binding ability and lacks a proliferation-repressive function. Our findings uncover a role of TLP as a competitive MDM2 blocker, proposing a novel mechanism by which p53 escapes the p53-MDM2 negative feedback loop to modulate cell fate decisions.
Collapse
Affiliation(s)
- Ryo Maeda
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
| | - Hiroyuki Tamashiro
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Kazunori Takano
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Hiro Takahashi
- Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan
| | - Hidefumi Suzuki
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Shinta Saito
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Waka Kojima
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan; Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan
| | - Kiyoe Ura
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Taka-Aki Tamura
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
14
|
Isogai M, Suzuki H, Maeda R, Tamura TA. Ubiquitin-proteasome-dependent degradation of TBP-like protein is prevented by direct binding of TFIIA. Genes Cells 2016; 21:1223-1232. [PMID: 27696626 DOI: 10.1111/gtc.12441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/28/2016] [Indexed: 11/27/2022]
Abstract
Although the majority of gene expression is driven by TATA-binding protein (TBP)-based transcription machinery, it has been reported that TBP-related factors (TRFs) are also involved in the regulation of gene expression. TBP-like protein (TLP), which is one of the TRFs and exhibits the highest affinity to TFIIA among known proteins, has recently been showed to have significant roles in gene regulation. However, how the level of TLP is maintained in vivo has remained unknown. In this study, we explored the mechanism by which TLP protein is turned over in vivo and the factor that maintains the amount of TLP. We showed that TLP is rapidly degraded by the ubiquitin-proteasome system and that tight interaction with TFIIA results in protection of TLP from ubiquitin-proteasome-dependent degradation. The half-life of TLP was shown to be less than a few hours, and the proteasome inhibitor MG132 specifically suppressed TLP degradation. Moreover, knockdown and over-expression experiments showed that TFIIA is engaged in stabilization of TLPin vivo. Thus, we showed a novel characteristic of TLP, that is, interaction with TFIIA is essential to suppress proteasome-dependent turnover of TLP, providing a further insight into TLP-governed gene regulation.
Collapse
Affiliation(s)
- Momoko Isogai
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Hidefumi Suzuki
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Ryo Maeda
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Taka-Aki Tamura
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| |
Collapse
|
15
|
TRF2 is recruited to the pre-initiation complex as a testis-specific subunit of TFIIA/ALF to promote haploid cell gene expression. Sci Rep 2016; 6:32069. [PMID: 27576952 PMCID: PMC5006001 DOI: 10.1038/srep32069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/28/2016] [Indexed: 11/08/2022] Open
Abstract
Mammalian genomes encode two genes related to the TATA-box binding protein (TBP), TBP-related factors 2 and 3 (TRF2 and TRF3). Male Trf2−/− mice are sterile and characterized by arrested spermatogenesis at the transition from late haploid spermatids to early elongating spermatids. Despite this characterization, the molecular function of murine Trf2 remains poorly characterized and no direct evidence exists to show that it acts as a bona fide chromatin-bound transcription factor. We show here that Trf2 forms a stable complex with TFIIA or the testis expressed paralogue ALF chaperoned in the cytoplasm by heat shock proteins. We demonstrate for the first time that Trf2 is recruited to active haploid cell promoters together with Tbp, Taf7l and RNA polymerase II. RNA-seq analysis identifies a set of genes activated in haploid spermatids during the first wave of spermatogenesis whose expression is down-regulated by Trf2 inactivation. We therefore propose that Trf2 is recruited to the preinitiation complex as a testis-specific subunit of TFIIA/ALF that cooperates with Tbp and Taf7l to promote haploid cell gene expression.
Collapse
|
16
|
Suzuki H, Isogai M, Maeda R, Ura K, Tamura TA. TBP-like protein (TLP) interferes with Taspase1-mediated processing of TFIIA and represses TATA box gene expression. Nucleic Acids Res 2015; 43:6285-98. [PMID: 26038314 PMCID: PMC4513858 DOI: 10.1093/nar/gkv576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023] Open
Abstract
TBP-TFIIA interaction is involved in the potentiation of TATA box-driven promoters. TFIIA activates transcription through stabilization of TATA box-bound TBP. The precursor of TFIIA is subjected to Taspase1-directed processing to generate α and β subunits. Although this processing has been assumed to be required for the promoter activation function of TFIIA, little is known about how the processing is regulated. In this study, we found that TBP-like protein (TLP), which has the highest affinity to TFIIA among known proteins, affects Taspase1-driven processing of TFIIA. TLP interfered with TFIIA processing in vivo and in vitro, and direct binding of TLP to TFIIA was essential for inhibition of the processing. We also showed that TATA box promoters are specifically potentiated by processed TFIIA. Processed TFIIA, but not unprocessed TFIIA, associated with the TATA box. In a TLP-knocked-down condition, not only the amounts of TATA box-bound TFIIA but also those of chromatin-bound TBP were significantly increased, resulting in the stimulation of TATA box-mediated gene expression. Consequently, we suggest that TLP works as a negative regulator of the TFIIA processing and represses TFIIA-governed and TATA-dependent gene expression through preventing TFIIA maturation.
Collapse
Affiliation(s)
- Hidefumi Suzuki
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | - Momoko Isogai
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | - Ryo Maeda
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | - Kiyoe Ura
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | - Taka-Aki Tamura
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
17
|
Danino YM, Even D, Ideses D, Juven-Gershon T. The core promoter: At the heart of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1116-31. [PMID: 25934543 DOI: 10.1016/j.bbagrm.2015.04.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/19/2015] [Accepted: 04/23/2015] [Indexed: 12/17/2022]
Abstract
The identities of different cells and tissues in multicellular organisms are determined by tightly controlled transcriptional programs that enable accurate gene expression. The mechanisms that regulate gene expression comprise diverse multiplayer molecular circuits of multiple dedicated components. The RNA polymerase II (Pol II) core promoter establishes the center of this spatiotemporally orchestrated molecular machine. Here, we discuss transcription initiation, diversity in core promoter composition, interactions of the basal transcription machinery with the core promoter, enhancer-promoter specificity, core promoter-preferential activation, enhancer RNAs, Pol II pausing, transcription termination, Pol II recycling and translation. We further discuss recent findings indicating that promoters and enhancers share similar features and may not substantially differ from each other, as previously assumed. Taken together, we review a broad spectrum of studies that highlight the importance of the core promoter and its pivotal role in the regulation of metazoan gene expression and suggest future research directions and challenges.
Collapse
Affiliation(s)
- Yehuda M Danino
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dan Even
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|