1
|
Golden CS, Williams S, Serrano MA. Molecular insights of KMT2D and clinical aspects of Kabuki syndrome type 1. Birth Defects Res 2023; 115:1809-1824. [PMID: 37158694 PMCID: PMC10845236 DOI: 10.1002/bdr2.2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Kabuki syndrome type 1 (KS1), a rare multisystem congenital disorder, presents with characteristic facial features, intellectual disability, persistent fetal fingertip pads, skeletal abnormalities, and postnatal growth delays. KS1 results from pathogenic variants in the KMT2D gene, which encodes a histone methyltransferase protein involved in chromatin remodeling, promoter and enhancer regulation, and scaffold formation during early development. KMT2D also mediates cell signaling pathways, responding to external stimuli and organizing effector protein assembly. Research on KMT2D's molecular mechanisms in KS1 has primarily focused on its histone methyltransferase activity, leaving a gap in understanding the methyltransferase-independent roles in KS1 clinical manifestations. METHODS This scoping review examines KMT2D's role in gene expression regulation across various species, cell types, and contexts. We analyzed human pathogenic KMT2D variants using publicly available databases and compared them to research organism models of KS1. We also conducted a systematic search of healthcare and governmental databases for clinical trials, studies, and therapeutic approaches. RESULTS Our review highlights KMT2D's critical roles beyond methyltransferase activity in diverse cellular contexts and conditions. We identified six distinct groups of KMT2D as a cell signaling mediator, including evidence of methyltransferase-dependent and -independent activity. A comprehensive search of the literature, clinical databases, and public registries emphasizes the need for basic research on KMT2D's functional complexity and longitudinal studies of KS1 patients to establish objective outcome measurements for therapeutic development. CONCLUSION We discuss how KMT2D's role in translating external cellular communication can partly explain the clinical heterogeneity observed in KS1 patients. Additionally, we summarize the current molecular diagnostic approaches and clinical trials targeting KS1. This review is a resource for patient advocacy groups, researchers, and physicians to support KS1 diagnosis and therapeutic development.
Collapse
Affiliation(s)
- Carly S Golden
- Center for Regenerative Medicine, Section of Vascular Biology, Department of Medicine, Boston University, Boston, Massachusetts, USA
| | - Saylor Williams
- Center for Regenerative Medicine, Section of Vascular Biology, Department of Medicine, Boston University, Boston, Massachusetts, USA
| | - Maria A Serrano
- Center for Regenerative Medicine, Section of Vascular Biology, Department of Medicine, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Liu B, Li Z. PTIP-Associated Protein 1: More Than a Component of the MLL3/4 Complex. Front Genet 2022; 13:889109. [PMID: 35754824 PMCID: PMC9219552 DOI: 10.3389/fgene.2022.889109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
PTIP-associated protein 1 (PA1) is a unique component of MLL3/4 complexes, which are important mammalian histone 3 lysine 4 (H3K4) methyltransferases. PA1 has generated research interest due to its involvement in many essential biological processes such as adipogenesis, B cell class switch recombination, spermatogenesis, and embryonic development. In addition to the classical role of PA1 in H3K4 methylation, non-classical functions have also been discovered in recent studies. In this review, we systematically summarize the expression pattern of PA1 protein in humans and sort the specific molecular mechanism of PA1 in various biological processes. Meanwhile, we provide some new perspectives on the role of PA1 for future studies. A comprehensive understanding of the biological functions and molecular mechanisms of PA1 will facilitate the investigation of its complicated roles in transcriptional regulation.
Collapse
Affiliation(s)
- Bo Liu
- Department of Human Anatomy, Histology and Embryology, the Fourth Military Medical University, Xi'an, China
| | - Zhen Li
- Department of Human Anatomy, Histology and Embryology, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Naxerova K, Di Stefano B, Makofske JL, Watson EV, de Kort MA, Martin TD, Dezfulian M, Ricken D, Wooten EC, Kuroda MI, Hochedlinger K, Elledge SJ. Integrated loss- and gain-of-function screens define a core network governing human embryonic stem cell behavior. Genes Dev 2021; 35:1527-1547. [PMID: 34711655 PMCID: PMC8559676 DOI: 10.1101/gad.349048.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
In this Resource/Methodology, Naxerova et al. describe an integrated genome-scale loss- and gain-of-function screening approach to identify genetic networks governing embryonic stem cell proliferation and differentiation into the three germ layers. They identify a deep link between pluripotency maintenance and survival by showing that genetic alterations that cause pluripotency dissolution simultaneously increase apoptosis resistance, and their results show the power of integrated multilayer genetic screening for the robust mapping of complex genetic networks. Understanding the genetic control of human embryonic stem cell function is foundational for developmental biology and regenerative medicine. Here we describe an integrated genome-scale loss- and gain-of-function screening approach to identify genetic networks governing embryonic stem cell proliferation and differentiation into the three germ layers. We identified a deep link between pluripotency maintenance and survival by showing that genetic alterations that cause pluripotency dissolution simultaneously increase apoptosis resistance. We discovered that the chromatin-modifying complex SAGA and in particular its subunit TADA2B are central regulators of pluripotency, survival, growth, and lineage specification. Joint analysis of all screens revealed that genetic alterations that broadly inhibit differentiation across multiple germ layers drive proliferation and survival under pluripotency-maintaining conditions and coincide with known cancer drivers. Our results show the power of integrated multilayer genetic screening for the robust mapping of complex genetic networks.
Collapse
Affiliation(s)
- Kamila Naxerova
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Jessica L Makofske
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Emma V Watson
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marit A de Kort
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Timothy D Martin
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mohammed Dezfulian
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dominik Ricken
- Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Eric C Wooten
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mitzi I Kuroda
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
4
|
Zraly CB, Zakkar A, Perez JH, Ng J, White KP, Slattery M, Dingwall AK. The Drosophila MLR COMPASS complex is essential for programming cis-regulatory information and maintaining epigenetic memory during development. Nucleic Acids Res 2020; 48:3476-3495. [PMID: 32052053 PMCID: PMC7144903 DOI: 10.1093/nar/gkaa082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/29/2022] Open
Abstract
The MLR COMPASS complex monomethylates H3K4 that serves to epigenetically mark transcriptional enhancers to drive proper gene expression during animal development. Chromatin enrichment analyses of the Drosophila MLR complex reveals dynamic association with promoters and enhancers in embryos with late stage enrichments biased toward both active and poised enhancers. RNAi depletion of the Cmi (also known as Lpt) subunit that contains the chromatin binding PHD finger domains attenuates enhancer functions, but unexpectedly results in inappropriate enhancer activation during stages when hormone responsive enhancers are poised, revealing critical epigenetic roles involved in both the activation and repression of enhancers depending on developmental context. Cmi is necessary for robust H3K4 monomethylation and H3K27 acetylation that mark active enhancers, but not for the chromatin binding of Trr, the MLR methyltransferase. Our data reveal two likely major regulatory modes of MLR function, contributions to enhancer commissioning in early embryogenesis and bookmarking enhancers to enable rapid transcriptional re-activation at subsequent developmental stages.
Collapse
Affiliation(s)
- Claudia B Zraly
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Abdul Zakkar
- Department of Biology, Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| | - John Hertenstein Perez
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Jeffrey Ng
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.,Department of Biology, Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Slattery
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.,Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Andrew K Dingwall
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.,Department of Pathology & Laboratory Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
5
|
microRNA-29a inhibits cardiac fibrosis in Sprague-Dawley rats by downregulating the expression of DNMT3A. Anatol J Cardiol 2019; 20:198-205. [PMID: 30297596 PMCID: PMC6249525 DOI: 10.14744/anatoljcardiol.2018.98511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective: This study aims to investigate the effect of miR-29a targeting the regulation of DNMT3A on the development of cardiac fibrosis in Sprague-Dawley (SD) rats. Methods: In vivo experiment: SD rats were randomly divided into model and control groups. The cardiac and left ventricular indices in each group were calculated. The pathological changes of the myocardium were observed. The expression levels of miR-29a, CollA1, α-SMA, and DNMT3A in the myocardium of each group were detected. In vitro experiment: The cardiac fibroblasts (CFs) of SD rats were isolated from the myocardial tissue of SD rats and cultured. The miR-29a mimics, inhibitors, DNMT3A-siRNA, and control-siRNA were transfected into CFs. The expression levels of miR-29a, DNMT3A, CollA1, and α-SMA were detected, and the proliferation of CFs after transfection was observed. Results: The heart weight index of the rats in the model group increased significantly compared with that in the control group. Obvious collagen deposition was observed in the myocardial tissue of the model group. The expression levels of CollA1, α-SMA, and DNMT3A in the model group were significantly higher than those in the control group (p<0.05). Conclusion: miR-29a reduced the activation and proliferation of CFs to improve cardiac fibrosis probably by the downregulation of DNMT3A.
Collapse
|
6
|
Fagan RJ, Dingwall AK. COMPASS Ascending: Emerging clues regarding the roles of MLL3/KMT2C and MLL2/KMT2D proteins in cancer. Cancer Lett 2019; 458:56-65. [PMID: 31128216 DOI: 10.1016/j.canlet.2019.05.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022]
Abstract
The KMT2 (lysine methyltransferase) family of histone modifying proteins play essential roles in regulating developmental pathways, and mutations in the genes encoding these proteins have been strongly linked to many blood and solid tumor cancers. The KMT2A-D proteins are histone 3 lysine 4 (H3K4) methyltransferases embedded in large COMPASS-like complexes important for RNA Polymerase II-dependent transcription. KMT2 mutations were initially associated with pediatric Mixed Lineage Leukemias (MLL) and found to be the result of rearrangements of the MLL1/KMT2A gene at 11q23. Over the past several years, large-scale tumor DNA sequencing studies have revealed the potential involvement of other KMT2 family genes, including heterozygous somatic mutations in the paralogous MLL3/KMT2C and MLL2(4)/KMT2D genes that are now among the most frequently associated with human cancer. Recent studies have provided a better understanding of the potential roles of disrupted KMT2C and KMT2D family proteins in cell growth aberrancy. These findings, together with an examination of cancer genomics databases provide new insights into the contribution of KMT2C/D proteins in epigenetic gene regulation and links to carcinogenesis.
Collapse
Affiliation(s)
- Richard J Fagan
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60521, USA
| | - Andrew K Dingwall
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60521, USA; Department of Cancer Biology and Pathology & Laboratory Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60521, USA.
| |
Collapse
|