1
|
Pandey A, Cousin H, Kumar S, Taylor L, Chander A, Coppenrath K, Shaidani NI, Horb M, Alfandari D. ADAM interact with large protein complexes to regulate Histone modification, gene expression and splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.608474. [PMID: 39229132 PMCID: PMC11370339 DOI: 10.1101/2024.08.18.608474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Cranial neural crest (CNC) cells are key stem cells that contribute to most of the facial structures in vertebrates. ADAM ( A D isintegrin A nd M etalloprotease) proteins are essential for the induction and migration of the CNC. We have shown that Adam13 associates with the transcription factor Arid3a to regulate gene expression. Here we show that Adam13 modulates Histone modifications in the CNC. We show that Arid3a binding to the tfap2α promoter depends on the presence of Adam13. This association promotes the expression of one tfap2α variant expressed in the CNC that uniquely activates the expression of gene critical for CNC migration. We show that both Adam13 and human ADAM9 associate with proteins involved in histone modification and RNA splicing, a function critically affected by the loss of Adam13. We propose that ADAMs may act as extracellular sensors to modulate chromatin availability, leading to changes in gene expression and splicing.
Collapse
|
2
|
Abstract
Pattern recognition of specific temporal bone radiological phenotypes, in association with abnormalities in other organ systems, is critical in the diagnosis and management of syndromic causes of hearing loss. Several recent publications have demonstrated the presence of specific radiological appearances, allowing precise genetic and/or syndromic diagnosis, in the right clinical context. This review article aims to provide an extensive but practical guide to the radiologist dealing with syndromic causes of hearing loss.
Collapse
Affiliation(s)
- Martin Lewis
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond St. London, London, WC1N3JH, UK
| | - Caroline D Robson
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Felice D'Arco
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond St. London, London, WC1N3JH, UK. felice.d'
| |
Collapse
|
3
|
Sallis S, Bérubé-Simard FA, Grondin B, Leduc E, Azouz F, Bélanger C, Pilon N. The CHARGE syndrome-associated protein FAM172A controls AGO2 nuclear import. Life Sci Alliance 2023; 6:e202302133. [PMID: 37221016 PMCID: PMC10205598 DOI: 10.26508/lsa.202302133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
CHARGE syndrome is a neural crest-related disorder mainly caused by mutation of the chromatin remodeler-coding gene CHD7 Alternative causes include mutation of other chromatin and/or splicing factors. One of these additional players is the poorly characterized FAM172A, which we previously found in a complex with CHD7 and the small RNA-binding protein AGO2 at the chromatin-spliceosome interface. Focusing on the FAM172A-AGO2 interplay, we now report that FAM172A is a direct binding partner of AGO2 and, as such, one of the long sought-after regulators of AGO2 nuclear import. We show that this FAM172A function mainly relies on its classical bipartite nuclear localization signal and associated canonical importin-α/β pathway, being enhanced by CK2-induced phosphorylation and abrogated by a CHARGE syndrome-associated missense mutation. Overall, this study thus strengthens the notion that noncanonical nuclear functions of AGO2 and associated regulatory mechanisms might be clinically relevant.
Collapse
Affiliation(s)
- Sephora Sallis
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Félix-Antoine Bérubé-Simard
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
| | - Benoit Grondin
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Elizabeth Leduc
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Fatiha Azouz
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Catherine Bélanger
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Canada
| |
Collapse
|
4
|
Lewis MA, Juliano A, Robson C, Clement E, Nash R, Rajput K, D'Arco F. The spectrum of cochlear malformations in CHARGE syndrome and insights into the role of the CHD7 gene during embryogenesis of the inner ear. Neuroradiology 2023; 65:819-834. [PMID: 36715725 DOI: 10.1007/s00234-023-03118-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
PURPOSE We reviewed the genotypes and the imaging appearances of cochleae in CHARGE patients from two large tertiary centres and analysed the observed cochlear anomalies, providing detailed anatomical description and a grading system. The goal was to gain insight into the spectrum of cochlear anomalies in CHARGE syndrome, and thus, in the role of the CHD7 gene in otic vesicle development. METHODS We retrospectively reviewed CT and/or MR imaging of CHARGE patients referred to our institutions between 2005 and 2022. Cochlear morphology was analysed and, when abnormal, divided into 3 groups in order of progressive severity. Other radiological findings in the temporal bone were also recorded. Comparison with the existing classification system of cochlear malformation was also attempted. RESULTS Cochlear morphology in our CHARGE cohort ranged from normal to extreme hypoplasia. The most common phenotype was cochlear hypoplasia in which the basal turn was relatively preserved, and the upper turns were underdeveloped. All patients in the cohort had absent or markedly hypoplastic semicircular canals and small, misshapen vestibules. Aside from a stenotic cochlear aperture (fossette) being associated with a hypoplastic or absent cochlear nerve, there was no consistent relationship between cochlear nerve status (normal, hypoplasia, or aplasia) and cochlear morphology. CONCLUSION Cochlear morphology in CHARGE syndrome is variable. Whenever the cochlea was abnormal, it was almost invariably hypoplastic. This may shed light on the role of CHD7 in cochlear development. Accurate morphological description of the cochlea contributes to proper clinical diagnosis and is important for planning surgical treatment options.
Collapse
Affiliation(s)
- Martin A Lewis
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond St. London, London, WC1N3JH, UK
| | - Amy Juliano
- Department of Radiology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Caroline Robson
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emma Clement
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Robert Nash
- Department of Audiological Medicine, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Kaukab Rajput
- Department of Audiological Medicine, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Felice D'Arco
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond St. London, London, WC1N3JH, UK. felice.d'
- Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, London, UK. felice.d'
| |
Collapse
|
5
|
Abstract
Neural crest cells (NCCs) are a dynamic, multipotent, vertebrate-specific population of embryonic stem cells. These ectodermally-derived cells contribute to diverse tissue types in developing embryos including craniofacial bone and cartilage, the peripheral and enteric nervous systems and pigment cells, among a host of other cell types. Due to their contribution to a significant number of adult tissue types, the mechanisms that drive their formation, migration and differentiation are highly studied. NCCs have a unique ability to transition from tightly adherent epithelial cells to mesenchymal and migratory cells by altering their polarity, expression of cell-cell adhesion molecules and gaining invasive abilities. In this Review, we discuss classical and emerging factors driving NCC epithelial-to-mesenchymal transition and migration, highlighting the role of signaling and transcription factors, as well as novel modifying factors including chromatin remodelers, small RNAs and post-translational regulators, which control the availability and longevity of major NCC players.
Collapse
Affiliation(s)
| | - Crystal D. Rogers
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| |
Collapse
|
6
|
Bélanger C, Cardinal T, Leduc E, Viger RS, Pilon N. CHARGE syndrome-associated proteins FAM172A and CHD7 influence male sex determination and differentiation through transcriptional and alternative splicing mechanisms. FASEB J 2022; 36:e22176. [PMID: 35129866 PMCID: PMC9304217 DOI: 10.1096/fj.202100837rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Abstract
To gain further insight into chromatin‐mediated regulation of mammalian sex determination, we analyzed the role of the CHARGE syndrome‐associated proteins FAM172A and CHD7. This study is based on our prior discoveries that a subset of corresponding mutant mice display complete male‐to‐female sex reversal, and that both of these proteins regulate co‐transcriptional alternative splicing in neural crest cells. Here, we report that FAM172A and CHD7 are present in the developing gonads when sex determination normally occurs in mice. The interactome of FAM172A in pre‐Sertoli cells again suggests a role at the chromatin‐spliceosome interface, like in neural crest cells. Accordingly, analysis of Fam172a‐mutant pre‐Sertoli cells revealed transcriptional and splicing dysregulation of hundreds of genes. Many of these genes are similarly affected in Chd7‐mutant pre‐Sertoli cells, including several known key regulators of sex determination and subsequent formation of testis cords. Among them, we notably identified Sry as a direct transcriptional target and WNT pathway‐associated Lef1 and Tcf7l2 as direct splicing targets. The identified molecular defects are also associated with the abnormal morphology of seminiferous tubules in mutant postnatal testes. Altogether, our results thus identify FAM172A and CHD7 as new players in the regulation of male sex determination and differentiation in mice, and further highlight the importance of chromatin‐mediated regulatory mechanisms in these processes.
Collapse
Affiliation(s)
- Catherine Bélanger
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Tatiana Cardinal
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Elizabeth Leduc
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Centre de recherche du CHU de Québec-Université Laval, Quebec City, Québec, Canada.,Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada.,Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
7
|
Warnecke A, Giesemann A. Embryology, Malformations, and Rare Diseases of the Cochlea. Laryngorhinootologie 2021; 100:S1-S43. [PMID: 34352899 PMCID: PMC8354575 DOI: 10.1055/a-1349-3824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite the low overall prevalence of individual rare diseases, cochlear
dysfunction leading to hearing loss represents a symptom in a large
proportion. The aim of this work was to provide a clear overview of rare
cochlear diseases, taking into account the embryonic development of the
cochlea and the systematic presentation of the different disorders. Although
rapid biotechnological and bioinformatic advances may facilitate the
diagnosis of a rare disease, an interdisciplinary exchange is often required
to raise the suspicion of a rare disease. It is important to recognize that
the phenotype of rare inner ear diseases can vary greatly not only in
non-syndromic but also in syndromic hearing disorders. Finally, it becomes
clear that the phenotype of the individual rare diseases cannot be
determined exclusively by classical genetics even in monogenetic
disorders.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Klinik für Hals-, Nasen- und Ohrenheilkunde, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover.,Deutsche Forschungsgemeinschaft Exzellenzcluster"Hearing4all" - EXC 2177/1 - Project ID 390895286
| | - Anja Giesemann
- Institut für Neuroradiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover
| |
Collapse
|
8
|
Pilon N. Treatment and Prevention of Neurocristopathies. Trends Mol Med 2021; 27:451-468. [PMID: 33627291 DOI: 10.1016/j.molmed.2021.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Neurocristopathies form a heterogeneous group of rare diseases caused by abnormal development of neural crest cells. Heterogeneity of neurocristopathies directly relates to the nature of these migratory and multipotent cells, which generate dozens of specialized cell types throughout the body. Neurocristopathies are thus characterized by congenital malformations of tissues/organs that otherwise appear to have very little in common, such as the craniofacial skeleton and enteric nervous system. Treatment options are currently very limited, mainly consisting of corrective surgeries. Yet, as reviewed here, analyses of normal and pathological neural crest development in model organisms have opened up the possibility for better treatment options involving cellular and molecular approaches. These approaches provide hope that some neurocristopathies might soon be curable or preventable.
Collapse
Affiliation(s)
- Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal H3C 3P8, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Québec, Canada; Département de Pédiatrie, Université de Montréal, Montréal H3T 1C5, Québec, Canada.
| |
Collapse
|
9
|
Weigele J, Bohnsack BL. Genetics Underlying the Interactions between Neural Crest Cells and Eye Development. J Dev Biol 2020; 8:jdb8040026. [PMID: 33182738 PMCID: PMC7712190 DOI: 10.3390/jdb8040026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
The neural crest is a unique, transient stem cell population that is critical for craniofacial and ocular development. Understanding the genetics underlying the steps of neural crest development is essential for gaining insight into the pathogenesis of congenital eye diseases. The neural crest cells play an under-appreciated key role in patterning the neural epithelial-derived optic cup. These interactions between neural crest cells within the periocular mesenchyme and the optic cup, while not well-studied, are critical for optic cup morphogenesis and ocular fissure closure. As a result, microphthalmia and coloboma are common phenotypes in human disease and animal models in which neural crest cell specification and early migration are disrupted. In addition, neural crest cells directly contribute to numerous ocular structures including the cornea, iris, sclera, ciliary body, trabecular meshwork, and aqueous outflow tracts. Defects in later neural crest cell migration and differentiation cause a constellation of well-recognized ocular anterior segment anomalies such as Axenfeld–Rieger Syndrome and Peters Anomaly. This review will focus on the genetics of the neural crest cells within the context of how these complex processes specifically affect overall ocular development and can lead to congenital eye diseases.
Collapse
Affiliation(s)
- Jochen Weigele
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA;
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA;
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
- Correspondence: ; Tel.: +1-312-227-6180; Fax: +1-312-227-9411
| |
Collapse
|
10
|
Hooper JE, Jones KL, Smith FJ, Williams T, Li H. An Alternative Splicing Program for Mouse Craniofacial Development. Front Physiol 2020; 11:1099. [PMID: 33013468 PMCID: PMC7498679 DOI: 10.3389/fphys.2020.01099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
Alternative splicing acts as a fundamental mechanism to increase the number of functional transcripts that can be derived from the genome - and its appropriate regulation is required to direct normal development, differentiation, and physiology, in many species. Recent studies have highlighted that mutation of splicing factors, resulting in the disruption of alternative splicing, can have profound consequences for mammalian craniofacial development. However, there has been no systematic analysis of the dynamics of differential splicing during the critical period of face formation with respect to age, tissue layer, or prominence. Here we used deep RNA sequencing to profile transcripts expressed in the developing mouse face for both ectodermal and mesenchymal tissues from the three facial prominences at critical ages for facial development, embryonic days 10.5, 11.5, and 12.5. We also derived separate expression data from the nasal pit relating to the differentiation of the olfactory epithelium for a total of 60 independent datasets. Analysis of these datasets reveals the differential expression of multiple genes, but we find a similar number of genes are regulated only via differential splicing, indicating that alternative splicing is a major source of transcript diversity during facial development. Notably, splicing changes between tissue layers and over time are more prevalent than between prominences, with exon skipping the most common event. We next examined how the variation in splicing correlated with the expression of RNA binding proteins across the various datasets. Further, we assessed how binding sites for splicing regulatory molecules mapped with respect to intron exon boundaries. Overall these studies help define an alternative splicing regulatory program that has important consequences for facial development.
Collapse
Affiliation(s)
- Joan E. Hooper
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kenneth L. Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado School of Medicine, Aurora, CO, United States
| | - Francis J. Smith
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, CO, United States
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, CO, United States
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, CO, United States
| |
Collapse
|
11
|
Beauchamp MC, Alam SS, Kumar S, Jerome-Majewska LA. Spliceosomopathies and neurocristopathies: Two sides of the same coin? Dev Dyn 2020; 249:924-945. [PMID: 32315467 DOI: 10.1002/dvdy.183] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in core components of the spliceosome are responsible for a group of syndromes collectively known as spliceosomopathies. Patients exhibit microcephaly, micrognathia, malar hypoplasia, external ear anomalies, eye anomalies, psychomotor delay, intellectual disability, limb, and heart defects. Craniofacial malformations in these patients are predominantly found in neural crest cells-derived structures of the face and head. Mutations in eight genes SNRPB, RNU4ATAC, SF3B4, PUF60, EFTUD2, TXNL4, EIF4A3, and CWC27 are associated with craniofacial spliceosomopathies. In this review, we provide a brief description of the normal development of the head and the face and an overview of mutations identified in genes associated with craniofacial spliceosomopathies. We also describe a model to explain how and when these mutations are most likely to impact neural crest cells. We speculate that mutations in a subset of core splicing factors lead to disrupted splicing in neural crest cells because these cells have increased sensitivity to inefficient splicing. Hence, disruption in splicing likely activates a cellular stress response that includes increased skipping of regulatory exons in genes such as MDM2 and MDM4, key regulators of P53. This would result in P53-associated death of neural crest cells and consequently craniofacial malformations associated with spliceosomopathies.
Collapse
Affiliation(s)
- Marie-Claude Beauchamp
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,McGill University Health Centre at Glen Site, Montreal, Quebec, Canada
| | - Sabrina Shameen Alam
- McGill University Health Centre at Glen Site, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Shruti Kumar
- McGill University Health Centre at Glen Site, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Loydie Anne Jerome-Majewska
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,McGill University Health Centre at Glen Site, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Sun Y, Sun J, Li N, Cai C, Gong X, Ma L. Phenotypic spectrum of typical CHARGE syndrome in a Chinese male neonate: a case report. Transl Pediatr 2020; 9:180-186. [PMID: 32477919 PMCID: PMC7237969 DOI: 10.21037/tp.2020.03.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CHARGE syndrome is a rare and complex disorder, causing multiple birth defects and sensory deficits. The CHD7 gene was proved to be the major pathogenic gene in CHARGE syndrome. To date, the phenotype of neonatal CHARGE syndrome is still poorly recognized. In this paper, we report a Chinese neonate with typical CHARGE syndrome. During his stay in the neonatal intensive care unit of our hospital, the patient presented with various appearance abnormalities, severe dyspnea, dysphagia and recurrent infection. Integrated analysis of the clinical manifestations and examinations suggested a diagnosis of CHARGE syndrome. Later, the genetic analysis revealed a de novo null heterozygous pathogenic mutation in the patient's CHD7 gene [c.6292C>T (p.Arg2098*)]. Taken together, the patient was diagnostic confirmed as typical CHARGE syndrome. The physicians provided symptomatic treatments for the patient which significantly alleviated his condition, including infection control, laryngoplasty, nasogastric tube feeding and respiratory support. To our knowledge, this case broadens the clinical phenotypic spectrum of typical CHARGE syndrome in neonatal period due to the null mutation of CHD7 gene [c.6292C>T (p.Arg2098*)]. It also demonstrates that genetic analysis is essential in the diagnosis of CHARGE syndrome early in life. Clinicians should focus on providing supportive and corrective therapies in early treatment, particularly in controlling infection, and improving breathing and feeding.
Collapse
Affiliation(s)
- Yifan Sun
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Jingjing Sun
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Na Li
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Cheng Cai
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Li Ma
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| |
Collapse
|
13
|
Meisner JK, Martin DM. Congenital heart defects in CHARGE: The molecular role of CHD7 and effects on cardiac phenotype and clinical outcomes. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 184:81-89. [PMID: 31833191 DOI: 10.1002/ajmg.c.31761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
CHARGE syndrome is characterized by a pattern of congenital anomalies (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth, Genital abnormalities, and Ear abnormalities). De novo mutations of chromodomain helicase DNA binding protein 7 (CHD7) are the primary cause of CHARGE syndrome. The clinical phenotype is highly variable including a wide spectrum of congenital heart defects. Here, we review the range of congenital heart defects and the molecular effects of CHD7 on cardiovascular development that lead to an over-representation of atrioventricular septal, conotruncal, and aortic arch defects in CHARGE syndrome. Further, we review the overlap of cardiovascular and noncardiovascular comorbidities present in CHARGE and their impact on the peri-operative morbidity and mortality in individuals with CHARGE syndrome.
Collapse
Affiliation(s)
- Joshua K Meisner
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Donna M Martin
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan.,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|