1
|
Samar J, Butt GY, Shah AA, Shah AN, Ali S, Jan BL, Abdelsalam NR, Hussaan M. Phycochemical and Biological Activities From Different Extracts of Padina antillarum (Kützing) Piccone. FRONTIERS IN PLANT SCIENCE 2022; 13:929368. [PMID: 35937357 PMCID: PMC9354264 DOI: 10.3389/fpls.2022.929368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Seaweeds are non-vascular, photosynthetic that inhabit the coastal regions commonly within rocky intertidal or submerged reef-like habitats and have been one of the richest and most promising sources of bioactive primary and secondary metabolites with antimicrobial properties. They selectively absorb elements like Na, K, Ca, Mg, I, and Br from the seawater and accumulate them in their thalli. Padina antillarum (Kützing) Piccone is a member of Phaeophycota and has remarkable phycochemistry as well as bioactivity. The phycochemical tests of the different extracts showed the presence of alkaloids, terpenoids, saponins, tannins, steroids, and phenols. The relative percentage of Oxirane, tetradecyl (C16H32O), and Cyclononasiloxane (C18H54O9Si9) are higher while Tetrasiloxane (C16H50O7Si8) is lowest in Gas Chromatography - Mass Spectrometry analysis. FRAP, %inhibition, the total antioxidant value of P. antillarum was higher in methanolic extract. Hexane, chloroform extracts showed no zone of inhibition against Bacillus subtilis, Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Staphylococcus epidermidis. The methanolic extract of P. antillarum exhibits a maximum zone of inhibition against S. epidermidis (18.66 ± 0.09). Antifungal activity of the P. antillarum in hexane extract exhibited no zone of inhibition against Aspergillus niger and Penicillium notatum while the chloroform extract yields maximum zone (37 ± 0.012, 21.66 ± 0.03). Diabetes mellitus is one of the most familiar chronic diseases associated with carbohydrate metabolism. It is also an indication of co-morbidities such as obesity, hypertension, and hyperlipidemia which are metabolic complications of both clinical and experimental diabetes. The treatment of P. antillarum methanol extract in mice reduced the body weight loss, low level of triglycerides, and elevated HDL cholesterol level as compared to diabetic mice.
Collapse
Affiliation(s)
- Juveria Samar
- Department of Botany, Government College University, Lahore, Pakistan
| | | | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nader R. Abdelsalam
- Department of Agricultural Botany, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Muhammad Hussaan
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
2
|
Veeragoni D, Deshpande S, Rachamalla HK, Ande A, Misra S, Mutheneni SR. In Vitro and In Vivo Anticancer and Genotoxicity Profiles of Green Synthesized and Chemically Synthesized Silver Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:2324-2339. [PMID: 35426672 DOI: 10.1021/acsabm.2c00149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Silver nanoparticles were green synthesized (Ag-PTs) employing the crude extract of Padina tetrastromatica, a marine alga, and their anticancer and safety profile were compared with those of chemically synthesized silver nanoparticles (Ag-NPs) by in vitro and in vivo models. Ag-PT exhibited potent cytotoxicity against B16-F10 (IC50 = 3.29), MCF-7 (IC50 = 4.36), HEPG2 (IC50 =3.89), and HeLa (IC50 = 4.97) cancer cell lines, whereas they exhibited lower toxicity on normal CHO-K1 cells (IC50 = 5.16). The potent anticancer activity of Ag-PTs on cancer cells is due to the liberation of ions from the nanoparticles. Increased ion internalization to the cells promotes reactive oxygen species (ROS) production and ultimately leads to cell death. The in vitro anticancer results and in vivo melanoma tumor regression study showed significant inhibition of melanoma tumor growth due to Ag-PT treatment. Ag-PT is involved in the upregulation of the p53 protein and downregulation of Sox-2 along with the Ki-67 protein. The antitumor effects of Ag-PTs may be due to the additional release of ions at a lower pH of the tumor microenvironment than that of the normal tissue. The results of safety investigations of Ag-PT by studying mitotic chromosome aberrations (CAs), micronucleus (MN) induction, and mitotic index (MI) demonstrated Ag-PT to be less genotoxic compared to Ag-NP. The bioefficacy and toxicology outcomes together demonstrated that the green synthesized silver nanoparticles (Ag-PTs) could be explored to develop a biocompatible, therapeutic agent and a vehicle of drug delivery for various biomedical applications.
Collapse
Affiliation(s)
- Dileepkumar Veeragoni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India.,Academy of Scientific & Innovative Research (AcSIR), Sector-19, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Shruti Deshpande
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India.,Academy of Scientific & Innovative Research (AcSIR), Sector-19, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Hari Krishnareddy Rachamalla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Arundha Ande
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Sunil Misra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India.,Academy of Scientific & Innovative Research (AcSIR), Sector-19, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Srinivasa Rao Mutheneni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India.,Academy of Scientific & Innovative Research (AcSIR), Sector-19, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
3
|
Preparation of Keratin-Glycine Metal Complexes and Their Scavenging Activity for Superoxide Anion Radicals. INT J POLYM SCI 2018. [DOI: 10.1155/2018/2764749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To address the problem of limited application of natural SOD, the development of SOD mimic enzymes is of great importance for bioantioxidation. Herein, we report on a new type of biopolymer antioxidant with excellent scavenging activity for O2•-, keratin-glycine metal complexes (FK-GlyM, M = Zn, Cu, Mn, Ni). They are prepared by feather keratin firstly combined with glycine and then metal ions. Using FT-IR, TG, CD, and SEM, the performance of the obtained complexes (FK-GlyM) for scavenging O2•- is analysed and investigated. Importantly, the scavenging activity of FK-GlyCu is excellent in all FK-GlyM, and FK-GlyCu60 has the most excellent anti-O2•- activity in all FK-GlyCux, of which EC50 and degree of simulation were, respectively, up to 4.5×10-3±0.0012 μmol/L and 911.1% compared with nature Cu, Zn-SOD. Finally, its mechanism was also discussed. In summary, this method about the simulation strategies will provide a novel idea for exploiting new-type biocompatible and highly reactive antioxidants.
Collapse
|