1
|
Spencer E, Peters T, Eline Y, Saucedo L, Linzan K, Paull K, Miller C, Van Leuven J. Bacteriophage resistance evolution in a honey bee pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602782. [PMID: 39026776 PMCID: PMC11257554 DOI: 10.1101/2024.07.09.602782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Honey bee (Apis mellifera) larvae are susceptible to the bacterial pathogen Paenibacillus larvae, which causes severe damage to bee colonies. Antibiotic treatment requires veterinary supervision in the United States, is not used in many parts of the world, perpetuates problems associated with antibiotic resistance, and can necessitate residual testing in bee products. There is interest in using bacteriophages to treat infected colonies (bacteriophage therapy) and several trials are promising. Nevertheless, the safety of using biological agents in the environment must be scrutinized. In this study we analyzed the ability of P. larvae to evolve resistance to several different bacteriophages. We found that bacteriophage resistance is rapidly developed in culture but often results in growth defects. Mutations in the bacteriophage-resistant isolates are concentrated in genes encoding potential surface receptors. Testing one of these isolates in bee larvae, we found it to have reduced virulence compared to the parental P. larvae strain. We also found that bacteriophages are likely able to counteract resistance evolution. This work suggests that while bacteriophage-resistance may arise, its impact will likely be mitigated by reduced pathogenicity and secondary bacteriophage mutations that overcome resistance.
Collapse
Affiliation(s)
- Emma Spencer
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Tracey Peters
- Department of Biological Sciences, University of Idaho, Moscow, ID
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID
| | - Yva Eline
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID
| | - Lauren Saucedo
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | | | - Keera Paull
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Craig Miller
- Department of Biological Sciences, University of Idaho, Moscow, ID
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID
| | - James Van Leuven
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID
- Department of Animal Veterinary and Food Sciences, University of Idaho, Moscow, ID
| |
Collapse
|
2
|
Bekircan Eski D, Gencer D, Darcan C. Whole-genome sequence of a novel lytic bacteriophage infecting Clavibacter michiganensis subsp. michiganensis from Turkey. J Gen Virol 2024; 105. [PMID: 39007232 DOI: 10.1099/jgv.0.002006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Clavibacter michiganensis subsp. michiganensis (Cmm) is an important plant-pathogenic bacterium that causes canker and wilt diseases. Biological control of the disease with bacteriophages is an alternative to conventional methods. In this study, Phage33 infecting Cmm was characterized based on morphological and genomic properties. Morphological characteristics such as shape and size were investigated using electron microscopy. The whole genome was sequenced using the Illumina Novaseq 6000 platform and the sequence was assembled and annotated. VICTOR and VIRIDIC were used for determining the phylogeny and comparing viral genomes, respectively. Electron microscopy showed that Phage33 has an icosahedral head with a diameter of ~55 nm and a long, thin, non-contractile tail ~169 nm in length. The genome of Phage33 is 56 324 bp in size, has a GC content of 62.49 % and encodes 67 open reading frames. Thirty-seven ORFs showed high homology to functionally annotated bacteriophage proteins in the NCBI database. The remaining 30 ORFs were identified as hypothetical with unknown functions. The genome contains no antimicrobial resistance, no lysogenicity and no virulence signatures, suggesting that it is a suitable candidate for biocontrol agents. The results of a blastn search showed similarity to the previously reported Xylella phage Sano, with an average nucleotide sequence identity of 92.37 % and query coverage of 91 %. This result was verified using VICTOR and VIRIDIC analysis, and suggests that Phage33 is a new member of the genus Sanovirus under the class Caudoviricetes.
Collapse
Affiliation(s)
- Duygu Bekircan Eski
- Department of Biotechnology, Bilecik Seyh Edebali University, 11100 Bilecik, Turkey
| | - Donus Gencer
- Department of Property Protection and Security, Şalpazarı Vocational School, Trabzon University, 61670 Şalpazarı, Trabzon, Turkey
| | - Cihan Darcan
- Department of Molecular Biology and Genetics, Bilecik Seyh Edebali University, 11100 Bilecik, Turkey
| |
Collapse
|
3
|
Delesalle VA, Ankeriasniemi RE, Lewis CM, Mody JM, Roy AM, Sarvis WA, Vo DD, Walsh AE, Zappia RJ. Introducing Casbah, Kronus, and MmasiCarm, Members of the Mycobacteriophage Subcluster B3. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:84-90. [PMID: 39119203 PMCID: PMC11304909 DOI: 10.1089/phage.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Background As part of a large science education effort, bacteriophages that lyse Mycobacterium smegmatis mc2155 continue to be discovered. Materials and Methods Phages were isolated from soil samples from urban sites in the Northeastern United States. Their genomes were sequenced, assembled, and bioinformatically compared. Results Three lytic siphoviruses belonging to subcluster B3 with high similarity to each other and other B3 mycobacteriophages were isolated. These phages contain double-stranded DNA genomes (68,754 to 69,495 bp) with high GC content (67.4-67.5%) and 102-104 putative protein coding genes. Notable features include a HicA-like toxin and 33 genes exclusive to subcluster B3. One phage had an intein in its terminase sequence. Conclusions Genomic analyses of these phages provide insights into genome evolution and horizontal gene transfer (HGT). The networks for HGT are apparently vast and gene specific. Interestingly, a number of genes are found in both B3 and Gordonia DR phages.
Collapse
Affiliation(s)
| | | | - Colin M. Lewis
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jehan M. Mody
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Abigail M. Roy
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Ward A. Sarvis
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Duy D. Vo
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Allison E. Walsh
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Rose J. Zappia
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| |
Collapse
|
4
|
Jończyk-Matysiak E, Owczarek B, Popiela E, Świtała-Jeleń K, Migdał P, Cieślik M, Łodej N, Kula D, Neuberg J, Hodyra-Stefaniak K, Kaszowska M, Orwat F, Bagińska N, Mucha A, Belter A, Skupińska M, Bubak B, Fortuna W, Letkiewicz S, Chorbiński P, Weber-Dąbrowska B, Roman A, Górski A. Isolation and Characterization of Phages Active against Paenibacillus larvae Causing American Foulbrood in Honeybees in Poland. Viruses 2021; 13:1217. [PMID: 34201873 PMCID: PMC8310151 DOI: 10.3390/v13071217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was the isolation and characterization, including the phage effect on honeybees in laboratory conditions, of phages active against Paenibacillus larvae, the causative agent of American Foulbrood-a highly infective and easily spreading disease occurring in honeybee larva, and subsequently the development of a preparation to prevent and treat this dangerous disease. From the tested material (over 2500 samples) 35 Paenibacillus spp. strains were obtained and used to search for phages. Five phages specific to Paenibacillus were isolated and characterized (ultrastructure, morphology, biological properties, storage stability, and genome sequence). The characteristics were performed to obtain knowledge of their lytic potential and compose the final phage cocktail with high antibacterial potential and intended use of future field application. Preliminary safety studies have also been carried out on healthy bees, which suggest that the phage preparation administered is harmless.
Collapse
Affiliation(s)
- Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | - Barbara Owczarek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | - Ewa Popiela
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 38C, 51-630 Wroclaw, Poland; (E.P.); (P.M.); (A.R.)
| | - Kinga Świtała-Jeleń
- Pure Biologics, Duńska Street 11, 54-427 Wroclaw, Poland; (K.Ś.-J.); (K.H.-S.)
| | - Paweł Migdał
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 38C, 51-630 Wroclaw, Poland; (E.P.); (P.M.); (A.R.)
| | - Martyna Cieślik
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | - Norbert Łodej
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | - Dominika Kula
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | - Joanna Neuberg
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | | | - Marta Kaszowska
- Laboratory of Microbial Immunochemistry and Vaccines, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 54-427 Wrocław, Poland;
| | - Filip Orwat
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | - Anna Mucha
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631 Wroclaw, Poland;
| | - Agnieszka Belter
- BioScientia, Ogrodowa Street 2/8, 61-820 Poznań, Poland; (A.B.); (M.S.)
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | | | - Barbara Bubak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
| | - Wojciech Fortuna
- Department of Neurosurgery, Wrocław Medical University, Borowska 213, 54-427 Wrocław, Poland;
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland;
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland;
- Department of Health Sciences, Jan Długosz University in Częstochowa, 12-200 Częstochowa, Poland
| | - Paweł Chorbiński
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wroclaw, Poland;
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland;
| | - Adam Roman
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 38C, 51-630 Wroclaw, Poland; (E.P.); (P.M.); (A.R.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; (B.O.); (M.C.); (N.Ł.); (D.K.); (J.N.); (F.O.); (N.B.); (B.B.); (B.W.-D.); (A.G.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland;
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|
5
|
Characterization of CRISPR Spacer and Protospacer Sequences in Paenibacillus larvae and Its Bacteriophages. Viruses 2021; 13:v13030459. [PMID: 33799666 PMCID: PMC7998209 DOI: 10.3390/v13030459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/01/2022] Open
Abstract
The bacterium Paenibacillus larvae is the causative agent of American foulbrood, the most devastating bacterial disease of honeybees. Because P. larvae is antibiotic resistant, phages that infect it are currently used as alternative treatments. However, the acquisition by P. larvae of CRISPR spacer sequences from the phages could be an obstacle to treatment efforts. We searched nine complete genomes of P. larvae strains and identified 714 CRISPR spacer sequences, of which 384 are unique. Of the four epidemiologically important P. larvae strains, three of these have fewer than 20 spacers, while one strain has over 150 spacers. Of the 384 unique spacers, 18 are found as protospacers in the genomes of 49 currently sequenced P. larvae phages. One P. larvae strain does not have any protospacers found in phages, while another has eight. Protospacer distribution in the phages is uneven, with two phages having up to four protospacers, while a third of phages have none. Some phages lack protospacers found in closely related phages due to point mutations, indicating a possible escape mechanism. This study serve a point of reference for future studies on the CRISPR-Cas system in P. larvae as well as for comparative studies of other phage–host systems.
Collapse
|
6
|
Abstract
Paenibacillus larvae is a Gram-positive, spore-forming bacterium that is the causative agent of American foulbrood (AFB), the most devastating bacterial disease of the honeybee. P. larvae is antibiotic resistant, complicating treatment efforts. Bacteriophages that target P. larvae are rapidly emerging as a promising treatment. The first P. larvae phages were isolated in the 1950s, but as P. larvae was not antibiotic resistant at the time, interest in them remained scant. Interest in P. larvae phages has grown rapidly since the first P. larvae phage genome was sequenced in 2013. Since then, the number of sequenced P. larvae phage genomes has reached 48 and is set to grow further. All sequenced P. larvae phages encode a conserved N-acetylmuramoyl-l-alanine amidase that is responsible for cleaving the peptidoglycan cell wall of P. larvae. All P. larvae phages also encode either an integrase, excisionase or Cro/CI, indicating that they are temperate. In the last few years, several studies have been published on using P. larvae phages and the P. larvae phage amidase as treatments for AFB. Studies were conducted on infected larvae in vitro and also on hives in the field. The phages have a prophylactic effect, preventing infection, and also a curative effect, helping resolve infection. P. larvae phages have a narrow range, lysing only P. larvae, and are unable to lyse even related Paenibacillus species. P. larvae phages thus appear to be safe to use and effective as treatment for AFB, and interest in them in the coming years will continue to grow.
Collapse
|
7
|
Jończyk-Matysiak E, Popiela E, Owczarek B, Hodyra-Stefaniak K, Świtała-Jeleń K, Łodej N, Kula D, Neuberg J, Migdał P, Bagińska N, Orwat F, Weber-Dąbrowska B, Roman A, Górski A. Phages in Therapy and Prophylaxis of American Foulbrood - Recent Implications From Practical Applications. Front Microbiol 2020; 11:1913. [PMID: 32849478 PMCID: PMC7432437 DOI: 10.3389/fmicb.2020.01913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
American foulbrood is one of the most serious and yet unsolved problems of beekeeping around the world, because it causes a disease leading to the weakening of the vitality of honey bee populations and huge economic losses both in agriculture and horticulture. The etiological agent of this dangerous disease is an extremely pathogenic spore-forming bacterium, Paenibacillus larvae, which makes treatment very difficult. What is more, the use of antibiotics in the European Union is forbidden due to restrictions related to the prevention of the presence of antibiotic residues in honey, as well as the global problem of spreading antibiotic resistance in case of bacterial strains. The only available solution is burning of entire bee colonies, which results in large economic losses. Therefore, bacteriophages and their lytic enzymes can be a real effective alternative in the treatment and prevention of this Apis mellifera disease. In this review, we summarize phage characteristics that make them a potentially useful tool in the fight against American foulbrood. In addition, we gathered data regarding phage application that have been described so far, and attempted to show practical implications and possible limitations of their usage.
Collapse
Affiliation(s)
- Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Ewa Popiela
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Barbara Owczarek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Norbert Łodej
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Dominika Kula
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joanna Neuberg
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paweł Migdał
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Filip Orwat
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
8
|
Santos SB, Oliveira A, Melo LDR, Azeredo J. Identification of the first endolysin Cell Binding Domain (CBD) targeting Paenibacillus larvae. Sci Rep 2019; 9:2568. [PMID: 30796258 PMCID: PMC6385185 DOI: 10.1038/s41598-019-39097-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/16/2018] [Indexed: 11/15/2022] Open
Abstract
Bacteriophage endolysins present enormous biotechnological potentials and have been successfully used to control and detect bacterial pathogens. Endolysins targeting Gram-positive bacteria are modular, displaying a cell binding (CBD) and an enzymatically active domain. The CBD of phage endolysins are recognized by their high specificity and host affinity, characteristics that make them promising diagnostic tools. No CBD able to bind Paenibacillus larvae has been identified so far. P. larvae is a Gram-positive spore forming bacteria that causes the American Foulbrood. This highly contagious infection leads to honeybee larvae sepsis and death, resulting in an adverse impact on pollination and on the beekeeping industry. In this work, the first CBD targeting P. larvae was identified and its core binding sequence was investigated. Moreover, it was shown that the domain is highly specific, targeting exclusively P. larvae cells from all ERIC genotypes. The identification of such a domain represents a step forward for the development of effective methods to detect and control this pathogen.
Collapse
Affiliation(s)
- Sílvio B Santos
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057, Braga, Portugal
| | - Ana Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057, Braga, Portugal.
| | - Luís D R Melo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057, Braga, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057, Braga, Portugal
| |
Collapse
|
9
|
|
10
|
Stamereilers C, Fajardo CP, Walker JK, Mendez KN, Castro-Nallar E, Grose JH, Hope S, Tsourkas PK. Genomic Analysis of 48 Paenibacillus larvae Bacteriophages. Viruses 2018; 10:E377. [PMID: 30029517 PMCID: PMC6070908 DOI: 10.3390/v10070377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 11/17/2022] Open
Abstract
The antibiotic-resistant bacterium Paenibacillus larvae is the causative agent of American foulbrood (AFB), currently the most destructive bacterial disease in honeybees. Phages that infect P. larvae were isolated as early as the 1950s, but it is only in recent years that P. larvae phage genomes have been sequenced and annotated. In this study we analyze the genomes of all 48 currently sequenced P. larvae phage genomes and classify them into four clusters and a singleton. The majority of P. larvae phage genomes are in the 38⁻45 kbp range and use the cohesive ends (cos) DNA-packaging strategy, while a minority have genomes in the 50⁻55 kbp range that use the direct terminal repeat (DTR) DNA-packaging strategy. The DTR phages form a distinct cluster, while the cos phages form three clusters and a singleton. Putative functions were identified for about half of all phage proteins. Structural and assembly proteins are located at the front of the genome and tend to be conserved within clusters, whereas regulatory and replication proteins are located in the middle and rear of the genome and are not conserved, even within clusters. All P. larvae phage genomes contain a conserved N-acetylmuramoyl-l-alanine amidase that serves as an endolysin.
Collapse
Affiliation(s)
- Casey Stamereilers
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA.
| | - Christopher P Fajardo
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Jamison K Walker
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Katterinne N Mendez
- Center for Bioinformatics and Integrative Biology, Faculty of the Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile.
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Faculty of the Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile.
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Philippos K Tsourkas
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA.
| |
Collapse
|
11
|
Walker JK, Merrill BD, Berg JA, Dhalai A, Dingman DW, Fajardo CP, Graves K, Hill HL, Hilton JA, Imahara C, Knabe BK, Mangohig J, Monk J, Mun H, Payne AM, Salisbury A, Stamereilers C, Velez K, Ward AT, Breakwell DP, Grose JH, Hope S, Tsourkas PK. Complete Genome Sequences of Paenibacillus larvae Phages BN12, Dragolir, Kiel007, Leyra, Likha, Pagassa, PBL1c, and Tadhana. GENOME ANNOUNCEMENTS 2018; 6:e01602-17. [PMID: 29903825 PMCID: PMC6003738 DOI: 10.1128/genomea.01602-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/08/2018] [Indexed: 11/25/2022]
Abstract
We present here the complete genomes of eight phages that infect Paenibacillus larvae, the causative agent of American foulbrood in honeybees. Phage PBL1c was originally isolated in 1984 from a P. larvae lysogen, while the remaining phages were isolated in 2014 from bee debris, honeycomb, and lysogens from three states in the USA.
Collapse
Affiliation(s)
- Jamison K Walker
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Bryan D Merrill
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Jordan A Berg
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Aziza Dhalai
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Douglas W Dingman
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Chris P Fajardo
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Kiel Graves
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Hunter L Hill
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Jared A Hilton
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Cameron Imahara
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Bradley K Knabe
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - James Mangohig
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Josh Monk
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Heejin Mun
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Ashley M Payne
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Alicia Salisbury
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| | | | - Kathie Velez
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Andy T Ward
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Donald P Breakwell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | | |
Collapse
|