1
|
Pandit M, Timilshina M, Chang JH. LKB1-PTEN axis controls Th1 and Th17 cell differentiation via regulating mTORC1. J Mol Med (Berl) 2021; 99:1139-1150. [PMID: 34003330 DOI: 10.1007/s00109-021-02090-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/09/2023]
Abstract
Immuno-environmental change triggers CD4+ T cell differentiation. T cell specialization activates metabolic signal pathways to meet energy requirements. Defective T cell-intrinsic metabolism can aggravate immunopathology in chronic diseases. Liver kinase B1 (LKB1) deletion in T cell or Treg cell results in systemic inflammatory symptoms, indicating a crucial role of LKB1 in T cells. However, the mechanism underlying the development of inflammation is unclear. In our study, LKB1-deficient T cells were differentiated preferentially into Th1 and Th17 cells in the absence of inflammation. Mechanistically, LKB1 directly binds and phosphorylates phosphatase and tensin homolog (PTEN), an upstream regulator of mammalian target of rapamycin complex 1 (mTORC1), which is independent of AMP-activated protein kinase (AMPK). As a result, LKB1 deficiency was associated with increased mTORC1 activity and hypoxia-inducible factor (HIF)1α-mediated glycolysis. Inhibition of glycolysis or biallelic disruption of LKB1 and HIF1α abrogated this phenotype, suggesting Th1- and Th17-biased differentiation in LKB1-deficient T cells was mediated by glycolysis. Our study indicates that LKB1 controls mTORC1 signaling through PTEN activation, not AMPK, which controls effector T cell differentiation in a T cell-intrinsic manner. KEY MESSAGES: • LKB1 maintains T cell homeostasis in a cell intrinsic manner. • Glycolysis is involved in the LKB1-mediated T cell differentiation. • LKB1 phosphorylates PTEN, not AMPK, to regulate mTORC1.
Collapse
Affiliation(s)
- Mahesh Pandit
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
2
|
Stafeev I, Sklyanik I, Mamontova E, Michurina S, Shestakova E, Yah’yaev K, Yurasov A, Masnikov D, Sineokaya M, Ratner E, Vorotnikov A, Menshikov M, Parfyonova Y, Shestakova M. NDRG1 Activity in Fat Depots Is Associated With Type 2 Diabetes and Impaired Incretin Profile in Patients With Morbid Obesity. Front Endocrinol (Lausanne) 2021; 12:777589. [PMID: 34956089 PMCID: PMC8695674 DOI: 10.3389/fendo.2021.777589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE We aimed to investigate insulin-, mTOR- and SGK1-dependent signaling basal states in morbidly obese patients' fat. We analyzed the correlation between the signaling activity, carbohydrate metabolism, and incretin profiles of patients. METHODS The omental and subcutaneous fat was obtained in patients with obesity. The omental study included 16 patients with normal glucose tolerance (NGT) and 17 patients with type 2 diabetes mellitus (T2DM); the subcutaneous study included 9 NGT patients and 12 T2DM patients. Insulin resistance was evaluated using the hyperinsulinemic euglycemic clamp test and HOMA-IR index. The oral glucose tolerance test (OGTT) for NGT patients and mixed meal tolerance test (MMTT) for T2DM patients were performed. The levels of incretins (GLP-1, GIP, oxyntomodulin) and glucagon were measured during the tests. Signaling was analyzed by Western blotting in adipose tissue biopsies. RESULTS We have shown equal levels of basal phosphorylation of insulin- and mTOR-dependent signaling in omental fat depot in NGT and T2DM obese patients. Nevertheless, pNDRG1-T346 was decreased in omental fat of T2DM patients. Correlation analysis has shown an inverse correlation of pNDRG1-T346 in omental fat and diabetic phenotype (HbA1c, impaired incretin profile (AUC GLP-1, glucagon)). Moreover, pNDRG1-T346 in subcutaneous fat correlated with impaired incretin levels among obese patients (inverse correlation with AUC glucagon and AUC GIP). CONCLUSIONS According to results of the present study, we hypothesize that phosphorylation of pNDRG1-T346 can be related to impairment in incretin hormone processing. pNDRG1-T346 in adipose tissue may serve as a marker of diabetes-associated impairments of the systemic incretin profile and insulin sensitivity.
Collapse
Affiliation(s)
- Iurii Stafeev
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- *Correspondence: Iurii Stafeev,
| | - Igor Sklyanik
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
| | - Elizaveta Mamontova
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Svetlana Michurina
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Kamil Yah’yaev
- Surgery Department, Central Clinical Hospital #1 of Open Join Stock Company (OJSC) Russian Railways, Moscow, Russia
| | - Anatoliy Yurasov
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Surgery Department, Central Clinical Hospital #1 of Open Join Stock Company (OJSC) Russian Railways, Moscow, Russia
| | - Denis Masnikov
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Center of Master’s Programs, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Maria Sineokaya
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
| | - Elizaveta Ratner
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
| | - Alexander Vorotnikov
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
| | - Mikhail Menshikov
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
| | - Yelena Parfyonova
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
3
|
Ming Y, Yin Y, Sun Z. Interaction of Nuclear Receptor Subfamily 4 Group A Member 1 (Nr4a1) and Liver Linase B1 (LKB1) Mitigates Type 2 Diabetes Mellitus by Activating Monophosphate-Activated Protein Kinase (AMPK)/Sirtuin 1 (SIRT1) Axis and Inhibiting Nuclear Factor-kappa B (NF-κB) Activation. Med Sci Monit 2020; 26:e920278. [PMID: 31939452 PMCID: PMC6982402 DOI: 10.12659/msm.920278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Nuclear receptor subfamily 4 group A member 1 (Nr4a1) has been increasingly investigated in association with type 2 diabetes mellitus (T2DM). This study aimed to explore its efficacy with liver kinase B1 (LKB1) and potential signaling pathways in T2DM. MATERIAL AND METHODS A T2DM model in rats was established by high-fat diet and injection of 30 mg/kg streptozotocin. The ectopic expression of Nr4a1 or in combination with LKB1 was performed in T2DM rats to probe their effects on T2DM. Then, the weight and indicators of blood lipid and blood glucose in normal rats and T2DM rats were measured. The volume change of adipocytes and the size of lipid droplets in white adipose tissue (WAT) were observed by hematoxylin-eosin staining and oil red O staining, respectively. We also measured levels of Nr4a1, LKB1, and adenosine monophosphate-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/Nuclear factor-kappa B (NF-kappaB) axis-related proteins. RESULTS In T2DM rats, Nr4a1 was highly expressed, and body weight, blood lipid and blood glucose were increased, and the volume of adipocytes and the size of lipid droplets in WAT were increased, which were all reversed by low expression of Nr4a1. After treatment with Nr4a1 and LKB1 together, T2DM rats showed decreased levels of blood lipid, blood glucose, and reduced volume of adipocytes and lipid droplet size in WAT, with activated AMPK/SIRT1 signaling pathway and inhibited NF-kappaB. CONCLUSIONS Our results highlight that interaction of Nr4a1 and LKB1 can mitigate T2DM by activating the AMPK/SIRT1 signaling pathway and inhibiting NF-kappaB activation. This may offer new insight for T2DM treatment.
Collapse
Affiliation(s)
- Yi Ming
- Department of Endocrinology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Youmin Yin
- Department of Endocrinology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Zhaoli Sun
- Department of Endocrinology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| |
Collapse
|
4
|
Yaribeygi H, Simental-Mendía LE, Barreto GE, Sahebkar A. Metabolic effects of antidiabetic drugs on adipocytes and adipokine expression. J Cell Physiol 2019; 234:16987-16997. [PMID: 30825205 DOI: 10.1002/jcp.28420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Several classes of antidiabetic agents have been developed that achieve their hypoglycemic outcomes via various molecular mechanisms. Adipose tissue is a major metabolic and energy-storing tissue and plays an important role in many metabolic pathways, including insulin signaling and insulin sensitivity. Adipose tissue monitors and regulates whole body homeostasis via production and release of potent proteins, such as adipokine and adiponectin, into the circulation. Therefore, any agent that can modulate adipocyte metabolism can, in turn, affect metabolic and glucose homeostatic pathways. Antidiabetic drugs are not only recognized primarily as hypoglycemic agents but may also alter adipose tissue itself, as well as adipocyte-derived adipokine expression and secretion. In the current review, we present the major evidence concerning routinely used antidiabetic agents on adipocyte metabolism and adipokine expression.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, México, México
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Shawky NM, Shehatou GSG, Suddek GM, Gameil NM. Comparison of the effects of sulforaphane and pioglitazone on insulin resistance and associated dyslipidemia, hepatosteatosis, and endothelial dysfunction in fructose-fed rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 66:43-54. [PMID: 30597379 DOI: 10.1016/j.etap.2018.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The purpose of this work was to compare the influences of sulforaphane (SFN) to those of the standard insulin sensitizer pioglitazone (PIO) on high fructose diet (HFrD)-induced insulin resistance, dyslipidemia, hepatosteatosis, and vascular dysfunction in rats. Male Sprague Dawley rats (150-200 g) were fed on a standard diet (control) or a high fructose diet (HFrD, 60% w/w fructose) for 60 days. From day 16, two subgroups of HFrD-fed rats received either SFN (0.5 mg/kg/day, orally) or PIO (5 mg/kg/day, orally) along with HFrD until the end of the experiment. Fructose-fed rats showed significant decreases in food intake, body weight and feeding efficiency; effects that were not altered by either treatment. Data from insulin tolerance test (ITT), oral glucose tolerance test (OGTT), and HOMA-IR and HOMA-β indices demonstrated impaired insulin sensitivity and glucose utilization in HFrD-fed rats. SFN and PIO treatments significantly reduced OGTTAUC (Glass's Delta values = 1.12 and 0.84, respectively), decreased ITTAUC (Glass's Delta values = 1.05 and 0.71, respectively), significantly diminished HOMA-IR index (by 55.6% and 77.6%, respectively), and increased HOMA-β value (by 1.8 and 1.3 fold, respectively) compared to the HFrD rats. Moreover, SFN and PIO ameliorated hepatic oxidative stress and reduced serum levels of C-reactive protein and lactate dehydrogenase in HFrD-fed rats. Furthermore, SFN and PIO administrations improved insulin resistance-associated heaptosteatosis and enhanced vascular responsiveness to acetylcholine-induced relaxations. However, only SFN was able to enhance serum HDL-C levels in HFrD group. These finding suggests that SFN elicited insulin-sensitizing, hepatoprotective, and vasculoprotective effects in HFrD insulin-resistant rats that were comparable to those exerted by PIO.
Collapse
Affiliation(s)
- Noha M Shawky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - George S G Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nariman M Gameil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|