1
|
Neugebauer J, Raulien N, Arndt L, Akkermann D, Hobusch C, Lindhorst A, Fröba J, Gericke M. The Impact of Resident Adipose Tissue Macrophages on Adipocyte Homeostasis and Dedifferentiation. Int J Mol Sci 2024; 25:13019. [PMID: 39684730 DOI: 10.3390/ijms252313019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is concurrent with immunological dysregulation, resulting in chronic low-grade inflammation and cellular dysfunction. In pancreatic islets, this loss of function has been correlated with mature β-cells dedifferentiating into a precursor-like state through constant exposure to inflammatory stressors. As mature adipocytes likewise have the capability to dedifferentiate in vitro and in vivo, we wanted to analyze this cellular change in relation to adipose tissue (AT) inflammation and adipose tissue macrophage (ATM) activity. Using our organotypic AT explant culture method combined with a double-reporter mouse model for labeling ATMs and mature adipocytes, we were able to visualize and quantify dedifferentiated fat (DFAT) cells in AT explants. Preliminary testing showed increased dedifferentiation after tamoxifen (TAM) stimulation, making TAM-dependent lineage-tracing models unsuitable for quantification of naturally occurring DFAT cells. The regulatory role of ATMs in adipocyte dedifferentiation was shown through macrophage depletion using Plexxicon 5622 or clodronate liposomes, which significantly increased DFAT cell levels. Subsequent bulk RNA sequencing of macrophage-depleted explants revealed enrichment of the tumor necrosis factor α (TNFα) signaling pathway as well as downregulation of associated genes. Direct stimulation with TNFα decreased adipocyte dedifferentiation, while application of a TNFα-neutralizing antibody did not significantly alter DFAT cell levels. Our findings suggest a regulatory role of resident ATMs in maintaining the mature adipocyte phenotype and preventing excessive adipocyte dedifferentiation. The specific regulatory pathways as well as the impact that DFAT cells might have on ATMs, and vice versa, are subject to further investigation.
Collapse
Affiliation(s)
- Julia Neugebauer
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Nora Raulien
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Lilli Arndt
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Dagmar Akkermann
- Paul-Flechsig-Institute, Leipzig University, 04103 Leipzig, Germany
| | | | | | - Janine Fröba
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Xue M, Liao Y, Jiang W. Insights into the molecular changes of adipocyte dedifferentiation and its future research opportunities. J Lipid Res 2024; 65:100644. [PMID: 39303983 PMCID: PMC11550672 DOI: 10.1016/j.jlr.2024.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024] Open
Abstract
Recent studies have challenged the traditional belief that mature fat cells are irreversibly differentiated and revealed they can dedifferentiate into fibroblast-like cells known as dedifferentiated fat (DFAT) cells. Resembling pluripotent stem cells, DFAT cells hold great potential as a cell source for stem cell therapy. However, there is limited understanding of the specific changes that occur following adipocyte dedifferentiation and the detailed regulation of this process. This review explores the epigenetic, genetic, and phenotypic alterations associated with DFAT cell dedifferentiation, identifies potential targets for clinical regulation and discusses the current applications and challenges in the field of DFAT cell research.
Collapse
Affiliation(s)
- Mingheng Xue
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Wenqing Jiang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Chai Y, Jia X, Zhu J, Jiang C, Yin N, Li F. Increased Fat Graft Survival by Promoting Adipocyte Dedifferentiation. Aesthet Surg J 2023; 43:NP213-NP222. [PMID: 36415951 DOI: 10.1093/asj/sjac296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Some adipocytes undergo dedifferentiation after fat transplantation, and this may affect the survival of fat grafts. However, this effect has not been adequately studied. OBJECTIVES This study aimed to clarify the effect of promoting the dedifferentiation of mature adipocytes on the survival of fat grafts. METHODS Mature adipocytes and adipose stem cells (ASCs) were treated with OSI-906 (a specific inhibitor of insulin receptor and insulin-like growth factor-1 receptor) in vitro, and then the dedifferentiation of mature adipocytes and the proliferation of ASCs were evaluated. In the in vivo experiment, human lipoaspirates mixed with phosphate-buffered saline (Group A) or OSI-906 (Group B) were compared in nude mice. Grafts were harvested at 2, 8, and 12 weeks, and volume retention rate, histologic, and immunohistochemical analyses were conducted. RESULTS OSI-906 can promote the dedifferentiation of mature adipocytes and inhibit the proliferation of ASCs. At 12 weeks, Group B showed a better volume retention rate (mean [standard deviation, SD], 62.3% [7.61%]) than group A (47.75% [6.11%]) (P < .05). Moreover, viable adipocytes and vascularization showed greater improvement in Group B than in Group A. CONCLUSIONS This study suggests that promoting the dedifferentiation of mature adipocytes can improve the survival rate and quality of fat grafts.
Collapse
Affiliation(s)
- Yimeng Chai
- From the Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, People's Republic of China
| | - Xinyu Jia
- From the Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, People's Republic of China
| | - Jinglin Zhu
- From the Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, People's Republic of China
| | - Chanyuan Jiang
- From the Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, People's Republic of China
| | - Ningbei Yin
- From the Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, People's Republic of China
| | - Facheng Li
- From the Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, People's Republic of China
| |
Collapse
|
4
|
Pan J, Kothan S, Moe Moe AT, Huang K. Dysfunction of insulin-AKT-UCP1 signalling inhibits transdifferentiation of human and mouse white preadipocytes into brown-like adipocytes. Adipocyte 2022; 11:213-226. [PMID: 35416120 PMCID: PMC9009895 DOI: 10.1080/21623945.2022.2062852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mechanism of insulin signaling on browning of white preadipocytes remains unclear. Human and mouse primary subcutaneous white preadipocytes (hsASCs and WT lean and obese msASCs, respectively) were induced to transdifferentiate into beige adipocytes under conditions of intact or blocked insulin signaling, respectively. Level of phosphoinositide-3-kinase (PI3K) after induction of beige adipocytes under conditions of normal insulin signaling, phosphorylated protein kinase B (pAKT), peroxisome proliferator-activated receptor γ coactivator-1 alpha (PGC-1α), zinc-fifinger transcriptional factor PRD1-BF1-RIZ1 homologous domain-containing protein 16 (PRDM16), uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein beta (C/EBPβ) were significantly increased. Conversely, when insulin signaling is incompletely inhibited, the expression of the thermogenic and adipogenic factors is significantly reduced, with obvious impairment of adipogenesis. However, phosphorylation level of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and expression level of sirtuin type 1 (SIRT1) had increased. These white preadipocytes from different donors showed similar dynamic change in morphology and molecular levels during the browning. The present data indicate that insulin signaling plays a important role in regulation of browning of hsASCs and msASCs through PI3K-AKT-UCP1 signaling pathway. The insulin-AMPK-SIRT1 pathway was also involved in the adipocytes browning, while its effect is limited.
Collapse
Affiliation(s)
- Jie Pan
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong Province, China
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- CONTACT Jie Pan College of Life Sciences, Shandong Normal University,, College of Life Sciences, Shandong Normal University, China
| | - Suchart Kothan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Suchart Kothan Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences Chiang Mai University, Chiang Mai, 50200Thailand
| | - Aye Thidar Moe Moe
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kun Huang
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong Province, China
| |
Collapse
|
5
|
Liu S, Wang L, Ling D, Valencak TG, You W, Shan T. Potential key factors involved in regulating adipocyte dedifferentiation. J Cell Physiol 2021; 237:1639-1647. [PMID: 34796916 DOI: 10.1002/jcp.30637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
Abstract
Adipocytes are the key constituents of adipose tissue, and their de-differentiation process has been widely observed in physiological and pathological conditions. For obese people, the promotion of adipocyte de-differentiation or maintenance of an undifferentiated state of adipocytes may help to improve their metabolic condition. Thus, understanding the regulatory mechanisms of adipocyte de-differentiation is necessary for treating metabolic diseases. Attractively, in addition to intracellular signals regulating adipocyte de-differentiation, external factors such as temperature and pressure also affect adipocyte de-differentiation. In this review, we summarize the recent progress in the field and discuss the regulatory roles and mechanisms of involved endogenous and exogenous factors during the process of de-differentiation.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Teresa G Valencak
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Liu L, Liu M, Xie D, Liu X, Yan H. Role of the extracellular matrix and YAP/TAZ in cell reprogramming. Differentiation 2021; 122:1-6. [PMID: 34768156 DOI: 10.1016/j.diff.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Stem cells are crucial in the fields of regenerative medicine and cell therapy. Mechanical signals from the cellular microenvironment play an important role in inducing the reprogramming of somatic cells into stem cells in vitro, but the mechanisms of this process have yet to be fully explored. Mechanical signals may activate a physical pathway involving the focal adhesions-cytoskeleton-LINC complex axis, and a chemical pathway involving YAP/TAZ. ENH protein likely plays an important role in connecting and regulating these two pathways. Such mechanisms illustrate one way in which mechanical signals from the cellular microenvironment can induce reprogramming of somatic cells to stem cells, and lays the foundation for a new strategy for inducing and regulating such reprogramming in vitro by means of physical processes related to local mechanical forces.
Collapse
Affiliation(s)
- Lan Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Mengchang Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Defu Xie
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Xingke Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Hong Yan
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
7
|
Pan J, Kothan S, Liu L, Moe ATM, Dong L, Sun Y, Yang Y. Autophagy participants in the dedifferentiation of mouse 3T3-L1 adipocytes triggered by hypofunction of insulin signaling. Cell Signal 2021; 80:109911. [PMID: 33422645 DOI: 10.1016/j.cellsig.2020.109911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
Our previous data indicate that both insulin and IGF-1 signallings dysfunction promotes the dedifferentiation of primary human and mouse white adipocytes. Based on the fact that insulin activates mTOR and inhibits autophagy, and autophagy deficiency can inhibit the differentiation of white adipocytes, we speculate that autophagy may be related to the dedifferentiation of white adipocytes. We investigated the underlying mechanism of autophagy during dedifferentiation of mouse 3T3-L1 adipocytes. After incomplete inhibition of insulin and IGF-1 signallings, 3T3-L1 adipocytes manifest dedifferentiation accompanied with an increase of autophagy level. If induction only of autophagy in the adipocytes, then the cells also occur somewhat dedifferentiation, and with a slight decrease of insulin signal, while its degree was weaker than insulin signal inhibited cells. Notably, after inhibition of the insulin and IGF-1 signallings and simultaneously inducing autophagy, the dedifferentiation of 3T3-L1 adipocytes was the most obvious compared with other groups, and the insulin and IGF-1 signallings decreases was greater than the cells with inhibition only of insulin signalling. If inhibition of both insulin signal and autophagy simultaneously, the dedifferentiation of the adipocytes reveals similar tendencies to the cells that insulin signal was inhibited. No significant dedifferentiation occurs of 3T3-L1 cells if only inhibition of autophagy. Taken all together, in this study, we proved that autophagy is positively related to the dedifferentiation of 3T3-L1 adipocytes and is regulated through the insulin-PI3K-AKT-mTOCR1-autophagy pathway. Autophagy may also has a certain degree of negative feedback affect on the insulin signalling of 3T3-L1 cells. Our work may help to better understand the biological properties of mature adipocytes and may help formulate anti-obesity strategies by regulating insulin and insulin signaling level.
Collapse
Affiliation(s)
- Jie Pan
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Suchart Kothan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Laihao Liu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Aye Thidar Moe Moe
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Liwei Dong
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yanan Sun
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yiyi Yang
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|