1
|
Qian Y, Xiong S, Li L, Sun Z, Zhang L, Yuan W, Cai H, Feng G, Wang X, Yao H, Gao Y, Guo L, Wang Z. Spatial multiomics atlas reveals smooth muscle phenotypic transformation and metabolic reprogramming in diabetic macroangiopathy. Cardiovasc Diabetol 2024; 23:358. [PMID: 39395983 PMCID: PMC11471023 DOI: 10.1186/s12933-024-02458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Diabetic macroangiopathy has been the main cause of death and disability in diabetic patients. The mechanisms underlying smooth muscle cell transformation and metabolic reprogramming other than abnormal glucose and lipid metabolism remain to be further explored. METHOD Single-cell transcriptome, spatial transcriptome and spatial metabolome sequencing were performed on anterior tibial artery from 11 diabetic patients with amputation. Multi-omics integration, cell communication analysis, time series analysis, network analysis, enrichment analysis, and gene expression analysis were performed to elucidate the potential molecular features. RESULT We constructed a spatial multiomics map of diabetic blood vessels based on multiomics integration, indicating single-cell and spatial landscape of transcriptome and spatial landscape of metabolome. At the same time, the characteristics of cell composition and biological function of calcified regions were obtained by integrating spatial omics and single cell omics. On this basis, our study provides favorable evidence for the cellular fate of smooth muscle cells, which can be transformed into pro-inflammatory chemotactic smooth muscle cells, macrophage-like smooth muscle cells/foam-like smooth muscle cells, and fibroblast/chondroblast smooth muscle cells in the anterior tibial artery of diabetic patients. The smooth muscle cell phenotypic transformation is driven by transcription factors net including KDM5B, DDIT3, etc. In addition, in order to focus on metabolic reprogramming apart from abnormal glucose and lipid metabolism, we constructed a metabolic network of diabetic vascular activation, and found that HNMT and CYP27A1 participate in diabetic vascular metabolic reprogramming by combining public data. CONCLUSION This study constructs the spatial gene-metabolism map of the whole anterior tibial artery for the first time and reveals the characteristics of vascular calcification, the phenotypic transformation trend of SMCs, and the transcriptional driving network of SMCs phenotypic transformation of diabetic macrovascular disease. In the perspective of combining the transcriptome and metabolome, the study demonstrates the activated metabolic pathways in diabetic blood vessels and the key genes involved in diabetic metabolic reprogramming.
Collapse
Affiliation(s)
- Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China
| | - Honghua Cai
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Guoquan Feng
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xiaoguang Wang
- Department of Joint Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Haipeng Yao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China
| | - Yun Gao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
2
|
Samson LD, Engelfriet P, Verschuren WMM, Picavet HSJ, Ferreira JA, de Zeeuw-Brouwer ML, Buisman AM, Boots AMH. Impaired JAK-STAT pathway signaling in leukocytes of the frail elderly. Immun Ageing 2022; 19:5. [PMID: 35039055 PMCID: PMC8762193 DOI: 10.1186/s12979-021-00261-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022]
Abstract
Background Elderly often show reduced immune functioning and can develop chronic low-grade inflammation. Why some elderly are more prone to become frail is unknown. We investigated whether frailty is associated with altered cytokine signaling through the JAK-STAT pathway in leukocytes of 34 individuals aged 65–74 years. In addition, we investigated how this relation is affected by chronic low-grade inflammation during the previous 20 years. Cytokine signaling was quantified by measuring intracellular STAT1, STAT3, and STAT5 phosphorylation in monocytes, B cells, CD4+ T cells and CD8+ T cells upon stimulation with IL-2, IL-6, IL-10, IFNα and IFNγ, using phospho-flow cytometry. Presence of chronic low-grade inflammation was investigated by evaluating 18 different plasma inflammatory markers that had been measured repeatedly in the same individuals over the previous 20 years. Frailty was assessed as a score on a frailty index. Results We found that lower cytokine-induced pSTAT responsiveness in the various cell subsets was seen with higher frailty scores in both men and women, indicative of dysfunctional pSTAT responses in frailer individuals. Associations differed between men and women, with frailer women showing lower pSTAT1 responses in monocytes and frailer men showing lower pSTAT5 responses in CD4+ and CD8+ T cells. Notably, lower IL-10-induced pSTAT3 responses in men were related to both higher frailty scores and higher CRP levels over the past 20 years. This might indicate poor resolution of low-grade inflammation due to defective regulatory pSTAT signaling in older men. Conclusions Our results emphasize the importance of preserved JAK-STAT pathway signaling in healthy aging and reveal cellular pSTAT levels as a candidate biomarker of frailty. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-021-00261-w.
Collapse
Affiliation(s)
- Leonard Daniël Samson
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands. .,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Peter Engelfriet
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - W M Monique Verschuren
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - H Susan J Picavet
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - José A Ferreira
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Anne-Marie Buisman
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - A Mieke H Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Spinal muscular atrophy: Broad disease spectrum and sex-specific phenotypes. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166063. [PMID: 33412266 DOI: 10.1016/j.bbadis.2020.166063] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% of cases of SMA result from deletions of or mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. The spectrum of SMA is broad, ranging from prenatal death to infant mortality to survival into adulthood. All tissues, including brain, spinal cord, bone, skeletal muscle, heart, lung, liver, pancreas, gastrointestinal tract, kidney, spleen, ovary and testis, are directly and/or indirectly affected in SMA. Accumulating evidence on impaired mitochondrial biogenesis and defects in X chromosome-linked modifying factors, coupled with the sexual dimorphic nature of many tissues, point to sex-specific vulnerabilities in SMA. Here we review the role of sex in the pathogenesis of SMA.
Collapse
|
4
|
Yao Y, Zhu H, Zhu L, Fang Z, Fan Y, Liu C, Tian Y, Chen Y, Tang W, Ren Z, Li J, Yang S, Chen Y, Zhao X, Shen C. A comprehensive contribution of genetic variations of the insulin-like growth factor 1 signalling pathway to stroke susceptibility. Atherosclerosis 2020; 296:59-65. [DOI: 10.1016/j.atherosclerosis.2020.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 12/06/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
|
5
|
Yang YM, Sehgal PB. Smooth Muscle-Specific BCL6+/- Knockout Abrogates Sex Bias in Chronic Hypoxia-Induced Pulmonary Arterial Hypertension in Mice. Int J Endocrinol 2018; 2018:3473105. [PMID: 30140283 PMCID: PMC6081567 DOI: 10.1155/2018/3473105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/07/2018] [Accepted: 06/24/2018] [Indexed: 12/18/2022] Open
Abstract
The "estrogen paradox" in pulmonary arterial hypertension (PAH) refers to observations that while there is a higher incidence of idiopathic PAH in women, rodent models of PAH show male dominance and estrogens are protective. To explain these differences, we previously proposed the neuroendocrine-STAT5-BCL6 hypothesis anchored in the sex-biased and species-specific patterns of growth hormone (GH) secretion by the pituitary, the targeting of the hypothalamus by estrogens to feminize GH secretion patterns, and the role of the transcription factors STAT5a/b and BCL6 as downstream mediators of this patterned GH-driven sex bias. As a test of this hypothesis, we previously reported that vascular smooth muscle cell- (SMC-) specific deletion of the STAT5a/b locus abrogated the male-dominant sex bias in the chronic hypoxia model of PAH in mice. In the present study, we confirmed reduced BCL6 expression in pulmonary arterial (PA) segments in both male and female SMC:STAT5a/b-/- mice. In order to test the proposed contribution of BCL6 to sex bias in PAH, we developed mice with SMC-specific deletion of BCL6+/- by crossing SM22α-Cre mice with BCL6-floxed mice and investigated sex bias in these mutant mice in the chronic hypoxia model of PAH. We observed that the male-bias observed in wild-type- (wt-) SM22α-Cre-positive mice was abrogated in the SMC:BCL6+/- knockouts-both males and females showed equivalent enhancement of indices of PAH. The new data confirm BCL6 as a contributor to the sex-bias phenotype observed in hypoxic PAH in mice and support the neuroendocrine-STAT5-BCL6 hypothesis of sex bias in this experimental model of vascular disease.
Collapse
Affiliation(s)
- Yang-Ming Yang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Pravin B. Sehgal
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|