1
|
Ge Z, Wang J, He L, Zhao M, Si Y, Chang S, Zhang G, Cheng S, Ding W. Reconstruction of cancer marker analysis with holistic anatomical precision implicates heterogeneity development during breast tumor progression. Discov Oncol 2024; 15:564. [PMID: 39406984 PMCID: PMC11480302 DOI: 10.1007/s12672-024-01442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Biomarkers are not only of significant importance for cancer diagnosis and selection of treatment plans but also recently increasingly used for the evaluation of malignancy development and tumor heterogeneity. Large-size tumors from clinical patients can be unique and valuable sources for the study of cancer progression, particularly to the extent of intratumoral heterogeneity. In the present study, we obtained a series of post-surgery puncture samples from a breast cancer patient with a 4 × 3.5 × 2 cm tumor in its original size. Immunohistochemistry for Ki-67, COX-2, and CA IX was performed and the expression levels within the breast cancer tumor mass were evaluated in the reconstructed 3D models. To further evaluate the intratumoral heterogeneity, we performed high throughput whole transcriptome sequencing of 12 samples from different spatial positions within the tumor tissue. Comparing the reconstructed 3D distribution of biomarkers with projected tumor growth models, asymmetric and heterogeneous expansion of tumor mass was found to be possibly influenced by factors such as blood supply, inflammation and/or hypoxia stimulations, as suggested from the correlation between the results of Ki-67 and CA IX or COX-2 staining. Furthermore, high-throughput RNA sequencing data provided additional information for profiling the intratumoral heterogeneity and expanded the understanding of cancer progression. Digital technology for medical imaging once properly integrated with molecular pathology examinations will become particularly helpful in dissecting out in-depth information for precision medicine. We prospect that this approach, facilitated by rapidly advancing artificial intelligence, could provide new insights for clinical decision-making in the future. Strategies for the continuous development from the present study for better performance and application were discussed.
Collapse
Affiliation(s)
- Zhicheng Ge
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Jing Wang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Libing He
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Meng Zhao
- Department of Infection Control, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Yang Si
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Siyuan Chang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Guoyan Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Shan Cheng
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Wei Ding
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| |
Collapse
|
2
|
Zatovicova M, Kajanova I, Barathova M, Takacova M, Labudova M, Csaderova L, Jelenska L, Svastova E, Pastorekova S, Harris AL, Pastorek J. Novel humanized monoclonal antibodies for targeting hypoxic human tumors via two distinct extracellular domains of carbonic anhydrase IX. Cancer Metab 2022; 10:3. [PMID: 35109923 PMCID: PMC8811981 DOI: 10.1186/s40170-022-00279-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hypoxia in the tumor microenvironment (TME) is often the main factor in the cancer progression. Moreover, low levels of oxygen in tumor tissue may signal that the first- or second-line therapy will not be successful. This knowledge triggers the inevitable search for different kinds of treatment that will successfully cure aggressive tumors. Due to its exclusive expression on cancer cells, carbonic anhydrase IX belongs to the group of the most precise targets in hypoxic tumors. CA IX possesses several exceptional qualities that predetermine its crucial role in targeted therapy. Its expression on the cell membrane makes it an easily accessible target, while its absence in healthy corresponding tissues makes the treatment practically harmless. The presence of CA IX in solid tumors causes an acidic environment that may lead to the failure of standard therapy. METHODS Parental mouse hybridomas (IV/18 and VII/20) were humanized to antibodies which were subsequently named CA9hu-1 and CA9hu-2. From each hybridoma, we obtained 25 clones. Each clone was tested for antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) activity, affinity, extracellular pH measurement, multicellular aggregation analysis, and real-time monitoring of invasion with the xCELLigence system. RESULTS Based on the results from in vivo experiments, we have selected mouse monoclonal antibodies VII/20 and IV/18. The first one is directed at the conformational epitope of the catalytic domain, internalizes after binding to the antigen, and halts tumor growth while blocking extracellular acidification. The second targets the sequential epitope of the proteo-glycan domain, does not internalize, and is able to block the attachment of cancer cells to the matrix preventing metastasis formation. In vitro experiments prove that humanized versions of the parental murine antibodies, CA9hu-1 and CA9hu-2, have preserved these characteristics. They can reverse the failure of standard therapy as a result of an acidic environment by modulating the TME, and both are able to induce an immune response and have high affinity, as well as ADCC and CDC activity. CONCLUSION CA9hu-1 and CA9hu-2 are the very first humanized antibodies against CA IX that are likely to become suitable therapies for hypoxic tumors. These antibodies can be applied in the treatment therapy of primary tumors and suppression of metastases formation.
Collapse
Affiliation(s)
- Miriam Zatovicova
- MABPRO, a.s., Dubravska cesta 2, 841 04, Bratislava, Slovakia
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| | - Ivana Kajanova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| | - Monika Barathova
- MABPRO, a.s., Dubravska cesta 2, 841 04, Bratislava, Slovakia
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| | - Martina Takacova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| | - Martina Labudova
- MABPRO, a.s., Dubravska cesta 2, 841 04, Bratislava, Slovakia
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| | - Lucia Csaderova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| | - Lenka Jelenska
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| | - Eliska Svastova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| | - Silvia Pastorekova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
3
|
Carbonic Anhydrase IX Promotes Human Cervical Cancer Cell Motility by Regulating PFKFB4 Expression. Cancers (Basel) 2021; 13:cancers13051174. [PMID: 33803236 PMCID: PMC7967120 DOI: 10.3390/cancers13051174] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Carbonic anhydrase IX (CAIX) is a hypoxia-induced protein that is highly expressed in numerous human cancers. However, the molecular mechanisms involved in CAIX and human cervical cancer metastasis remain poorly understood. Our study found that CAIX overexpression increases PFKFB4 expression and EMT, promoting cervical cancer cell migration. CAIX could contribute to cervical cancer cell metastasis and its inhibition could be a cervical cancer treatment strategy. Abstract Carbonic anhydrase IX (CAIX) is a hypoxia-induced protein that is highly expressed in numerous human cancers. However, the molecular mechanisms involved in CAIX and human cervical cancer metastasis remain poorly understood. In this study, CAIX overexpression in SiHa cells increased cell migration and epithelial-to-mesenchymal transition (EMT). Silencing CAIX in the Caski cell line decreased the motility of cells and EMT. Furthermore, the RNA-sequencing analysis identified a target gene, bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB4), which is influenced by CAIX overexpression and knockdown. A positive correlation was found between CAIX expression and PFKFB4 levels in the cervical cancer of the TCGA database. Mechanistically, CAIX overexpression activated the phosphorylation of extracellular signal-regulated kinases (ERKs) to induce EMT and promote cell migration. In clinical results, human cervical cancer patients with CAIXhigh/PFKFB4high expression in the late stage had higher rates of lymph node metastasis and the shortest survival time. Our study found that CAIX overexpression increases PFKFB4 expression and EMT, promoting cervical cancer cell migration. CAIX could contribute to cervical cancer cell metastasis and its inhibition could be a cervical cancer treatment strategy.
Collapse
|
4
|
Investigation of the Prognostic Role of Carbonic Anhydrase 9 (CAIX) of the Cellular mRNA/Protein Level or Soluble CAIX Protein in Patients with Oral Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20020375. [PMID: 30654595 PMCID: PMC6359351 DOI: 10.3390/ijms20020375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Carbonic anhydrase 9 (CAIX) is an important protein that stabilizes the extracellular pH value and is transcriptionally regulated by hypoxia-inducible factor 1 (HIF1), but more stable than HIF1α. Here we show a comparative study that examines the prognostic value of CA9 mRNA, CAIX protein of tumor cells and secreted CAIX protein for oral squamous cell carcinoma (OSCC) patients. Tumor samples from 72 OSCC patients and 24 samples of normal tissue were analyzed for CA9 mRNA levels. A total of 158 OSCC samples were stained for CAIX by immunohistochemistry and 89 blood serum samples were analyzed by ELISA for soluble CAIX protein content. Survival analyses were performed by Kaplan–Meier and Cox’s regression analysis to estimate the prognostic effect of CA9/CAIX in OSCC patients. The CA9 mRNA and CAIX protein levels of tumor cells correlated with each other, but not with those of the secreted CAIX protein level of the blood of patients. ROC curves showed a significant (p < 0.001) higher mRNA-level of CA9 in OSCC samples than in adjacent normal tissue. Cox’s regression analysis revealed an increased risk (i) of death for patients with a high CA9 mRNA level (RR = 2.2; p = 0.02), (ii) of locoregional recurrence (RR = 3.2; p = 0.036) at higher CA9 mRNA levels and (iii) of death at high CAIX protein level in their tumors (RR = 1.7; p = 0.066) and especially for patients with advanced T4-tumors (RR = 2.0; p = 0.04). However, the secreted CAIX protein level was only as a trend associated with prognosis in OSCC (RR = 2.2; p = 0.066). CA9/CAIX is an independent prognostic factor for OSCC patients and therefore a potential therapeutic target.
Collapse
|
6
|
Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 2016; 36:439-445. [PMID: 27345407 DOI: 10.1038/onc.2016.225] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Tumors use several strategies to evade the host immune response, including creation of an immune-suppressive and hostile tumor environment. Tissue hypoxia due to inadequate blood supply is reported to develop very early during tumor establishment. Hypoxic stress has a strong impact on tumor cell biology. In particular, tissue hypoxia contributes to therapeutic resistance, heterogeneity and progression. It also interferes with immune plasticity, promotes the differentiation and expansion of immune-suppressive stromal cells, and remodels the metabolic landscape to support immune privilege. Therefore, tissue hypoxia has been regarded as a central factor for tumor aggressiveness and metastasis. In this regard, manipulating host-tumor interactions in the context of the hypoxic tumor microenvironment may be important in preventing or reverting malignant conversion. We will discuss how tumor microenvironment-driven transient compositional tumor heterogeneity involves hypoxic stress. Tumor hypoxia is a therapeutic concern since it can reduce the effectiveness of conventional therapies as well as cancer immunotherapy. Thus, understanding how tumor and stromal cells respond to hypoxia will allow for the design of innovative cancer therapies that can overcome these barriers. A better understanding of hypoxia-dependent mechanisms involved in the regulation of immune tolerance could lead to new strategies to enhance antitumor immunity. Therefore, discovery and validation of therapeutic targets derived from the hypoxic tumor microenvironment is of major importance. In this context, critical hypoxia-associated pathways are attractive targets for immunotherapy of cancer. In this review, we summarize current knowledge regarding the molecular mechanisms induced by tumor cell hypoxia with a special emphasis on therapeutic resistance and immune suppression. We emphasize mechanisms of manipulating hypoxic stress and its associated pathways, which may support the development of more durable and successful cancer immunotherapy approaches in the future.
Collapse
|
7
|
McDonald PC, Chafe SC, Dedhar S. Overcoming Hypoxia-Mediated Tumor Progression: Combinatorial Approaches Targeting pH Regulation, Angiogenesis and Immune Dysfunction. Front Cell Dev Biol 2016; 4:27. [PMID: 27066484 PMCID: PMC4814851 DOI: 10.3389/fcell.2016.00027] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/18/2016] [Indexed: 12/22/2022] Open
Abstract
Hypoxia is an important contributor to the heterogeneity of the microenvironment of solid tumors and is a significant environmental stressor that drives adaptations which are essential for the survival and metastatic capabilities of tumor cells. Critical adaptive mechanisms include altered metabolism, pH regulation, epithelial-mesenchymal transition, angiogenesis, migration/invasion, diminished response to immune cells and resistance to chemotherapy and radiation therapy. In particular, pH regulation by hypoxic tumor cells, through the modulation of cell surface molecules such as extracellular carbonic anhydrases (CAIX and CAXII) and monocarboxylate transporters (MCT-1 and MCT-4) functions to increase cancer cell survival and enhance cell invasion while also contributing to immune evasion. Indeed, CAIX is a vital regulator of hypoxia mediated tumor progression, and targeted inhibition of its function results in reduced tumor growth, metastasis, and cancer stem cell function. However, the integrated contributions of the repertoire of hypoxia-induced effectors of pH regulation for tumor survival and invasion remain to be fully explored and exploited as therapeutic avenues. For example, the clinical use of anti-angiogenic agents has identified a conundrum whereby this treatment increases hypoxia and cancer stem cell components of tumors, and accelerates metastasis. Furthermore, hypoxia results in the infiltration of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Treg) and Tumor Associated Macrophages (TAMs), and also stimulates the expression of PD-L1 on tumor cells, which collectively suppress T-cell mediated tumor cell killing. Therefore, combinatorial targeting of angiogenesis, the immune system and pH regulation in the context of hypoxia may lead to more effective strategies for curbing tumor progression and therapeutic resistance, thereby increasing therapeutic efficacy and leading to more effective strategies for the treatment of patients with aggressive cancer.
Collapse
Affiliation(s)
- Paul C McDonald
- Department of Integrative Oncology, British Columbia Cancer Research Centre Vancouver, BC, Canada
| | - Shawn C Chafe
- Department of Integrative Oncology, British Columbia Cancer Research Centre Vancouver, BC, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, British Columbia Cancer Research CentreVancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|