1
|
Xu WD, Wang DC, Zhao M, Huang AF. An updated advancement of bifunctional IL-27 in inflammatory autoimmune diseases. Front Immunol 2024; 15:1366377. [PMID: 38566992 PMCID: PMC10985211 DOI: 10.3389/fimmu.2024.1366377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Interleukin-27 (IL-27) is a member of the IL-12 family. The gene encoding IL-27 is located at chromosome 16p11. IL-27 is considered as a heterodimeric cytokine, which consists of Epstein-Barr virus (EBV)-induced gene 3 (Ebi3) and IL-27p28. Based on the function of IL-27, it binds to receptor IL-27rα or gp130 and then regulates downstream cascade. To date, findings show that the expression of IL-27 is abnormal in different inflammatory autoimmune diseases (including systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, Behcet's disease, inflammatory bowel disease, multiple sclerosis, systemic sclerosis, type 1 diabetes, Vogt-Koyanagi-Harada, and ankylosing spondylitis). Moreover, in vivo and in vitro studies demonstrated that IL-27 is significantly in3volved in the development of these diseases by regulating innate and adaptive immune responses, playing either an anti-inflammatory or a pro-inflammatory role. In this review, we comprehensively summarized information about IL-27 and autoimmunity based on available evidence. It is hoped that targeting IL-27 will hold great promise in the treatment of inflammatory autoimmune disorders in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Li P, Pu S, Yi J, Li X, Wu Q, Yang C, Kang M, Peng F, Zhou Z. Deletion of IL-27p28 induces CD8 T cell immunity against colorectal tumorigenesis. Int Immunopharmacol 2024; 128:111464. [PMID: 38224627 DOI: 10.1016/j.intimp.2023.111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide, characterized by molecular and clinical heterogeneity. Interleukin (IL)-27, a heterodimeric cytokine composed of p28 and EBI3 subunits, has been reported to exert potent antitumor activity in several cancer models. However, the precise role of IL-27 in the pathogenesis of CRC remains unclear. Here, we show that during the azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC development, IL-27p28 levels are dramatically increased in peripheral blood and tumor tissues, and the cytokine is mainly produced by tumor-infiltrating myeloid cells. IL-27p28 deficient mice display tumor resistances in both inflammation-associated CRC model and syngeneic MC38 colon cancer model. Administration with IL-27p28 neutralizing antibody also reduces the tumor formation in AOM/DSS-treated mice. Mechanically, CD8+ T cells in IL-27p28-/- mice exhibit enhanced tumor infiltration and cytotoxicity, which can be largely attributed to activation of the Akt/mTOR signaling pathway. Furthermore, selective depletion of CD8+ T cells in IL-27p28-/- mice markedly accelerate tumor growth and almost abrogate the protective effects of IL-27p28 deficiency. Most interestingly, the expression of IL-27p28 is also upregulated in tumor tissues of CRC patients and those with high expression of IL-27p28 tend to have a poorer overall survival. Our results suggest that loss of IL-27p28 suppresses colorectal tumorigenesis by augmenting CD8+ T cell-mediated anti-tumor immunity. Targeting IL-27p28 could be developed as a novel strategy for the treatment of colorectal cancers.
Collapse
Affiliation(s)
- Peihua Li
- College of Physical Education and Health, Guangxi Normal University, Guilin 541006, China; College of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shiming Pu
- College of Life Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jiequn Yi
- College of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaoyu Li
- College of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qiong Wu
- College of Life Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Cheng Yang
- College of Life Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Mafei Kang
- Department of Oncology, Guilin Medical University Affiliated Hospital, Guilin 541001, China
| | - Fenglin Peng
- College of Physical Education and Health, Guangxi Normal University, Guilin 541006, China
| | - Zuping Zhou
- College of Physical Education and Health, Guangxi Normal University, Guilin 541006, China; College of Life Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
3
|
Garbers C, Lokau J. Cytokines of the interleukin-6 family as emerging targets in inflammatory bowel disease. Expert Opin Ther Targets 2024; 28:57-65. [PMID: 38217849 DOI: 10.1080/14728222.2024.2306341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is an umbrella term that includes different chronic inflammatory diseases of the gastrointestinal tract, most commonly Crohn's disease and ulcerative colitis. IBD affects more than 6 million people worldwide and constitutes not only a debilitating disease for the patients, but also a significant factor for society due to costs for health care and reduced working capacity. Despite the introduction of biologicals for the treatment of IBD, the identification of novel targets that could lead to novel therapeutics is still needed. AREAS COVERED In this review, we summarize current knowledge about the interleukin-6 family of cytokines as potential therapeutic targets for improving the therapy of patients with IBD. We discuss cytokines like IL-6 itself for which therapeutics such as inhibitory monoclonal antibodies have already entered the clinics, but also focus on other family members whose therapeutic potential has not been explored yet. EXPERT OPINION The different cytokines of the IL-6 family offer multiple therapeutic targets that can potentially be used to treat patients with inflammatory bowel disease, but unwanted side effects like inhibition of epithelial regeneration have to be considered.
Collapse
Affiliation(s)
- Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Juliane Lokau
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Li J, Ji Y, Chen N, Dai L, Deng H. Colitis-associated carcinogenesis: crosstalk between tumors, immune cells and gut microbiota. Cell Biosci 2023; 13:194. [PMID: 37875976 PMCID: PMC10594787 DOI: 10.1186/s13578-023-01139-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. One of the main causes of colorectal cancer is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). Intestinal epithelial cells (IECs), intestinal mesenchymal cells (IMCs), immune cells, and gut microbiota construct the main body of the colon and maintain colon homeostasis. In the development of colitis and colitis-associated carcinogenesis, the damage, disorder or excessive recruitment of different cells such as IECs, IMCs, immune cells and intestinal microbiota play different roles during these processes. This review aims to discuss the various roles of different cells and the crosstalk of these cells in transforming intestinal inflammation to cancer, which provides new therapeutic methods for chemotherapy, targeted therapy, immunotherapy and microbial therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Yanhong Ji
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Na Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| |
Collapse
|
5
|
Brice DP, Murray GI, Wilson HM, Porter RJ, Berry S, Durum SK, McLean MH. Interleukin-27 Regulates the Function of the Gastrointestinal Epithelial Barrier in a Human Tissue-Derived Organoid Model. BIOLOGY 2022; 11:biology11030427. [PMID: 35336801 PMCID: PMC8945023 DOI: 10.3390/biology11030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
A treatment with direct healing effects on the gastrointestinal epithelial barrier is desirable for inflammatory bowel disease (IBD). Interleukin-27 (IL-27) is an immunoregulatory cytokine, and oral delivery is an effective treatment in murine models of IBD. We aimed to define IL-27 effects on the human gastrointestinal epithelial barrier. We characterised gene and protein expression of permeability mediators in a human colon-derived organoid model. Functional permeability was determined in an organoid-derived 2D monolayer by transepithelial electrical resistance. IL-27 effects on epithelial innate immune responses were assessed through expression of cytokines, anti-microbial peptides and MUC genes. IL-27 effects on wound healing and proliferation were determined in human colon epithelial cell lines. IL-27 led to restoration of permeability regulation following inflammatory cytokine insult (p = 0.001), associated with differential expression of tight junction mediators with decrease in claudin 2 (p = 0.024) and increase in claudin 4 (p < 0.001), E-cadherin (p < 0.001) and zona occludens (p = 0.0014). IL-27 evoked differential gene expression of epithelial-derived innate immune responses (reduced IL1B and IL18, and increased IL33, HBD1, MUC1 and MUC2; p < 0.012). IL-27 induced epithelial barrier wound healing through restitution (p < 0.001), and increased proliferation (p < 0.001) following injury. Overall, IL-27 provokes mucosal healing of the human gastrointestinal epithelial barrier.
Collapse
Affiliation(s)
- Daniel P. Brice
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (D.P.B.); (G.I.M.); (H.M.W.); (S.B.)
| | - Graeme I. Murray
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (D.P.B.); (G.I.M.); (H.M.W.); (S.B.)
| | - Heather M. Wilson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (D.P.B.); (G.I.M.); (H.M.W.); (S.B.)
| | - Ross J. Porter
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Susan Berry
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (D.P.B.); (G.I.M.); (H.M.W.); (S.B.)
| | - Scott K. Durum
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute (NCI), National Institute of Health (NIH), Frederick, MD 21702, USA;
| | - Mairi H. McLean
- Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
- Correspondence:
| |
Collapse
|
6
|
Expressions of Interleukin-27 in Oral Lichen Planus, Oral Leukoplakia, and Oral Squamous Cell Carcinoma. Inflammation 2022; 45:1023-1038. [DOI: 10.1007/s10753-021-01599-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022]
|
7
|
Ye C, Yano H, Workman CJ, Vignali DAA. Interleukin-35: Structure, Function and Its Impact on Immune-Related Diseases. J Interferon Cytokine Res 2021; 41:391-406. [PMID: 34788131 DOI: 10.1089/jir.2021.0147] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The balance between inflammatory and anti-inflammatory immune responses is maintained through immunoregulatory cell populations and immunosuppressive cytokines. Interleukin-35 (IL-35), an inhibitory cytokine that belongs to the IL-12 family, is capable of potently suppressing T cell proliferation and inducing IL-35-producing induced regulatory T cells (iTr35) to limit inflammatory responses. Over the past decade, a growing number of studies have indicated that IL-35 plays an important role in controlling immune-related disorders, including autoimmune diseases, infectious diseases, and cancer. In this review, we summarize the current knowledge about the biology of IL-35 and its contribution in different diseases, and we discuss the potential of and barriers to harnessing IL-35 as a clinical biomarker or immunotherapy.
Collapse
Affiliation(s)
- Cheng Ye
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hiroshi Yano
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Ran Y, Huang D, Mei Y, Liu Z, Zhou Y, He J, Zhang H, Yin N, Qi H. Identification of the correlations between interleukin-27 (IL-27) and immune-inflammatory imbalance in preterm birth. Bioengineered 2021; 12:3201-3218. [PMID: 34224308 PMCID: PMC8806804 DOI: 10.1080/21655979.2021.1945894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Preterm birth (PTB) is an immune-inflammatory disease that needs to be resolved. This study aimed to identify the role of interleukin-27 (IL-27), an immunomodulatory factor, in PTB and its associated mechanisms. Here, we analyzed the high-throughput of samples data from the maternal-fetal interface to the peripheral circulation obtained from public databases and reported that the elevated IL-27 was involved with the onset of PTB. Further bioinformatics analyses (e.g. GeneMANIA and GSEA) revealed that IL-27 overexpression in the peripheral circulation as well as maternal-fetal interface is related to the activation of the immune-inflammatory process represented by IFN-γ signaling, etc. In addition, IL-27 and immune infiltration correlation analysis demonstrated that IL-27 mediates this immune-inflammatory imbalance, plausibly mainly through monocyte-macrophage and neutrophils. This finding was further validated by analyzing additional datasets. Overall, this is the first study to elaborate on the role of IL-27-mediated immuno-inflammation in PTB from the perspective of bioinformatics, which may provide a novel strategy for the prevention and treatment of PTB.
Collapse
Affiliation(s)
- Yuxin Ran
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Dongni Huang
- Department of Obstetrics, Health Center for Women and Children, Chongqing, China
| | - Youwen Mei
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Zheng Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yunqian Zhou
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jie He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hanwen Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nanlin Yin
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Yang Y, Li L, Xu C, Wang Y, Wang Z, Chen M, Jiang Z, Pan J, Yang C, Li X, Song K, Yan J, Xie W, Wu X, Chen Z, Yuan Y, Zheng S, Yan J, Huang J, Qiu F. Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis. Gut 2020; 70:gutjnl-2020-320777. [PMID: 33122176 PMCID: PMC8292576 DOI: 10.1136/gutjnl-2020-320777] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/13/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Macrophages are among the most abundant cells in the colon tumour microenvironment, and there is a close relationship among monocytes, macrophages and the gut microbiota. Alterations in the gut microbiota are involved in tumour development, but the underlying mechanisms remain unclear. We aim to elucidate the temporal changes in macrophage subsets and functions, and how these dynamics are regulated by microbial cues in the initiation of colitis-associated cancer. DESIGN A mouse model of colitis-associated tumourigenesis was established to determine macrophage dynamics. The role of monocyte-like macrophage (MLM) was confirmed by targeting its chemotaxis. The effects of the gut microbiota were assessed by antibiotic treatment and faecal microbiota transplantation. RESULTS A selective increase in MLMs was observed in the initial stages of colitis-associated cancer, with an enhanced secretion of inflammatory cytokines. MLM accumulation was regulated by CCL2 expression of colonic epithelial cells, which was influenced by bacteria-derived lipopolysaccharide (LPS). LPS further stimulated interleukin 1β production from MLMs, inducing interleukin-17-producing T-helper cell activation to promote inflammation. These observations were also supported by altered microbial composition associated with human colitis and colorectal cancer, evolving transcriptional signature and immune response during human colitis-associated tumourigenesis. CONCLUSIONS The gut microbiota uses LPS as a trigger to regulate MLM accumulation in a chemokine-dependent manner and generate a precancerous inflammatory milieu to facilitate tumourigenesis.
Collapse
Affiliation(s)
- Yunben Yang
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lili Li
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chunjing Xu
- Department of Breast Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yunke Wang
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhen Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengyao Chen
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhou Jiang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenghui Yang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoqian Li
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kai Song
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junfeng Yan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Surgical Oncology, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| | - Wanglan Xie
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xianguo Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhigang Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shu Zheng
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Yan
- Department of Medicine and Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fuming Qiu
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Zhao S, Liang T, Zhang C, Shi D, Jiang W, Su C, Hou G. IL-27 Rα + cells promoted allorejection via enhancing STAT1/3/5 phosphorylation. J Cell Mol Med 2020; 24:10756-10767. [PMID: 32761753 PMCID: PMC7521268 DOI: 10.1111/jcmm.15700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/23/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, emerging evidence strongly suggested that the activation of interleukin-27 Receptor α (IL-27Rα) could modulate different inflammatory diseases. However, whether IL-27Rα affects allotransplantation rejection is not fully understood. Here, we investigated the role of IL-27Rα on allorejection both in vivo and in vitro. The skin allotransplantation mice models were established, and the dynamic IL-27Rα/IL-27 expression was detected, and IL-27Rα+ spleen cells adoptive transfer was performed. STAT1/3/5 phosphorylation, proliferation and apoptosis were investigated in mixed lymphocyte reaction (MLR) with recombinant IL-27 (rIL-27) stimulation. Finally, IFN-γ/ IL-10 in graft/serum from model mice was detected. Results showed higher IL-27Rα/IL-27 expression in allografted group compared that syngrafted group on day 10 (top point of allorejection). IL-27Rα+ spleen cells accelerated allograft rejection in vivo. rIL-27 significantly promoted proliferation, inhibited apoptosis and increased STAT1/3/5 phosphorylation of alloreactive splenocytes, and these effects of rIL-27 could be almost totally blocked by JAK/ STAT inhibitor and anti-IL-27 p28 Ab. Finally, higher IL-27Rα+ IFN-γ+ cells and lower IL-27Rα+ IL-10+ cells within allografts, and high IFN-γ/low IL-10 in serum of allorejecting mice were detected. In conclusion, these data suggested that IL-27Rα+ cells apparently promoted allograft rejection through enhancing alloreactive proliferation, inhibiting apoptosis and up-regulating IFN-γ via enhancing STAT pathway. Blocking IL-27 pathway may favour to prevent allorejection, and IL-27Rα may be as a high selective molecule for targeting diagnosis and therapy for allotransplantation rejection.
Collapse
Affiliation(s)
- Shanshan Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Liang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dai Shi
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen Jiang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Su
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
11
|
Zhang L, Zhang J, Su S, Luo S. Changes in interleukin-27 levels in patients with acute coronary syndrome and their clinical significance. PeerJ 2019; 7:e5652. [PMID: 30631648 PMCID: PMC6322480 DOI: 10.7717/peerj.5652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022] Open
Abstract
Background This study evaluated changes in interleukin (IL)-27 levels in patients with acute coronary syndrome (ACS) and their influence on Th1, Th2, and Th17 cells. Methods Serum levels of IL-27, IL-4, IL-17, and interferon (IFN)-γ in healthy subjects as well as patients with ACS, including stable angina pectoris (SA), unstable angina pectoris (UA), and acute myocardial infarction (AMI), were determined using an enzyme-linked immunosorbent assay. The proportions of Th1, Th2, and Th17 cells among peripheral blood mononuclear cells (PBMCs), were measured using flow cytometry, after incubation with phorbol myristate acetate (PMA) for 4 h. The proportions of Th1 and Th17 cells among PBMCs in AMI and UA were detected after stimulation with IL-27 or PMA + IL-27 for 4, 8, and 12 h. Results Serum levels of IL-27 in patients with AMI and UA were significantly lower than those in SA and control groups, while serum levels of IL-17 and IFN-γ in AMI and UA groups were dramatically increased compared to those in SA and healthy control groups. However, there were no statistically significant differences in serum IL-4. The proportions of Th1 and Th17 cells among PBMCs were statistically significantly higher in the AMI and UA groups than those in the SA and control groups, while there was no statistically significant difference in the proportion of Th2 cells among different groups. For patients with AMI and UA, the effect of co-stimulation of PBMCs with PMA and IL-27 was not significantly different from that of PMA single stimulation, while PMA + IL-27 co-stimulation lowered the Th17 cell proportion significantly compared to PMA single stimulation. Discussion Compared to SA patients and healthy controls, patients with ACS (AMI + UA) had lower serum levels of IL-27 and higher proportions of PBMC Th1 and Th17 cells, which could be attributed to the inhibitory effects of IL-27 on the proliferation of Th17 cells. These results indicated that IL-27 could be a novel therapeutic target in ACS patients.
Collapse
Affiliation(s)
- Lin Zhang
- Department of the Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Junfeng Zhang
- Department of the Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Shaohong Su
- Department of the Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Suyan Luo
- Department of the Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Tharwat E, Gad GFM, Nazmy MH, Mohamed HI, Hamza N, Wahid A, Ibrahim ARN. Impact of IL-27p28 (rs153109) and TNF-α (rs1800629) Genetic Polymorphisms on the Progression of HCV Infection in Egyptian Patients. Immunol Invest 2018; 48:255-267. [DOI: 10.1080/08820139.2018.1510958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ebram Tharwat
- Department of Biochemistry, Pharmacy, Minia University, Minia, Egypt
| | - Gamal F. M. Gad
- Department of Microbiology, Pharmacy, Minia University, Minia, Egypt
| | - Maiiada H. Nazmy
- Department of Biochemistry, Pharmacy, Minia University, Minia, Egypt
| | - Hala I. Mohamed
- Department of Endemic medicine, Medicine, Minia University, Minia, Egypt
| | - Nouran Hamza
- Independant biostatistics consultant, High Institute of Public Health, Alexandria, Egypt
| | - Ahmed Wahid
- Department of Pharmacology and Toxicology, Pharmacy, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|