1
|
Wu C, Shi L, Deng Y, Chen H, Lu Y, Xiong X, Yin X. Bufalin Regulates STAT3 Signaling Pathway to Inhibit Corneal Neovascularization and Fibrosis After Alkali Burn in Rats. Curr Eye Res 2024:1-9. [PMID: 39356002 DOI: 10.1080/02713683.2024.2408392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE Bufalin (BU) is a bioactive ingredient extracted from the skin and parotid venom glands of Bufo raddei, which can effectively inhibit angiogenesis. The aim of this study was to investigate whether BU could affect corneal neovascularization (CoNV). METHODS A rat CoNV model (right eye) was constructed by administration of NaOH, and the left eye served as a control. Corneal damage scores of rats were detected. Hematoxylin & eosin, TUNEL, and Masson staining examined pathological changes, apoptosis, and fibrosis of corneal tissues. Immunohistochemistry and western blotting assessed the expression of proteins. RESULTS BU intervention resulted in a significant reduction in corneal inflammatory cells, repair of corneal epithelial hyperplasia, significant reduction in stromal edema, and reduction in vascular proliferation. BU can inhibit corneal neovascularization. CONCLUSION This study demonstrated that BU inhibits CoNV, fibrosis, and inflammation by modulating the STAT3 signaling pathway, elucidating the intrinsic mechanism of its protective effect. BU has great potential in the treatment of CoNV caused by corneal alkali burns.
Collapse
Affiliation(s)
- Chao Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lu Shi
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yan Deng
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang, China
| | - Ying Lu
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaoyan Xiong
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaolong Yin
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Kaur G, Devi S, Sharma A, Sood P. Pharmacological insights and role of bufalin (bufadienolides) in inflammation modulation: a narrative review. Inflammopharmacology 2024:10.1007/s10787-024-01517-9. [PMID: 39012431 DOI: 10.1007/s10787-024-01517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Bufadienolides, specifically bufalin, have garnered attention for their potential therapeutic application in modulating inflammatory pathways. Bufalin is derived from toad venom and exhibits promising anti-inflammatory properties. Its anti-inflammatory effects have been demonstrated by influencing crucial signaling pathways like NF-B, MAPK, and JAK-STAT, resulting in the inhibition of pro-inflammatory substances like cytokines, chemokines, and adhesion molecules. Bufalin blocks inflammasome activation and reduces oxidative stress, hence increasing its anti-inflammatory properties. Bufalin has shown effectiveness in reducing inflammation-related diseases such as cancer, cardiovascular problems, and autoimmune ailments in preclinical investigations. Furthermore, producing new approaches of medication delivery and combining therapies with bufalin shows potential for improving its effectiveness and reducing adverse effects. This review explores the pharmacological effects and mechanistic approaches of bufalin as an anti-inflammatory agent, which further highlights its potential for therapy and offers the basis for further study on its therapeutic application in inflammation-related disorders.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Akhil Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Parul Sood
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| |
Collapse
|
3
|
Yang C, Lu T, Liu M, Yuan X, Li D, Zhang J, Zhou L, Xu M. Tiliroside targets TBK1 to induce ferroptosis and sensitize hepatocellular carcinoma to sorafenib. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154668. [PMID: 36657316 DOI: 10.1016/j.phymed.2023.154668] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Combination therapy with other antineoplastic agent is a favorable approach for targeting the molecules involved in sorafenib resistance. PURPOSE In the present study, we determined whether tiliroside, a natural flavonoid glycoside isolated from oriental paperbush flower, could improve the sensitivity of hepatocellular carcinoma (HCC) cells to sorafenib. Furthermore, we investigated the mechanisms and identified the potential drug targets of tiliroside. METHODS Synergy was performed using CalcuSyn. Transcriptomic studies were adopted to investigate whether tiliroside could induce ferroptosis and inhibit the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in HCC cells. Ferroptosis was analyzed using western blotting, flow cytometry, and transmission electron microscopy. Immunofluorescence, co-immunoprecipitation, and Nrf2 knockdown or overexpression were performed to confirm the involvement of Nrf2 in tiliroside-induced ferroptosis. Additionally, molecular docking and biolayer interferometry-based measurements were used to confirm the direct target of tiliroside. Finally, subcutaneous xenograft and orthotopic xenograft tumors in nude mice were used to assess the effects of tiliroside in vivo. RESULTS Tiliroside significantly enhanced the anti-HCC activity of sorafenib without any discernible side effects. Moreover, the combination of tiliroside and sorafenib induced synergistic effects against HCC in vitro. The inhibitory effects of tiliroside on HCC were antagonized by N-acetylcysteine and the ferroptosis inhibitor liproxstatin-1. Studies on the mechanism of action revealed that tiliroside could directly bind to TANK-binding kinase 1 (TBK1) and inhibit its enzymatic activity. Inhibition of TBK1 by tiliroside decreased the phosphorylation of serine 349 on sequestosome-1 (p62) and the affinity of p62 for kelch like ECH-associated protein 1 (Keap1) and promoted Keap1-mediated Nrf2 ubiquitination and degradation. The downstream target proteins of Nrf2, including glutathione peroxidase 4, ferritin heavy chain 1, and glucose-6-phosphate dehydrogenase, demonstrated similar results to that of Nrf2 protein, inducing ferroptosis in tiliroside-treated HCC cells. We extended these findings in vivo and found that tiliroside inhibited the growth of HepG2 tumors in both subcutaneous xenograft and orthotopic xenograft tumor models of HCC. CONCLUSION Our findings imply that tiliroside is a potent TBK1 inhibitor and a candidate natural anti-cancer product that could function as a sensitizer of sorafenib in HCC treatment by targeting TBK1 to induce ferroptosis.
Collapse
Affiliation(s)
- Chen Yang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Tao Lu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Ming Liu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiaoqing Yuan
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Desheng Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Jiayu Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
4
|
Weng MT, Yang SF, Liu SY, Hsu YC, Wu MC, Chou HC, Chiou LL, Liang JD, Wang LF, Lee HS, Sheu JC. In situ vaccination followed by intramuscular poly-ICLC injections for the treatment of hepatocellular carcinoma in mouse models. Pharmacol Res 2023; 188:106646. [PMID: 36621619 DOI: 10.1016/j.phrs.2023.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
The efficacy of treatment for advanced hepatocellular carcinoma (HCC) has remained limited. Polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) is a synthetic double-stranded RNA that serves as a viral mimic and induces an immune response. Intratumoral (IT) poly-ICLC injections can induce an autovaccination effect and prime the immune system, whereas intramuscular (IM) injection of poly-ICLC can attract and maintain tumor-specific cytotoxic T lymphocytes in tumors. We found that IT injection of poly-ICLC upregulated the expression of CD83 and CD86 on conventional type 1 dendritic cells in tumors. Combination therapy with IT followed by IM injections of poly-ICLC significantly inhibited tumor growth and increased the tumor-infiltrating CD8+ T cells in two syngeneic mouse models of HCC. Depletion of CD8+ T cells attenuated the antitumor effect. An IFN-γ enzyme-linked immunospot of purified tumoral CD8+ T cells revealed a significant proportion of tumor-specific T cells. Finally, the sequential poly-ICLC therapy induced abscopal effects in two dual-tumor models. This study provides evidence that the sequential poly-ICLC therapy significantly increased infiltration of tumor-specific CD8+ T cells in the tumors and induced CD8+ T cell-dependent inhibition of tumor growth, as well as abscopal effects.
Collapse
Affiliation(s)
- Meng-Tzu Weng
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Feng Yang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shin-Yun Liu
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan
| | - Yu-Chen Hsu
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan
| | - Meng-Chuan Wu
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan
| | - Huei-Chi Chou
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan
| | - Ling-Ling Chiou
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan
| | - Ja-Der Liang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Fang Wang
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan
| | - Hsuan-Shu Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Institute of Biotechnology, National Taiwan University, Taipei, Taiwan; Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Jin-Chuan Sheu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| |
Collapse
|
5
|
Lai HC, Lin HJ, Jeng LB, Huang ST. Roles of conventional and complementary therapies in recurrent hepatocellular carcinoma. World J Gastrointest Oncol 2023; 15:19-35. [PMID: 36684056 PMCID: PMC9850766 DOI: 10.4251/wjgo.v15.i1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common type of cancer and the fourth leading cause of cancer-related deaths in the world. HCC has a reported recurrence rate of 70%-80% after 5 years of follow-up. Controlling tumor recurrence is the most critical factor associated with HCC mortality. Conventional salvage therapies for recurrent HCC include re-hepatectomy or liver transplantation, transcatheter arterial chemoembolization, Y-90, target therapy, and immunotherapy; however, these conventional treatment modalities have yet to achieve consistently favorable outcomes. Meanwhile, previous studies have demonstrated that conventional therapies in combination with traditional Chinese medicine (TCM), acupuncture, moxibustion or dietary supplements could notably benefit patients with HCC recurrence by strengthening and augmenting the overall management strategy. However, systemic reviews related to the interactions between complementary therapies and conventional therapy in recurrent HCC are limited. In this review, we discuss the molecular mechanisms underlying the functions of complementary therapies for recurrent HCC, which include augmenting the local control to improve the congestion status of primary tumors and reducing multicentric tumor occurrence via inducing autophagy, apoptosis or cell cycle arrest. TCM and its derivatives may play important roles in helping to control HCC recurrence by inhibiting epithelial-mesenchymal transition, migration, invasion, and metastasis, inhibiting cancer stem cells, and ameliorating drug resistance.
Collapse
Affiliation(s)
- Hsiang-Chun Lai
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Hung-Jen Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Cancer Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- An-Nan Hospital, China Medical University, Tainan 709204, Taiwan
| |
Collapse
|
6
|
Li S, Fan G, Li X, Cai Y, Liu R. Modulation of type I interferon signaling by natural products in the treatment of immune-related diseases. Chin J Nat Med 2023; 21:3-18. [PMID: 36641230 DOI: 10.1016/s1875-5364(23)60381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/15/2023]
Abstract
Type I interferon (IFN) is considered as a bridge between innate and adaptive immunity. Proper activation or inhibition of type I IFN signaling is essential for host defense against pathogen invasion, tumor cell proliferation, and overactive immune responses. Due to intricate and diverse chemical structures, natural products and their derivatives have become an invaluable source inspiring innovative drug discovery. In addition, some natural products have been applied in clinical practice for infection, cancer, and autoimmunity over thousands of years and their promising curative effects and safety have been well-accepted. However, whether these natural products are primarily targeting type I IFN signaling and specific molecular targets involved are not fully elucidated. In the current review, we thoroughly summarize recent advances in the pharmacology researches of natural products for their type I IFN activity, including both agonism/activation and antagonism/inhibition, and their potential application as therapies. Furthermore, the source and chemical nature of natural products with type I IFN activity are highlighted and their specific molecular targets in the type I IFN pathway and mode of action are classified. In conclusion, natural products possessing type I IFN activity represent promising therapeutic strategies and have a bright prospect in the treatment of infection, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
7
|
Yang Y, Li H, Fotopoulou C, Cunnea P, Zhao X. Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Front Immunol 2022; 13:1049340. [PMID: 36479129 PMCID: PMC9721395 DOI: 10.3389/fimmu.2022.1049340] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors, originally discovered to stimulate innate immune reactions against microbial infection. TLRs also play essential roles in bridging the innate and adaptive immune system, playing multiple roles in inflammation, autoimmune diseases, and cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted strategies in cancer treatment have proved to be able to regulate the tumor microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical studies and clinical trials using TLR-targeted strategies in treating cancer have been initiated, with some drugs already becoming part of standard care. Here we review the structure, ligand, signaling pathways, and expression of TLRs; we then provide an overview of the pre-clinical studies and an updated clinical trial watch targeting each TLR in cancer treatment; and finally, we discuss the challenges and prospects of TLR-targeted therapy.
Collapse
Affiliation(s)
- Yang Yang
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xia Zhao
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Jia J, Li J, Zheng Q, Li D. A research update on the antitumor effects of active components of Chinese medicine ChanSu. Front Oncol 2022; 12:1014637. [PMID: 36237327 PMCID: PMC9552564 DOI: 10.3389/fonc.2022.1014637] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical data show that the incidence and mortality rates of cancer are rising continuously, and cancer has become an ongoing public health challenge worldwide. Excitingly, the extensive clinical application of traditional Chinese medicine may suggest a new direction to combat cancer, and the therapeutic effects of active ingredients from Chinese herbal medicine on cancer are now being widely studied in the medical community. As a traditional anticancer Chinese medicine, ChanSu has been clinically applied since the 1980s and has achieved excellent antitumor efficacy. Meanwhile, the ChanSu active components (e.g., telocinobufagin, bufotalin, bufalin, cinobufotalin, and cinobufagin) exert great antitumor activity in many cancers, such as breast cancer, colorectal cancer, hepatocellular carcinoma and esophageal squamous cell carcinoma. Many pharmaceutical scientists have investigated the anticancer mechanisms of ChanSu or the ChanSu active components and obtained certain research progress. This article reviews the research progress and antitumor mechanisms of ChanSu active components and proposes that multiple active components of ChanSu may be potential anticancer drugs.
Collapse
|
9
|
Jiang HY, Zheng HM, Xia C, Li X, Wang G, Zhao T, Cui XN, Wang RY, Liu Y. The Research Progress of Bufalin in the Treatment of Hepatocellular Carcinoma. Onco Targets Ther 2022; 15:291-298. [PMID: 35345394 PMCID: PMC8957335 DOI: 10.2147/ott.s333233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers in the world with a five-year survival rate of less than 20%. Nonetheless, selecting an appropriate therapeutic agent to inhibit the development of hepatoma cells is still a challenge. Bufalin, a component of the traditional Chinese medicine Chansu, has been shown to inhibit the proliferation, invasion and metastasis of HCC through various signaling pathways. In addition, bufalin and sorafenib demonstrate a synergistic effect in cancer therapeutics. This review highlighted on several focal signaling pathways involved in the inhibitory effects of bufalin on HCC and its synergistic mechanisms with sorafenib. The immunotherapy effect of bufalin has also been discussed as a novel property.
Collapse
Affiliation(s)
- Han-Yu Jiang
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Hui-Min Zheng
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Cheng Xia
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Xiang Li
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Gang Wang
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Tong Zhao
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Xiao-Nan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People's Republic of China
| | - Ruo-Yu Wang
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, People's Republic of China
| | - Ying Liu
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, People's Republic of China
| |
Collapse
|
10
|
Xun Y, Yang H, Kaminska B, You H. Toll-like receptors and toll-like receptor-targeted immunotherapy against glioma. J Hematol Oncol 2021; 14:176. [PMID: 34715891 PMCID: PMC8555307 DOI: 10.1186/s13045-021-01191-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
Glioma represents a fast proliferating and highly invasive brain tumor which is resistant to current therapies and invariably recurs. Despite some advancements in anti-glioma therapies, patients’ prognosis remains poor. Toll-like receptors (TLRs) act as the first line of defense in the immune system being the detectors of those associated with bacteria, viruses, and danger signals. In the glioma microenvironment, TLRs are expressed on both immune and tumor cells, playing dual roles eliciting antitumoral (innate and adaptive immunity) and protumoral (cell proliferation, migration, invasion, and glioma stem cell maintenance) responses. Up to date, several TLR-targeting therapies have been developed aiming at glioma bulk and stem cells, infiltrating immune cells, the immune checkpoint axis, among others. While some TLR agonists exhibited survival benefit in clinical trials, it attracts more attention when they are involved in combinatorial treatment with radiation, chemotherapy, immune vaccination, and immune checkpoint inhibition in glioma treatment. TLR agonists can be used as immune modulators to enhance the efficacy of other treatment, to avoid dose accumulation, and what brings more interests is that they can potentiate immune checkpoint delayed resistance to PD-1/PD-L1 blockade by upregulating PD-1/PD-L1 overexpression, thus unleash powerful antitumor responses when combined with immune checkpoint inhibitors. Herein, we focus on recent developments and clinical trials exploring TLR-based treatment to provide a picture of the relationship between TLR and glioma and their implications for immunotherapy.
Collapse
Affiliation(s)
- Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, Guangdong Province, China
| | - Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, Guangdong Province, China
| | - Bozena Kaminska
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, No.78 Heng-Zhi-Gang Road, Yue Xiu District, Guangzhou, 510095, China.,Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Hua You
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, No.78 Heng-Zhi-Gang Road, Yue Xiu District, Guangzhou, 510095, China.
| |
Collapse
|
11
|
Yu W, Zhang X, Zhang W, Xiong M, Lin Y, Chang M, Xu L, Lu Y, Liu Y, Zhang J. 19-Hydroxybufalin inhibits non-small cell lung cancer cell proliferation and promotes cell apoptosis via the Wnt/β-catenin pathway. Exp Hematol Oncol 2021; 10:48. [PMID: 34696818 PMCID: PMC8543904 DOI: 10.1186/s40164-021-00243-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/21/2021] [Indexed: 12/25/2022] Open
Abstract
Background Bufadienolides derived from the skin of toads are often regarded as the main active components with antitumor effects. 19-Hydroxybufalin (19-HB) is a monomer of bufadienolides; however, its effects and underlying molecular mechanisms on tumor growth remain to be ascertained. In this report, we focused on the antitumor effects of 19-HB on non-small cell lung cancer to provide a scientific basis for its further development and utilization. Methods The antitumor effects of 19-HB on the human NSCLC cell lines NCI-H1299 and NCI-H838 were examined in vitro. The cells were treated with different concentrations of 19-HB, and the inhibition of cell growth was measured by CCK-8 and colony formation assays. Furthermore, cell apoptosis was analyzed by flow cytometry, TUNEL staining, JC-1 staining, and western blotting. The effects on migration and invasion were evaluated by wound-healing assay, transwell assay, and western blotting. Finally, the antitumor effects of 19-HB were evaluated in vivo using a xenograft mouse model. Results 19-HB-treated NSCLC cells showed inhibited cell viability and increased apoptosis. The expression levels of cleaved caspase-3, cleaved-PARP, and Bax/Bcl-2 were upregulated, while the mitochondrial membrane potential decreased. In contrast, migration, invasion, as well as the expression of MMP2, MMP7, MMP9, the epithelial–mesenchymal transition-related proteins N-cadherin and Vimentin, and the transcription factors Snail and Slug were inhibited. Furthermore, the expression levels of the key molecules in the Wnt/β-catenin signaling pathway (CyclinD1, c-Myc, and β-catenin) were decreased. In vivo, the growth of xenograft tumors in nude mice was also significantly inhibited by 19-HB, and there were no significant changes in biochemical indicators of hepatic and renal function. Conclusions 19-HB inhibited the proliferation, migration, and invasion, and promoted the apoptosis of NSCLC cells via the Wnt/β-catenin pathway. In addition, 19-HB inhibited the growth of xenograft tumors in nude mice with little toxicity to the liver and kidney. Thus, 19-HB may be a potential antitumor agent for treating NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-021-00243-0.
Collapse
Affiliation(s)
- Wei Yu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Xiao Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Wei Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Minggang Xiong
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yuhan Lin
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Ming Chang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Lin Xu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, Guangdong, China.
| | - Yun Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China.
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
12
|
De Waele J, Verhezen T, van der Heijden S, Berneman ZN, Peeters M, Lardon F, Wouters A, Smits ELJM. A systematic review on poly(I:C) and poly-ICLC in glioblastoma: adjuvants coordinating the unlocking of immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:213. [PMID: 34172082 PMCID: PMC8229304 DOI: 10.1186/s13046-021-02017-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Immunotherapy is currently under intensive investigation as a potential breakthrough treatment option for glioblastoma. Given the anatomical and immunological complexities surrounding glioblastoma, lymphocytes that infiltrate the brain to develop durable immunity with memory will be key. Polyinosinic:polycytidylic acid, or poly(I:C), and its derivative poly-ICLC could serve as a priming or boosting therapy to unleash lymphocytes and other factors in the (immuno)therapeutic armory against glioblastoma. Here, we present a systematic review on the effects and efficacy of poly(I:C)/poly-ICLC for glioblastoma treatment, ranging from preclinical work on cellular and murine glioblastoma models to reported and ongoing clinical studies. MEDLINE was searched until 15 May 2021 to identify preclinical (glioblastoma cells, murine models) and clinical studies that investigated poly(I:C) or poly-ICLC in glioblastoma. A systematic review approach was conducted according to PRISMA guidelines. ClinicalTrials.gov was queried for ongoing clinical studies. Direct pro-tumorigenic effects of poly(I:C) on glioblastoma cells have not been described. On the contrary, poly(I:C) changes the immunological profile of glioblastoma cells and can also kill them directly. In murine glioblastoma models, poly(I:C) has shown therapeutic relevance as an adjuvant therapy to several treatment modalities, including vaccination and immune checkpoint blockade. Clinically, mostly as an adjuvant to dendritic cell or peptide vaccines, poly-ICLC has been demonstrated to be safe and capable of eliciting immunological activity to boost therapeutic responses. Poly-ICLC could be a valuable tool to enhance immunotherapeutic approaches for glioblastoma. We conclude by proposing several promising combination strategies that might advance glioblastoma immunotherapy and discuss key pre-clinical aspects to improve clinical translation.
Collapse
Affiliation(s)
- Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| | - Tias Verhezen
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Sanne van der Heijden
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.,Department of Hematology, Antwerp University Hospital, Wilrijkstraat 10, B-2650, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650, Edegem, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.,Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Wilrijkstraat 10, B-2650, Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Evelien L J M Smits
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650, Edegem, Belgium
| |
Collapse
|
13
|
Li FJ, Hu JH, Ren X, Zhou CM, Liu Q, Zhang YQ. Toad venom: A comprehensive review of chemical constituents, anticancer activities, and mechanisms. Arch Pharm (Weinheim) 2021; 354:e2100060. [PMID: 33887066 DOI: 10.1002/ardp.202100060] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/31/2022]
Abstract
Toad venom, a traditional natural medicine, has been used for hundreds of years in China for treating different diseases. Many studies have been performed to elucidate the cardiotonic and analgesic activities of toad venom. Until the last decade, an increasing number of studies have documented that toad venom is a source of lead compound(s) for the development of potential cancer treatment drugs. Research has shown that toad venom contains 96 types of bufadienolide monomers and 23 types of indole alkaloids, such as bufalin, cinobufagin, arenobufagin, and resibufogenin, which exhibit a wide range of anticancer activities in vitro and, in particular, in vivo for a range of cancers. The main antitumor mechanisms are likely to be apoptosis or/and autophagy induction, cell cycle arrest, cell metastasis suppression, reversal of drug resistance, or growth inhibition of cancer cells. This review summarizes the chemical constituents of toad venom, analyzing their anticancer activities and molecular mechanisms for cancer treatments. We also outline the importance of further studies regarding the material basis and anticancer mechanisms of toad venom.
Collapse
Affiliation(s)
- Fang-Jie Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing-Hong Hu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, China
| | - Xin Ren
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng-Mei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, China
| | - Yong-Qing Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Su S, Dou H, Wang Z, Zhang Q. Bufalin inhibits ovarian carcinoma via targeting mTOR/HIF-α pathway. Basic Clin Pharmacol Toxicol 2021; 128:224-233. [PMID: 32905663 DOI: 10.1111/bcpt.13487] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023]
Abstract
Ovarian cancer is a severe health threat for women with increased incidence and stymied development in diagnosis and therapy. Drug resistance is still a big challenge. Bufalin is a multi-functional steroid-like compound extracted from natural product Chansu and has been tested as antitumour agent recently. The application and mechanism of bufalin in ovarian cancer remain unclear yet. Bufalin was first examined in ovarian epithelial cancer cell as well as primary ovarian tissue to evaluate its inhibitory activity in cell growth and migration, followed by the validation in xenograft tumour model and the patient samples. Bufalin is well tolerated by normal ovarian tissue at up to 40 μM and suppresses the cell growth and migration at 10 μM and xenograft tumour growth at 0.1mg/kg dosage. Bufalin inhibits the mammalian target of rapamycin (mTOR) activation and subsequently decreases hypoxia-induced factor 1 alpha (HIF-1α) level. Overexpression of HIF-1α could abolish the pro-apoptotic and antimigration activity of bufalin in cell culture. Strikingly, low HIF-1α level was correlated with improved responsiveness to cisplatin treatment in ovarian cancer patients. Bufalin was a potent inhibitor of cell growth and migration in ovarian cancer cells through suppression of mTOR activation and HIF-1α induction. Bufalin could be used to enhance the efficacy of cisplatin in ovarian cancer patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Bufanolides/pharmacology
- Carcinoma, Ovarian Epithelial/drug therapy
- Carcinoma, Ovarian Epithelial/enzymology
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cisplatin/pharmacology
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice, Nude
- Neoplasm Invasiveness
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/enzymology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
- Tumor Burden/drug effects
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Shan Su
- Department of Gynecology, Zibo Central Hospital, Shandong, China
| | - Hongtao Dou
- Department of Gynecology, Zibo Central Hospital, Shandong, China
| | - Zhe Wang
- Department of Obstetrical, Zibo Maternal and Child Health Hospital, Shandong, China
| | - Qinghua Zhang
- Department of Gynecology, Zibo Central Hospital, Shandong, China
| |
Collapse
|
15
|
Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother 2020; 133:111044. [PMID: 33378952 DOI: 10.1016/j.biopha.2020.111044] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, slight side effects and good therapeutic effects. Good anti-tumor effects are shown by Traditional Chinese Medicine prescription, Chinese patent medicine, single Traditional Chinese Medicine and Traditional Chinese medicine monomer compound. Clinically, TCM prolonged the survival time of patients and improved the life quality of patients, due to less side effects. Cancer metastasis is a complex process involving numerous steps, multiple genes and their products. During the process of tumor metastasis, firstly, cancer cell increases its proliferative capacity by reducing autophagy and apoptosis, and then the cancer cell capacity is stimulated by increasing the ability of tumors to absorb nutrients from the outside through angiogenesis. Both of the two steps can increase tumor migration and invasion. Finally, the purpose of tumor metastasis is achieved. By inhibiting autophagy and apoptosis of tumor cells, angiogenesis and EMT outside the tumor can inhibit the invasion and migration of cancer, and consequently achieve the purpose of inhibiting tumor metastasis. This review explores the research achievements of Traditional Chinese Medicine on breast cancer, lung cancer, hepatic carcinoma, colorectal cancer, gastric cancer and other cancer metastasis in the past five years, summarizes the development direction of TCM on cancer metastasis research in the past five years and makes a prospect for the future.
Collapse
|
16
|
Yu Z, Feng H, Zhuo Y, Li M, Zhu X, Huang L, Zhang X, Zhou Z, Zheng C, Jiang Y, Le F, Yu DY, Cheng AS, Sun X, Gao Y. Bufalin inhibits hepatitis B virus-associated hepatocellular carcinoma development through androgen receptor dephosphorylation and cell cycle-related kinase degradation. Cell Oncol (Dordr) 2020; 43:1129-1145. [PMID: 32623699 DOI: 10.1007/s13402-020-00546-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC), which has a male predominance, lacks effective therapeutic options. Previously, the cardiac glycoside analogue bufalin has been found to inhibit HBV infection and HCC development. As yet, however, its molecular role in HBV-associated HCC has remained obscure. METHODS Colony formation and soft agar assays, xenograft and orthotopic mouse models and HBV X protein (HBx) transgenic mice with exposure to diethylnitrosamine were used to evaluate the effect of bufalin on HBV-associated HCC growth and tumorigenicity. HBx-induced oncogenic signaling regulated by bufalin was assessed using PCR array, chromatin immunoprecipitation, site-directed mutagenesis, luciferase reporter, transcription and protein expression assays. Synergistic HCC therapeutic effects were examined using combinations of bufalin and sorafenib. RESULTS We found that bufalin exerted a more profound effect on inhibiting the proliferation of HBV-associated HCC cells than of non HBV-associated HCC cells. Bufalin significantly inhibited HBx-induced malignant transfromation in vitro and tumorigenicity in vivo. Androgen receptor (AR) signaling was found to be a target of bufalin resistance to HBV-associated hepatocarcinogenesis. We also found that bufalin induced both AR dephosphorylation and cell cycle-related kinase (CCRK) degradation to inhibit β-catenin/TCF signaling, which subsequently led to cell cycle arrest via cyclin D1 down-regulation and p21 up-regulation, resulting in HCC regression. Furthermore, we found that bufalin reduced > 60% diethylnitrosamine-induced hepatocarcinogenesis in HBx transgenic mice, and improved the sensitivity of refractory HBV-associated HCC cells to sorafenib treatment. CONCLUSION Our results indicate that bufalin acts as a potential anti-HCC therapeutic candidate to block HBx-induced AR/CCRK/β-catenin signaling by targeting AR and CCRK, which may provide a novel strategy for the treatment of HBV-associated HCC.
Collapse
Affiliation(s)
- Zhuo Yu
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China.
| | - Hai Feng
- Department of pharmacology, School of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Yunhui Zhuo
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Man Li
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaojun Zhu
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Lingying Huang
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhenhua Zhou
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Chao Zheng
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Yun Jiang
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Fan Le
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Dae-Yeul Yu
- Disease Model Research Laboratory, Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Republic of Korea
| | - Alfred Szelok Cheng
- School of Biomedical Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Xuehua Sun
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China.
| | - Yueqiu Gao
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China. .,Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
17
|
Chen F, Zhu L, Hu J, Jiang S, Liu H, Zheng J, Wang J, Wang F, Li Z. Bufalin attenuates triple-negative breast cancer cell stemness by inhibiting the expression of SOX2/OCT4. Oncol Lett 2020; 20:171. [PMID: 32934738 PMCID: PMC7471667 DOI: 10.3892/ol.2020.12028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has the poorest prognosis among all types of breast cancer and there is yet no effective therapy. Chemotherapy is the traditional standard of care for patients with TNBC; however, treatment of TNBC with chemotherapy may lead to the enrichment of cancer stem cells (CSCs), which exhibitan enhanced capacity for self-renewal, tumor initiation and metastasis. The present study demonstrated that bufalin, a small molecular compound used in traditional Chinese medicine, exerted anticancer effects on a wide range of cancer cell lines, inhibited cell proliferation through inducing G2/M cell cycle arrest, and triggered apoptosis in the TNBC cell lines MDA-MB-231 and HCC-1937. Consistently, bufalin markedly suppressed TNBC growth in a cell line-derived xenograft model. More importantly, unlike common chemotherapeutic drugs, bufalin reduced the stemness of TNBC stem cells. A mechanistic study suggested that bufalin may suppress the proliferation of TNBC stem cells by inhibiting the expression of octamer-binding transcription factor 4 (OCT4) and sex determining region Y-box 2 (SOX2) in MDA-MB-231 and HCC-1937 cells. These results indicated that bufalin may hold promise as a therapeutic agent in TNBC, and its effects may be mediated through the SOX2/OCT4 axis.
Collapse
Affiliation(s)
- Fei Chen
- Department of Breast Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Li Zhu
- Department of General surgery, General Hospital of PLA, Beijing 100853, P.R. China
| | - Junyan Hu
- Department of Breast Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Shujun Jiang
- Department of Breast Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hui Liu
- Department of Breast Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jie Zheng
- Department of Breast Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jiandong Wang
- Department of Breast Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Feng Wang
- Department of Breast Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zhe Li
- Department of Breast Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
18
|
Zhan Y, Qiu Y, Wang H, Wang Z, Xu J, Fan G, Xu J, Li W, Cao Y, Le VM, Ly HT, Yuan Z, Xu K, Yin P. Bufalin reverses multidrug resistance by regulating stemness through the CD133/nuclear factor-κB/MDR1 pathway in colorectal cancer. Cancer Sci 2020; 111:1619-1630. [PMID: 32058643 PMCID: PMC7226280 DOI: 10.1111/cas.14345] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Recent studies have shown that MDR could be induced by the high stemness of cancer cells. In a previous study, we found bufalin could reverse MDR and inhibit cancer cell stemness in colorectal cancer, but the relationship between them was unclear. Here we identified overexpressing CD133 increases levels of Akt/nuclear factor‐κB signaling mediators and MDR1, while increasing cell chemoresistance. Furthermore, bufalin reverses colorectal cancer MDR by regulating cancer cell stemness through the CD133/nuclear factor‐κB/MDR1 pathway in vitro and in vivo. Taken together, our results suggest that bufalin could be developed as a novel 2‐pronged drug that targets CD133 and MDR1 to eradicate MDR cells and could ultimately be combined with conventional chemotherapeutic agents to improve treatment outcomes for patients with colorectal cancer.
Collapse
Affiliation(s)
- Yueping Zhan
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Qiu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haijing Wang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyuan Wang
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Xu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guohua Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Xu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijun Cao
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Van-Minh Le
- Research Center of Ginseng and Medicinal Materials (CGMM), National Institute of Medicinal Materials, Ho Chi Minh City, Vietnam
| | - Hai-Trieu Ly
- Research Center of Ginseng and Medicinal Materials (CGMM), National Institute of Medicinal Materials, Ho Chi Minh City, Vietnam
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ke Xu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Han M, Yang G, Lin Q, Yang Y, Zhang H, Su Y. Determination of Endogenous Bufalin in Serum of Patients With Hepatocellular Carcinoma Based on HPLC-MS/MS. Front Oncol 2020; 9:1572. [PMID: 32039033 PMCID: PMC6989541 DOI: 10.3389/fonc.2019.01572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Bufalin is a cardiotonic steroid and a key active ingredient of the Chinese medicine ChanSu. It has significant anti-tumor activity against many malignancies, including hepatocellular carcinoma (HCC). Previous studies have shown that human bodies contain an endogenous bufalin-like substance. This study aimed to confirm whether the endogenous bufalin-like substances is bufalin and further detect the differences between HCC and control groups of endogenous bufalin concentration by the high-performance liquid chromatography coupled tandem mass spectrometry (HPLC-MS/MS). The results confirmed the endogenous bufalin-like substance is bufalin. Totally, 227 serum samples were collected: 54 from HCC patients and 173 from healthy volunteers constituting a control group. Both the test group and the control group contained bufalin in serum, revealing that bufalin is indeed an endogenous substance. The bufalin concentration was 1.3 nM in HCC patients and 5.7 nM in normal people (P < 0.0001). These results indicate that human bodies contain endogenous bufalin, and it may be negatively correlated with the incidence of HCC.
Collapse
Affiliation(s)
- Mengfei Han
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Geliang Yang
- Department of Traditional Chinese Medicine and Acupuncture, The Second Medical Centre, Chinese People Liberation Army General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qing Lin
- Fuzhou Traditional Chinese Hospital, Fuzhou, China
| | - Yanlong Yang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Huiqing Zhang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yonghua Su
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Degradation of MCL-1 by bufalin reverses acquired resistance to osimertinib in EGFR-mutant lung cancer. Toxicol Appl Pharmacol 2019; 379:114662. [DOI: 10.1016/j.taap.2019.114662] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022]
|
21
|
Liu F, Lou G, Zhang T, Chen S, Xu J, Xu L, Huang C, Liu Y, Chen Z. Anti-metastasis traditional Chinese medicine monomer screening system based on perinucleolar compartment analysis in hepatocellular carcinoma cells. Am J Transl Res 2019; 11:3555-3566. [PMID: 31312366 PMCID: PMC6614616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Hepatocellular Carcinoma (HCC) lacks effective anti-metastasis drugs. Traditional Chinese Medicine (TCM) monomers have shown anti-proliferation activity in HCC, but few of them are specifically anti-metastasis. Therefore, further clarifying the indicators of HCC metastasis and screening TCM monomers based on the indicators, will effectively guide the development of novel anti-HCC drugs. The perinucleolar compartment (PNC), existing in the nuclear of tumor cells, is closely correlated with metastasis of several tumors. In this study, we found positive correlation between higher PNC prevalence and metastasis in HCC tissue of patients. The PNC prevalence was also positively correlated with the malignancy of HCC cell lines. On this premise, we established a PNC-based screening system for anti-metastasis TCM monomers and obtained Camptothecin (CPT), Evodiamine and Isoglycyrrhizin, the three most effective TCM monomers from a TCM monomer library to reduce the PNC prevalence in Huh7 cells. The anti-metastasis effect of these TCM monomers was positively correlated with their PNC inhibitor effect. Our data further revealed that CPT reduced metastasis of Huh7 cells possibly by inhibiting Epithelial-Mesenchymal Transition by upregulating the expression of ZO-1, E-cadherin and Claudin-1. The PNC-based screening system is effective and it may provide an effective technical platform for the development of anti-metastasis drugs.
Collapse
Affiliation(s)
- Feifei Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| | - Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| | - Tianbao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| | - Senzhong Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| | - Jia Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| | - Lichen Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| | - Chunhong Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| |
Collapse
|
22
|
Lu WL, Yang T, Song QJ, Fang ZQ, Pan ZQ, Liang C, Jia DW, Peng PK. Akebia trifoliata (Thunb.) Koidz Seed Extract inhibits human hepatocellular carcinoma cell migration and invasion in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2019; 234:204-215. [PMID: 30528882 DOI: 10.1016/j.jep.2018.11.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The high recurrence rate postoperative and extensive metastases have become the obstacle of Hepatocellular Carcinoma (HCC) efficacy improvements, which contribute to most of the patient mortality. Akebia trifoliata (Thunb.) Koidz has been shown pharmacological activities in clinical and anti-HCC biological activity in previous research, but its potential function of anti-metastasis remains unknown. AIM OF THIS STUDY To make sure whether ATKSE inhibits migration and invasion in HCC cell lines in vitro and the potential mechanism. MATERIALS AND METHODS A UHPLC-HRMS analysis was adopted to identify and control the quality of the ethanol extract of Akebia trifoliata (Thunb.) Koidz Seed (abbreviated ATKSE). Cell viability of three kinds of HCC cell lines (HEPG2, HUH7, and SMMC7721) was detected using MTT assay and Flow cytometry. Adhesion capacity was measured by cell-matrigel adhesion assay. Wounded healing and Matrigel-transwell invasion assays were performed to assess cell migration and invasion, respectively. Western blot assay was used to detect several metastasis-related protein molecules, including FAK adhesion signaling, cadherin molecules, and MMPs. ELISA assay was used to evaluate the secreted MMP9 level. RESULTS ATKSE significantly suppressed HCC cells viability and proliferation (from 0.9 up to 3.0 mg/ml); then under sub-lethal concentration (from 0.25 up to 1.0 mg/ml), ATKSE inhibited cell adhesion, migration, and invasion in a way of dose-dependent. Several metastatic-related molecules or pathway, including FAK adhesion signaling, cadherin molecules, and MMPs, took part in this process. There are both differences and commonalities in various cell lines: typically such as p-FAK was down-regulated by ATKSE in both HEPG2 and SMMC7721, while was raised in HUH7; Further attempts on the combination of ATKSE and FAK inhibitors, provide us with the enhanced inhibitory effects of invasion and migration in HEPG2 and HUH7 cells, as well as antagonistic effects in SMMC7721. As a target or potential mechanism, it may be more valuable to concern FAK inhibition by ATKSE in HEPG2 cells than in the other two cells. CONCLUSIONS These results suggest that ATKSE has anti-metastasis potency in HCC cells.
Collapse
Affiliation(s)
- Wen-Li Lu
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
| | - Tao Yang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Qiu-Jia Song
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Zhao-Qin Fang
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
| | - Zhi-Qiang Pan
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Cao Liang
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Dong-Wei Jia
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Pei-Ke Peng
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
| |
Collapse
|
23
|
Abstract
Background In clinical practice, many patients become multidrug resistant during chemotherapy, resulting in reduced or no healing effect. Therefore, the present study focused on bufalin, which is extracted from a traditional Chinese medicine named Chan Su (Venenum bufonis). We assessed the effect of bufalin in reversing K562/A02 cell drug resistance and inducing apoptosis, and explored the possible mechanism by which bufalin induces K562/A02 cell apoptosis. Material/Methods We used flow cytometry to evaluate intracellular ADM concentration, and RT-PCR and Western blot analysis were used to assess the effect of nuclear factor erythroid-2-related factor 2 (Nrf2) bufalin-related resistance gene expression. We used MTT and flow cytometry to detect apoptosis, and RT-PCR and Western blot were used to detect endoplasmic reticulum stress and apoptosis gene action. Results We found that bufalin can increase the concentration of Adriamycin (ADM) in K562/A02 cells by inhibiting the expression of Nrf2 and related drug resistance factors. The results showed that bufalin induced apoptosis of K562/A02 cells by the IRE1α/TRAF2/JNK/caspase-12 pathway. Conclusions These results suggest bufalin can reverse drug resistance in K562/A02 cells and that it induces apoptosis of K562/A02 cells by the IRE1α/TRAF2/JNK/caspase-12 pathway.
Collapse
Affiliation(s)
- Ying Xie
- Department of Blood Transfusion, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Xu Yan
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Ling Sun
- Department of Hematology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
24
|
Yang Z, Tao Y, Xu X, Cai F, Yu Y, Ma L. Bufalin inhibits cell proliferation and migration of hepatocellular carcinoma cells via APOBEC3F induced intestinal immune network for IgA production signaling pathway. Biochem Biophys Res Commun 2018; 503:2124-2131. [PMID: 30100060 DOI: 10.1016/j.bbrc.2018.07.169] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study aimed to evaluate functions of APOBEC3F gene in biological process of hepatocellular carcinoma (HCC) and anti-tumor mechanisms of bufalin. METHODS Effect of APOBEC3F and bufalin on cell proliferation and migration abilities were evaluated by CCK-8, wounding healing tests and transwell assays in SK-Hep1 and Bel-7404 cells. Bioinformatic analysis were also used to compare APOBEC3F expression levels, detect coexpressed genes and enrichment of pathways. RESULTS APOBEC3F was overexpressed in tumor tissues compared to adjacent tissues in HCC patients. And, APOBEC3F promotes cell proliferation and migration in SK-Hep1 and Bel-7404 cells. Bufalin inhibits cell proliferation and migration and reduces APOBEC3F expression. GO and KEGG enrichment of APOBEC3F-coexpressed genes revealed that APOBEC3F might active intestinal immune network for IgA production signaling pathway, leading to malignant biological behaviors of HCC cells. Additionally, siAPOBEC3F could decrease pIgR, CCR9, CCR10 and CXCR4 protein levels. And, bufalin inhibits the pIgR, CCR9, CCR10 and CXCR4 protein expressions. CONCLUSIONS Bufalin inhibits cell proliferation and migration of HCC cells via APOBEC3F induced intestinal immune network for IgA production signaling pathway.
Collapse
Affiliation(s)
- Zongguo Yang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China; Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, PR China
| | - Yuquan Tao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Xin Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Feng Cai
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China; Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China.
| |
Collapse
|