1
|
Marimpietri D, Corrias MV, Tripodi G, Gramignoli R, Airoldi I, Morandi F. Immunomodulatory properties of extracellular vesicles isolated from bone marrow of patients with neuroblastoma: role of PD-L1 and HLA-G. Front Immunol 2024; 15:1469771. [PMID: 39512342 PMCID: PMC11540764 DOI: 10.3389/fimmu.2024.1469771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Extracellular vesicles (EVs) can be released by any cell and are crucial for cell-to-cell communications. EVs have been characterized in patients with solid and hematological tumors, where they play an important role in tumor progression and metastasis. EVs may express different surface proteins derived from the parental cells, including immunomodulatory molecules, such as HLA-G and PDL1. Methods We isolated EV from bone marrow (BM) samples of patients with Neuroblastoma (NB) and healthy controls and we analyzed the expression of CD56, GD2 and immune checkpoints on EV by flow cytometry. Next, we analyzed the function of T cells in vitro in the presence or absence of NB patients' BM-derived EV, in terms of proliferation and cytokine production. Finally, we analyzed the correlation between the expression of immune checkpoints on EV and the clinical outcome of patients. Results We found a higher expression of CD56 on EVs derived from BM of patients with NB than in those from healthy donors (HD). However, CD56 expression was not dependent on BM infiltration of NB cells. Moreover, the analysis of GD2 expression revealed that only a small fraction of EVs was released by infiltrating NB cells, whereas the majority may derive from BM-resident cells. BM-derived EVs from NB patients display a higher expression of HLA-G and PD-L1 than those derived from HD. Nonetheless, such EVs are able to modulate T cell immune responses. We measured a robust response, in vitro, towards a common bacterial antigen, including the release of GM-CSF and proinflammatory cytokines, like IFN-a and IL-6, from mononuclear cells. Some of these immunomodulatory features are dependent on the expression of HLA-G and PD-L1, whereas others may rely on other mechanism(s). Finally, a high expression of CD56, HLA-G and PD-L1 on BM-derived EVs may represent a good prognostic factor. Conclusions We described the presence of HLA-G and PDL1-bearing EVs in the BM of NB patients, which may represent a mechanism performed by resident BM cells to counteract the inflammation occurring in the BM microenvironment of NB patients.
Collapse
Affiliation(s)
- Danilo Marimpietri
- UOSD Laboratorio di Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Maria Valeria Corrias
- UOSD Terapie Sperimentali in Oncologia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gino Tripodi
- UOC Servizio di Immunoematologia e Medicina Trasfusionale, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Roberto Gramignoli
- UOSD Laboratorio di Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Irma Airoldi
- UOSD Laboratorio di Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Fabio Morandi
- UOSD Laboratorio di Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
2
|
Winzer R, Nguyen DH, Schoppmeier F, Cortesi F, Gagliani N, Tolosa E. Purinergic enzymes on extracellular vesicles: immune modulation on the go. Front Immunol 2024; 15:1362996. [PMID: 38426088 PMCID: PMC10902224 DOI: 10.3389/fimmu.2024.1362996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
An increase in the extracellular concentration of ATP as a consequence of cellular stress or cell death results in the activation of immune cells. To prevent inflammation, extracellular ATP is rapidly metabolized to adenosine, which deploys an anti-inflammatory signaling cascade upon binding to P1 receptors on immune cells. The ectonucleotidases necessary for the degradation of ATP and generation of adenosine are present on the cell membrane of many immune cells, and their expression is tightly regulated under conditions of inflammation. The discovery that extracellular vesicles (EVs) carry purinergic enzyme activity has brought forward the concept of EVs as a new player in immune regulation. Adenosine-generating EVs derived from cancer cells suppress the anti-tumor response, while EVs derived from immune or mesenchymal stem cells contribute to the restoration of homeostasis after infection. Here we will review the existing knowledge on EVs containing purinergic enzymes and molecules, and discuss the relevance of these EVs in immune modulation and their potential for therapy.
Collapse
Affiliation(s)
- Riekje Winzer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Du Hanh Nguyen
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Schoppmeier
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Filippo Cortesi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Proestler E, Donzelli J, Nevermann S, Breitwieser K, Koch LF, Best T, Fauth M, Wickström M, Harter PN, Kogner P, Lavieu G, Larsson K, Saul MJ. The multiple functions of miR-574-5p in the neuroblastoma tumor microenvironment. Front Pharmacol 2023; 14:1183720. [PMID: 37731742 PMCID: PMC10507178 DOI: 10.3389/fphar.2023.1183720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood and arises from neural crest cells of the developing sympathetic nervous system. Prostaglandin E2 (PGE2) has been identified as a key pro-inflammatory mediator of the tumor microenvironment (TME) that promotes neuroblastoma progression. We report that the interaction between the microRNA miR-574-5p and CUG-binding protein 1 (CUGBP1) induces the expression of microsomal prostaglandin E2 synthase 1 (mPGES-1) in neuroblastoma cells, which contributes to PGE2 biosynthesis. PGE2 in turn specifically induces the sorting of miR-574-5p into small extracellular vesicles (sEV) in neuroblastoma cell lines. sEV are one of the major players in intercellular communication in the TME. We found that sEV-derived miR-574-5p has a paracrine function in neuroblastoma. It acts as a direct Toll-like receptor 7/8 (TLR7/8) ligand and induces α-smooth muscle actin (α-SMA) expression in fibroblasts, contributing to fibroblast differentiation. This is particularly noteworthy as it has an opposite function to that in the TME of lung carcinoma, another PGE2 dependent tumor type. Here, sEV-derived miR-574-5p has an autokrine function that inhibits PGE2 biosynthesis in lung cancer cells. We report that the tetraspanin composition on the surface of sEV is associated with the function of sEV-derived miR-574-5p. This suggests that the vesicles do not only transport miRs, but also appear to influence their mode of action.
Collapse
Affiliation(s)
- Eva Proestler
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Julia Donzelli
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sheila Nevermann
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Kai Breitwieser
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Leon F. Koch
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Tatjana Best
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
- Merck KGaA, Darmstadt, Germany
| | - Maria Fauth
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
- Prolytic GmbH, a Kymos Company, Frankfurt, Germany
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Children’s and Women’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Patrick N. Harter
- Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Frankfurt, Germany
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Children’s and Women’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Grégory Lavieu
- INSERM U1316, UMR7057, Centre National de la Recherche Scientifique (CNRS), Université Paris Cité, Paris, France
| | - Karin Larsson
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Meike J. Saul
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
4
|
Laubach K, Turan T, Mathew R, Wilsbacher J, Engelhardt J, Samayoa J. Tumor-intrinsic metabolic reprogramming and how it drives resistance to anti-PD-1/PD-L1 treatment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:611-641. [PMID: 37842241 PMCID: PMC10571065 DOI: 10.20517/cdr.2023.60] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023]
Abstract
The development of immune checkpoint blockade (ICB) therapies has been instrumental in advancing the field of immunotherapy. Despite the prominence of these treatments, many patients exhibit primary or acquired resistance, rendering them ineffective. For example, anti-programmed cell death protein 1 (anti-PD-1)/anti-programmed cell death ligand 1 (anti-PD-L1) treatments are widely utilized across a range of cancer indications, but the response rate is only 10%-30%. As such, it is necessary for researchers to identify targets and develop drugs that can be used in combination with existing ICB therapies to overcome resistance. The intersection of cancer, metabolism, and the immune system has gained considerable traction in recent years as a way to comprehensively study the mechanisms that drive oncogenesis, immune evasion, and immunotherapy resistance. As a result, new research is continuously emerging in support of targeting metabolic pathways as an adjuvant to ICB to boost patient response and overcome resistance. Due to the plethora of studies in recent years highlighting this notion, this review will integrate the relevant articles that demonstrate how tumor-derived alterations in energy, amino acid, and lipid metabolism dysregulate anti-tumor immune responses and drive resistance to anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Kyra Laubach
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Tolga Turan
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Rebecca Mathew
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | | | | | - Josue Samayoa
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| |
Collapse
|
5
|
Jain D, Somasundaram DB, Aravindan S, Yu Z, Baker A, Esmaeili A, Aravindan N. Prognostic significance of NT5E/CD73 in neuroblastoma and its function in CSC stemness maintenance. Cell Biol Toxicol 2023; 39:967-989. [PMID: 34773529 DOI: 10.1007/s10565-021-09658-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022]
Abstract
Cluster of differentiation 73 (CD73), a cell surface enzyme that catalyzes adenosine monophosphate (AMP) breakdown to adenosine, is differentially expressed in cancers and has prognostic significance. We investigated its expression profile in neuroblastoma (NB), its association with NB clinical outcomes, and its influence in the regulation of cancer stem cells' (CSCs) stemness maintenance. RNA-Seq data mining (22 independent study cohorts, total n = 3836) indicated that high CD73 can predict good NB prognosis. CD73 expression (immunohistochemistry) gauged in an NB patient cohort (n = 87) showed a positive correlation with longer overall survival (OS, P = 0.0239) and relapse-free survival (RFS, P = 0.0242). Similarly, high CD73 correlated with longer OS and RFS in advanced disease stages, MYCN non-amplified (MYCN-na), and Stage-4-MYCN-na subsets. Despite no definite association in children < 2 years old (2Y), high CD73 correlated with longer OS (P = 0.0294) and RFS (P = 0.0315) in children > 2Y. Consistently, high CD73 was associated with better OS in MYCN-na, high-risk, and stage-4 subsets of children > 2Y. Multivariate analysis identified CD73 as an independent (P = 0.001) prognostic factor for NB. Silencing CD73 in patient-derived (stage 4, progressive disease) CHLA-171 and CHLA-172 cells revealed cell-line-independent activation of 58 CSC stemness maintenance molecules (QPCR profiling). Overexpressing CD73 in CHLA-20 and CHLA-90 cells with low CD73 and silencing in CHLA-171 and CHLA-172 cells with high CD73 showed that CD73 regulates epithelial to mesenchymal transition (E-Cadherin, N-Cadherin, Vimentin), stemness maintenance (Sox2, Nanog, Oct3/4), self-renewal capacity (Notch), and differentiation inhibition (leukemia inhibitory factor, LIF) proteins (confocal-immunofluorescence). These results demonstrate that high CD73 can predict good prognosis in NB, and further suggest that CD73 regulates stemness maintenance in cells that defy clinical therapy.
Collapse
Affiliation(s)
- Drishti Jain
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Zhongxin Yu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ashley Baker
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Azadeh Esmaeili
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
6
|
Mills CM, Benton TZ, Piña I, Francis MJ, Reyes L, Dolloff NG, Peterson YK, Woster PM. Stimulation of natural killer cells with small molecule inhibitors of CD38 for the treatment of neuroblastoma. Chem Sci 2023; 14:2168-2182. [PMID: 36845935 PMCID: PMC9945084 DOI: 10.1039/d2sc05749b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/28/2023] [Indexed: 02/02/2023] Open
Abstract
High-risk neuroblastoma (NB) accounts for 15% of all pediatric cancer deaths. Refractory disease for high-risk NB patients is attributed to chemotherapy resistance and immunotherapy failure. The poor prognosis for high-risk NB patients demonstrates an unmet medical need for the development of new, more efficacious therapeutics. CD38 is an immunomodulating protein that is expressed constitutively on natural killer (NK) cells and other immune cells in the tumor microenvironment (TME). Furthermore, CD38 over expression is implicated in propagating an immunosuppressive milieu within the TME. Through virtual and physical screening, we have identified drug-like small molecule inhibitors of CD38 with low micromolar IC50 values. We have begun to explore structure activity relationships for CD38 inhibition through derivatization of our most effective hit molecule to develop a new compound with lead-like physicochemical properties and improved potency. We have demonstrated that our derivatized inhibitor, compound 2, elicits immunomodulatory effects in NK cells by increasing cell viability by 190 ± 36% in multiple donors and by significantly increasing interferon gamma. Additionally, we have illustrated that NK cells exhibited enhanced cytotoxicity toward NB cells (14% reduction of NB cells over 90 minutes) when given a combination treatment of our inhibitor and the immunocytokine ch14.18-IL2. Herein we describe the synthesis and biological evaluation of small molecule CD38 inhibitors and demonstrate their potential utility as a novel approach to NB immunotherapy. These compounds represent the first examples of small molecules that stimulate immune function for the treatment of cancer.
Collapse
Affiliation(s)
- Catherine M Mills
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Thomas Z Benton
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Ivett Piña
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Megan J Francis
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Leticia Reyes
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Nathan G Dolloff
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina 70 President St Charleston SC 29425 USA
| |
Collapse
|
7
|
Gao L, Du X, Li J, Qin FXF. Evolving roles of CD38 metabolism in solid tumour microenvironment. Br J Cancer 2023; 128:492-504. [PMID: 36396822 PMCID: PMC9938187 DOI: 10.1038/s41416-022-02052-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Given that plenty of clinical findings and reviews have already explained in detail on the progression of CD38 in multiple myeloma and haematological system tumours, here we no longer give unnecessary discussion on the above progression. Though therapeutic antibodies have been regarded as a greatest breakthrough in multiple myeloma immunotherapies due to the durable anti-tumour responses in the clinic, but the role of CD38 in the immunologic regulation and evasion of non-hematopoietic solid tumours are just initiated and controversial. Therefore, we will focus on the bio-function of CD38 enzymatic substrates or metabolites in the variety of non-hematopoietic malignancies and the potential therapeutic value of targeting the CD38-NAD+ or CD38-cADPR/ADPR signal axis. Though limited, we review some ongoing researches and clinical trials on therapeutic approaches in solid tumour as well.
Collapse
Affiliation(s)
- Long Gao
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Xiaohong Du
- Institute of Clinical Medicine Research, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Jiabin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| | - F Xiao-Feng Qin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, China.
- Suzhou Institute of Systems Medicine, 215123, Suzhou, China.
| |
Collapse
|
8
|
The exploitation of enzyme-based cancer immunotherapy. Hum Cell 2023; 36:98-120. [PMID: 36334180 DOI: 10.1007/s13577-022-00821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Cancer immunotherapy utilizes the immune system and its wide-ranging components to deliver anti-tumor responses. In immune escape mechanisms, tumor microenvironment-associated soluble factors and cell surface-bound molecules are mainly accountable for the dysfunctional activity of tumor-specific CD8+ T cells, natural killer (NK) cells, tumor associated macrophages (TAMs) and stromal cells. The myeloid-derived suppressor cells (MDSCs) and Foxp3+ regulatory T cells (Tregs), are also key tumor-promoting immune cells. These potent immunosuppressive networks avert tumor rejection at various stages, affecting immunotherapies' outcomes. Numerous clinical trials have elucidated that disruption of immunosuppression could be achieved via checkpoint inhibitors. Another approach utilizes enzymes that can restore the body's potential to counter cancer by triggering the immune system inhibited by the tumor microenvironment. These immunotherapeutic enzymes can catalyze an immunostimulatory signal and modulate the tumor microenvironment via effector molecules. Herein, we have discussed the immuno-metabolic roles of various enzymes like ATP-dephosphorylating ectoenzymes, inducible Nitric Oxide Synthase, phenylamine, tryptophan, and arginine catabolizing enzymes in cancer immunotherapy. Understanding the detailed molecular mechanisms of the enzymes involved in modulating the tumor microenvironment may help find new opportunities for cancer therapeutics.
Collapse
|
9
|
Carrillo-Rodríguez P, Robles-Guirado JÁ, Cruz-Palomares A, Palacios-Pedrero MÁ, González-Paredes E, Más-Ciurana A, Franco-Herrera C, Ruiz-de-Castroviejo-Teba PA, Lario A, Longobardo V, Montosa-Hidalgo L, Pérez-Sánchez-Cañete MM, Corzo-Corbera MM, Redondo-Sánchez S, Jodar AB, Blanco FJ, Zumaquero E, Merino R, Sancho J, Zubiaur M. Extracellular vesicles from pristane-treated CD38-deficient mice express an anti-inflammatory neutrophil protein signature, which reflects the mild lupus severity elicited in these mice. Front Immunol 2022; 13:1013236. [DOI: 10.3389/fimmu.2022.1013236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
In CD38-deficient (Cd38-/-) mice intraperitoneal injection of pristane induces a lupus-like disease, which is milder than that induced in WT mice, showing significant differences in the inflammatory and autoimmune processes triggered by pristane. Extracellular vesicles (EV) are present in all body fluids. Shed by cells, their molecular make-up reflects that of their cell of origin and/or tissue pathological situation. The aim of this study was to analyze the protein composition, protein abundance, and functional clustering of EV released by peritoneal exudate cells (PECs) in the pristane experimental lupus model, to identify predictive or diagnostic biomarkers that might discriminate the autoimmune process in lupus from inflammatory reactions and/or normal physiological processes. In this study, thanks to an extensive proteomic analysis and powerful bioinformatics software, distinct EV subtypes were identified in the peritoneal exudates of pristane-treated mice: 1) small EV enriched in the tetraspanin CD63 and CD9, which are likely of exosomal origin; 2) small EV enriched in CD47 and CD9, which are also enriched in plasma-membrane, membrane-associated proteins, with an ectosomal origin; 3) small EV enriched in keratins, ECM proteins, complement/coagulation proteins, fibrin clot formation proteins, and endopetidase inhibitor proteins. This enrichment may have an inflammation-mediated mesothelial-to-mesenchymal transition origin, representing a protein corona on the surface of peritoneal exudate EV; 4) HDL-enriched lipoprotein particles. Quantitative proteomic analysis allowed us to identify an anti-inflammatory, Annexin A1-enriched pro-resolving, neutrophil protein signature, which was more prominent in EV from pristane-treated Cd38-/- mice, and quantitative differences in the protein cargo of the ECM-enriched EV from Cd38-/- vs WT mice. These differences are likely to be related with the distinct inflammatory outcome shown by Cd38-/- vs WT mice in response to pristane treatment. Our results demonstrate the power of a hypothesis-free and data-driven approach to transform the heterogeneity of the peritoneal exudate EV from pristane-treated mice in valuable information about the relative proportion of different EV in a given sample and to identify potential protein markers specific for the different small EV subtypes, in particular those proteins defining EV involved in the resolution phase of chronic inflammation.
Collapse
|
10
|
Pathania AS, Prathipati P, Murakonda SP, Murakonda AB, Srivastava A, Avadhesh A, Byrareddy SN, Coulter DW, Gupta SC, Challagundla KB. Immune checkpoint molecules in neuroblastoma: A clinical perspective. Semin Cancer Biol 2022; 86:247-258. [PMID: 35787940 DOI: 10.1016/j.semcancer.2022.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 10/31/2022]
Abstract
High-risk neuroblastoma (NB) is challenging to treat with 5-year long-term survival in patients remaining below 50% and low chances of survival after tumor relapse or recurrence. Different strategies are being tested or under evaluation to destroy resistant tumors and improve survival outcomes in NB patients. Immunotherapy, which uses certain parts of a person's immune system to recognize or kill tumor cells, effectively improves patient outcomes in several types of cancer, including NB. One of the immunotherapy strategies is to block immune checkpoint signaling in tumors to increase tumor immunogenicity and anti-tumor immunity. Immune checkpoint proteins put brakes on immune cell functions to regulate immune activation, but this activity is exploited in tumors to evade immune surveillance and attack. Immune checkpoint proteins play an essential role in NB biology and immune escape mechanisms, which makes these tumors immunologically cold. Therapeutic strategies to block immune checkpoint signaling have shown promising outcomes in NB but only in a subset of patients. However, combining immune checkpoint blockade with other therapies, including conjugated antibody-based immunotherapy, radioimmunotherapy, tumor vaccines, or cellular therapies like modified T or natural killer (NK) cells, has shown encouraging results in enhancing anti-tumor immunity in the preclinical setting. An analysis of publicly available dataset using computational tools has unraveled the complexity of multiple cancer including NB. This review comprehensively summarizes the current information on immune checkpoint molecules, their biology, role in immune suppression and tumor development, and novel therapeutic approaches combining immune checkpoint inhibitors with other therapies to combat high-risk NB.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Swati P Murakonda
- Sri Rajiv Gandhi College of Dental Sciences & Hospital, Bengaluru, Karnataka 560032, India
| | - Ajay B Murakonda
- Sree Sai Dental College & Research Institute, Srikakulam, Andhra Pradesh 532001, India
| | - Ankit Srivastava
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Avadhesh Avadhesh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, Assam, India.
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
11
|
Abstract
Adenosine is an evolutionary ancient metabolic regulator linking energy state to physiologic processes, including immunomodulation and cell proliferation. Tumors create an adenosine-rich immunosuppressive microenvironment through the increased release of ATP from dying and stressed cells and its ectoenzymatic conversion into adenosine. Therefore, the adenosine pathway becomes an important therapeutic target to improve the effectiveness of immune therapies. Prior research has focused largely on the two major ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase 1/cluster of differentiation (CD)39 and ecto-5'-nucleotidase/CD73, which catalyze the breakdown of extracellular ATP into adenosine, and on the subsequent activation of different subtypes of adenosine receptors with mixed findings of antitumor and protumor effects. New findings, needed for more effective therapeutic approaches, require consideration of redundant pathways controlling intratumoral adenosine levels, including the alternative NAD-inactivating pathway through the CD38-ectonucleotide pyrophosphatase phosphodiesterase (ENPP)1-CD73 axis, the counteracting ATP-regenerating ectoenzymatic pathway, and cellular adenosine uptake and its phosphorylation by adenosine kinase. This review provides a holistic view of extracellular and intracellular adenosine metabolism as an integrated complex network and summarizes recent data on the underlying mechanisms through which adenosine and its precursors ATP and ADP control cancer immunosurveillance, tumor angiogenesis, lymphangiogenesis, cancer-associated thrombosis, blood flow, and tumor perfusion. Special attention is given to differences and commonalities in the purinome of different cancers, heterogeneity of the tumor microenvironment, subcellular compartmentalization of the adenosine system, and novel roles of purine-converting enzymes as targets for cancer therapy. SIGNIFICANCE STATEMENT: The discovery of the role of adenosine as immune checkpoint regulator in cancer has led to the development of novel therapeutic strategies targeting extracellular adenosine metabolism and signaling in multiple clinical trials and preclinical models. Here we identify major gaps in knowledge that need to be filled to improve the therapeutic gain from agents targeting key components of the adenosine metabolic network and, on this basis, provide a holistic view of the cancer purinome as a complex and integrated network.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| | - Detlev Boison
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| |
Collapse
|
12
|
Shi M, Tian Y, He L, Zhang J, Yang X, Liu H. Potential roles of serum ATPase and AMPase in predicting diagnosis of colorectal cancer patients. Bioengineered 2022; 13:14204-14214. [PMID: 35754345 PMCID: PMC9342199 DOI: 10.1080/21655979.2022.2084423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal cancer with high incidence and mortality rates. CRC may be associated with regulation of circulating nucleotides. This study aimed to evaluate the serum levels of nucleotide-metabolizing enzymes (ATPase and AMPase) in patients with CRC and to explore the clinical diagnostic value of these enzymes. The gene set variation analysis (GSVA) score of the ATP-adenosine signature was calculated using tumor samples from The Cancer Genome Atlas (TCGA). ATP-adenosine signaling plays a central role in CRC progression. A total of 135 subjects, including 87 patients with CRC and 48 healthy controls, were included. The serum levels of ATPase and AMPase in the CRC group were significantly higher than those in the control group (P < 0.05). Furthermore, ATP and AMP hydrolysis levels significantly increased in the advanced CRC group (P < 0.05). ATP and AMP hydrolysis was decreased by the ENTPDase inhibitors (POM-1 and ARL67156) and CD73 inhibitor (APCP). The sensitivities of ATPase and AMPase were 95.4% and 75.9%, respectively, which were higher than those of CEA (67.8%) and CA19-9 (72.4%). The specificities of ATPase and AMPase were 69.9% and 73.9%, respectively, which were higher than that of CA19-9 (47.8%). The combination of CEA, ATPase, and AMPase demonstrated high sensitivity (92.0%) and specificity (87.0%). Collectively, ATPase and AMPase activities are upregulated in CRC with considerable diagnostic significance. The combination of CEA, ATPase, and AMPase may provide a novel approach for CRC screening.
Collapse
Affiliation(s)
- Mengchen Shi
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Tian
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lingyuan He
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingdan Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangling Yang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Ban J, Fock V, Aryee DNT, Kovar H. Mechanisms, Diagnosis and Treatment of Bone Metastases. Cells 2021; 10:2944. [PMID: 34831167 PMCID: PMC8616226 DOI: 10.3390/cells10112944] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Bone and bone marrow are among the most frequent metastatic sites of cancer. The occurrence of bone metastasis is frequently associated with a dismal disease outcome. The prevention and therapy of bone metastases is a priority in the treatment of cancer patients. However, current therapeutic options for patients with bone metastatic disease are limited in efficacy and associated with increased morbidity. Therefore, most current therapies are mainly palliative in nature. A better understanding of the underlying molecular pathways of the bone metastatic process is warranted to develop novel, well-tolerated and more successful treatments for a significant improvement of patients' quality of life and disease outcome. In this review, we provide comparative mechanistic insights into the bone metastatic process of various solid tumors, including pediatric cancers. We also highlight current and innovative approaches to biologically targeted therapy and immunotherapy. In particular, we discuss the role of the bone marrow microenvironment in the attraction, homing, dormancy and outgrowth of metastatic tumor cells and the ensuing therapeutic implications. Multiple signaling pathways have been described to contribute to metastatic spread to the bone of specific cancer entities, with most knowledge derived from the study of breast and prostate cancer. However, it is likely that similar mechanisms are involved in different types of cancer, including multiple myeloma, primary bone sarcomas and neuroblastoma. The metastatic rate-limiting interaction of tumor cells with the various cellular and noncellular components of the bone-marrow niche provides attractive therapeutic targets, which are already partially exploited by novel promising immunotherapies.
Collapse
Affiliation(s)
- Jozef Ban
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Valerie Fock
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Dave N. T. Aryee
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
14
|
Zhao Y, Chen X, Ding Z, He C, Gao G, Lyu S, Gao Y, Du J. Identification of Novel CD39 Inhibitors Based on Virtual Screening and Enzymatic Assays. J Chem Inf Model 2021; 62:5289-5304. [PMID: 34648290 DOI: 10.1021/acs.jcim.1c00590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The accumulation of adenosine in the tumor microenvironment mediates immunosuppression and promotes tumor growth and proliferation. Intervention of the adenosine pathway is an important direction of antitumor immunity research. CD39 is an important ecto-nucleotidases for adenosine generation, therefore targeting the CD39-adenosine pathway is an emerging immune checkpoint for anticancer treatment. However, currently no CD39 inhibitor has been approved by the U.S. Food and Drug Administration. The development of CD39 drugs is urgent for clinical application. In this study, we combined homology modeling, virtual screening, and in vitro enzymatic activity to characterize the structural features of the CD39 protein and identify a triazinoindole-based compound as a CD39 inhibitor. The identified inhibitor and one of its analogues could effectively prevent the enzymatic activity of CD39 with IC50 values of 27.42 ± 5.52 and 79.24 ± 12.21 μM, respectively. At the same time, the inhibitor significantly inhibited the adenosine monophosphate production in colorectal cancer cell lines (HT29 and MC38) and thereafter prevented cell proliferation. Molecular docking studies, mutagenesis, and microscale thermophoresis indicated that residues such as R85 could be the main contributor in binding triazinoindole compounds. The binding mode can potentially be utilized for hit-to-lead optimization, and the identified inhibitor can be further tested for its anticancer activity in vivo or may serve as a chemical agent to study CD39-related functions.
Collapse
Affiliation(s)
- Yunshuo Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaotong Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjie He
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guanfei Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sifan Lyu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
15
|
Allard D, Allard B, Stagg J. On the mechanism of anti-CD39 immune checkpoint therapy. J Immunother Cancer 2021; 8:jitc-2019-000186. [PMID: 32098829 PMCID: PMC7057429 DOI: 10.1136/jitc-2019-000186] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2019] [Indexed: 12/26/2022] Open
Abstract
With the coming of age of cancer immunotherapy, the search for new therapeutic targets has led to the identification of immunosuppressive adenosine as an important regulator of antitumor immunity. This resulted in the development of selective inhibitors targeting various components of the adenosinergic pathway, including small molecules antagonists targeting the high affinity A2A adenosine receptor and low affinity A2B receptor, therapeutic monoclonal antibodies (mAbs) and small molecules targeting CD73 and therapeutic mAbs targeting CD39. As each regulator of the adenosinergic pathway present non-overlapping biologic functions, a better understanding of the mechanisms of action of each targeted approach should accelerate clinical translation and improve rational design of combination treatments. In this review, we discuss the potential mechanisms-of-action of anti-CD39 cancer therapy and potential toxicities that may emerge from sustained CD39 inhibition. Caution should be taken, however, in extrapolating data from gene-targeted mice to patients treated with blocking anti-CD39 agents. As phase I clinical trials are now underway, further insights into the mechanism of action and potential adverse events associated with anti-CD39 therapy are anticipated in coming years.
Collapse
Affiliation(s)
- David Allard
- Faculty of Pharmacy, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| | - Bertrand Allard
- Institut du Cancer de Montreal, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| | - John Stagg
- Faculty of Pharmacy, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada .,Institut du Cancer de Montreal, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Brignole C, Pastorino F, Perri P, Amoroso L, Bensa V, Calarco E, Ponzoni M, Corrias MV. Bone Marrow Environment in Metastatic Neuroblastoma. Cancers (Basel) 2021; 13:cancers13102467. [PMID: 34069335 PMCID: PMC8158729 DOI: 10.3390/cancers13102467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The study of the interactions occurring in the BM environment has been facilitated by the peculiar nature of metastatic NB. In fact: (i) metastases are present at diagnosis; (ii) metastases are confined in a very specific tissue, the BM, suggestive of a strong attraction and possibility of survival; (iii) differently from adult cancers, NB metastases are available because the diagnostic procedures require morphological examination of BM; (iv) NB metastatic cells express surface antigens that allow enrichment of NB metastatic cells by immune-magnetic separation; and (v) patients with localized disease represent an internal control to discriminate specific alterations occurring in the metastatic niche from generic alterations determined by the neoplastic growth at the primary site. Here, we first review the information regarding the features of BM-infiltrating NB cells. Then, we focus on the alterations found in the BM of children with metastatic NB as compared to healthy children and children with localized NB. Specifically, information regarding all the BM cell populations and their sub-sets will be first examined in the context of BM microenvironment in metastatic NB. In the last part, the information regarding the soluble factors will be presented.
Collapse
Affiliation(s)
- Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.B.); (F.P.); (P.P.); (V.B.); (E.C.); (M.P.)
| | - Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.B.); (F.P.); (P.P.); (V.B.); (E.C.); (M.P.)
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.B.); (F.P.); (P.P.); (V.B.); (E.C.); (M.P.)
| | - Loredana Amoroso
- Pediatric Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Veronica Bensa
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.B.); (F.P.); (P.P.); (V.B.); (E.C.); (M.P.)
| | - Enzo Calarco
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.B.); (F.P.); (P.P.); (V.B.); (E.C.); (M.P.)
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.B.); (F.P.); (P.P.); (V.B.); (E.C.); (M.P.)
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.B.); (F.P.); (P.P.); (V.B.); (E.C.); (M.P.)
- Correspondence:
| |
Collapse
|
17
|
The Role of Extracellular Vesicles in the Progression of Human Neuroblastoma. Int J Mol Sci 2021; 22:ijms22083964. [PMID: 33921337 PMCID: PMC8069919 DOI: 10.3390/ijms22083964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/25/2022] Open
Abstract
The long-underestimated role of extracellular vesicles in cancer is now reconsidered worldwide by basic and clinical scientists, who recently highlighted novel and crucial activities of these moieties. Extracellular vesicles are now considered as king transporters of specific cargoes, including molecular components of parent cells, thus mediating a wide variety of cellular activities both in normal and neoplastic tissues. Here, we discuss the multifunctional activities and underlying mechanisms of extracellular vesicles in neuroblastoma, the most frequent common extra-cranial tumor in childhood. The ability of extracellular vesicles to cross-talk with different cells in the tumor microenvironment and to modulate an anti-tumor immune response, tumorigenesis, tumor growth, metastasis and drug resistance will be pinpointed in detail. The results obtained on the role of extracellular vesicles may represent a panel of suggestions potentially useful in practice, due to their involvement in the response to chemotherapy, and, moreover, their ability to predict resistance to standard therapies—all issues of clinical relevance.
Collapse
|
18
|
Detection of CD39 and a Highly Glycosylated Isoform of Soluble CD73 in the Plasma of Patients with Cervical Cancer: Correlation with Disease Progression. Mediators Inflamm 2020; 2020:1678780. [PMID: 33488292 PMCID: PMC7803102 DOI: 10.1155/2020/1678780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Persistent infection with high-risk human papillomavirus (HR-HPV) is the main factor in the development of cervical cancer (CC). The presence of immunosuppressive factors plays an important role in the development of this type of cancer. To determine whether CD39 and CD73, which participate in the production of immunosuppressive adenosine (Ado), are involved in the progression of CC, we compared the concentrations and hydrolytic activity of these ectonucleotidases in platelet-free plasma (PFP) samples between patients with low-grade squamous intraepithelial lesions (LSILs) (n = 18), high-grade squamous intraepithelial lesions (HSILs) (n = 12), and CC (n = 19) and normal donors (NDs) (n = 15). The concentrations of CD39 and CD73 in PFP increased with disease progression (r = 0.5929, p < 0.001). The PFP of patients with HSILs or CC showed the highest concentrations of CD39 (2.3 and 2.2 times that of the NDs, respectively) and CD73 (1.7 and 2.68 times that of the NDs, respectively), which were associated with a high capacity to generate Ado from the hydrolysis of adenosine diphosphate (ADP) and adenosine monophosphate (AMP). The addition of POM-1 and APCP, specific inhibitors of CD39 and CD73, respectively, inhibited the ADPase and AMPase activity of PFP by more than 90%. A high level of the 90 kD isoform of CD73 was detected in the PFP of patients with HSILs or CC. Digestion with endoglycosidase H and N-glycanase generated CD73 with weights of approximately 90 kD, 85 kD, 80 kD, and 70 kD. In addition, the levels of transforming grow factor-β (TGF-β) in the PFPs of patients with LSIL, HSIL and CC positively correlated with those of CD39 (r = 0.4432, p < 0.001) and CD73 (r = 0.5786, p < 0.001). These results suggest that persistent infection by HR-HPV and the concomitant production of TGF-β promote the expression of CD39 and CD73 to favor CC progression through Ado generation.
Collapse
|
19
|
Meyer AV, Klein D, de Leve S, Szymonowicz K, Stuschke M, Robson SC, Jendrossek V, Wirsdörfer F. Host CD39 Deficiency Affects Radiation-Induced Tumor Growth Delay and Aggravates Radiation-Induced Normal Tissue Toxicity. Front Oncol 2020; 10:554883. [PMID: 33194619 PMCID: PMC7649817 DOI: 10.3389/fonc.2020.554883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
The ectonucleoside triphosphate diphosphohydrolase (CD39)/5′ ectonuclotidase (CD73)-dependent purinergic pathway emerges as promising cancer target. Yet, except for own previous work revealing a pathogenic role of CD73 and adenosine in radiation-induced lung fibrosis, the role of purinergic signaling for radiotherapy outcome remained elusive. Here we used C57BL/6 wild-type (WT), CD39 knockout (CD39−/−), and CD73 knockout (CD73−/−) mice and hind-leg tumors of syngeneic murine Lewis lung carcinoma cells (LLC1) to elucidate how host purinergic signaling shapes the growth of LLC1 tumors to a single high-dose irradiation with 10 Gy in vivo. In complementary in vitro experiments, we examined the radiation response of LLC1 cells in combination with exogenously added ATP or adenosine, the proinflammatory and anti-inflammatory arms of purinergic signaling. Finally, we analyzed the impact of genetic loss of CD39 on pathophysiologic lung changes associated with lung fibrosis induced by a single-dose whole-thorax irradiation (WTI) with 15 Gy. Loss of CD73 in the tumor host did neither significantly affect tumor growth nor the radiation response of the CD39/CD73-negative LLC1 tumors. In contrast, LLC1 tumors exhibited a tendency to grow faster in CD39−/− mice compared to WT mice. Even more important, tumors grown in the CD39-deficient background displayed a significantly reduced tumor growth delay upon irradiation when compared to irradiated tumors grown on WT mice. CD39 deficiency caused only subtle differences in the immune compartment of irradiated LLC1 tumors compared to WT mice. Instead, we could associate the tumor growth and radioresistance-promoting effects of host CD39 deficiency to alterations in the tumor endothelial compartment. Importantly, genetic deficiency of CD39 also augmented the expression level of fibrosis-associated osteopontin in irradiated normal lungs and exacerbated radiation-induced lung fibrosis at 25 weeks after irradiation. We conclude that genetic loss of host CD39 alters the tumor microenvironment, particularly the tumor microvasculature, and thereby promotes growth and radioresistance of murine LLC1 tumors. In the normal tissue loss of host, CD39 exacerbates radiation-induced adverse late effects. The suggested beneficial roles of host CD39 on the therapeutic ratio of radiotherapy suggest that therapeutic strategies targeting CD39 in combination with radiotherapy have to be considered with caution.
Collapse
Affiliation(s)
- Alina V Meyer
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Simone de Leve
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Klaudia Szymonowicz
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Simon C Robson
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Verena Jendrossek
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Florian Wirsdörfer
- Medical School, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
20
|
Scholl JN, Dias CK, Muller L, Battastini AMO, Figueiró F. Extracellular vesicles in cancer progression: are they part of the problem or part of the solution? Nanomedicine (Lond) 2020; 15:2625-2641. [PMID: 33094653 DOI: 10.2217/nnm-2020-0256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are released especially by cancer cells. They modulate the tumor microenvironment by interacting with immune cells while carrying immunosuppressive or immunostimulatory molecules. In this review, we will explore some conflicting reports regarding the immunological outcomes of EVs in cancer progression, in which they might initiate an antitumor immune response or an immunosuppressive response. Concerning immunosuppression, the role of tumor-derived EVs' in the adenosinergic system is underexplored. The enhancement of adenosine (ADO) levels in the tumor microenvironment impairs T-cell function and cytokine release. However, some tumor-derived EVs may deliver immunostimulatory factors, promoting immunogenic activity, even with ADO production. The modulatory role of ADO over the tumor progression represents a piece in an intricate microenvironment with anti and pro tumoral seesaw-like mechanisms.
Collapse
Affiliation(s)
- Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Camila Kehl Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Laurent Muller
- Department of Otolaryngology, Head & Neck Surgery, University of Basel, Basel, 4031, Switzerland
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| |
Collapse
|
21
|
Morandi F, Marimpietri D, Görgens A, Gallo A, Srinivasan RC, El-Andaloussi S, Gramignoli R. Human Amnion Epithelial Cells Impair T Cell Proliferation: The Role of HLA-G and HLA-E Molecules. Cells 2020; 9:E2123. [PMID: 32961693 PMCID: PMC7563681 DOI: 10.3390/cells9092123] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The immunoprivilege status characteristic of human amnion epithelial cells (hAECs) has been recently highlighted in the context of xenogenic transplantation. However, the mechanism(s) involved in such regulatory functions have been so far only partially been clarified. Here, we have analyzed the expression of HLA-Ib molecules in isolated hAEC obtained from full term placentae. Moreover, we asked whether these molecules are involved in the immunoregulatory functions of hAEC. Human amnion-derived cells expressed surface HLA-G and HLA-F at high levels, whereas the commonly expressed HLA-E molecule has been measured at a very low level or null on freshly isolated cells. HLA-Ib molecules can be expressed as membrane-bound and soluble forms, and in all hAEC batches analyzed we measured high levels of sHLA-G and sHLA-E when hAEC were maintained in culture, and such a release was time-dependent. Moreover, HLA-G was present in extracellular vesicles (EVs) released by hAEC. hAEC suppressed T cell proliferation in vitro at different hAEC:T cell ratios, as previously reported. Moreover, inhibition of T cell proliferation was partially reverted by pretreating hAEC with anti-HLA-G, anti-HLA-E and anti-β2 microglobulin, thus suggesting that HLA-G and -E molecules are involved in hAEC-mediated suppression of T cell proliferation. Finally, either large-size EV (lsEV) or small-size EV (ssEV) derived from hAEC significantly modulated T-cell proliferation. In conclusion, we have here characterized one of the mechanism(s) underlying immunomodulatory functions of hAEC, related to the expression and release of HLA-Ib molecules.
Collapse
Affiliation(s)
- Fabio Morandi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gaslini5, 16147 Genova, Italy;
| | - Danilo Marimpietri
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gaslini5, 16147 Genova, Italy;
| | - Andre Görgens
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, 14157 Stockholm, Sweden; (A.G.); (S.E.-A.)
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Alessia Gallo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via E.Tricomi 5, 90127 Palermo, Italy;
| | - Raghuraman Chittor Srinivasan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Alle 8, Huddinge SE-141 83, 14157 Stockholm, Sweden;
| | - Samir El-Andaloussi
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, 14157 Stockholm, Sweden; (A.G.); (S.E.-A.)
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Alle 8, Huddinge SE-141 83, 14157 Stockholm, Sweden;
| |
Collapse
|
22
|
|
23
|
Wang X, Wang P, Ge L, Wang J, Naqvi SMAS, Hu S. Identification of CD38 as a potential biomarker in skin cutaneous melanoma using bioinformatics analysis. Oncol Lett 2020; 20:12. [PMID: 32774485 PMCID: PMC7405635 DOI: 10.3892/ol.2020.11873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Skin cutaneous melanoma (SKCM) is the most aggressive type of skin cancer, with a high rate of metastasis and mortality; however, identification of biomarkers for the treatment of SKCM is required. Cluster of differentiation (CD)38 has emerged as an effective target for therapeutic drugs in several types of cancer, such as chronic lymphocytic leukemia and multiple myeloma. In the present study, to determine the contribution of CD38 to the diagnosis of SKCM, Gene Expression Profiling Interactive Analysis 2 and University of Alabama Cancer Database online tools were used to analyze The Cancer Genome Atlas-SKCM dataset. Moreover, Search Tool for the Retrieval of Interacting Genes/Proteins and GeneMANIA databases were used to determine protein-protein interaction networks and potential functions. To the best of our knowledge, the results of the present study indicated for the first time that high expression levels of CD38 were a favorable diagnostic factor for SKCM. Moreover, a correlation between CD38 expression levels and the survival probability of patients with SKCM was identified. Integrative analysis predicted that nine genes were correlated with CD38 in SKCM, and the similarity of these genes in SKCM expression and a survival heatmap was verified. Gene ontology enrichment analysis using the Metascape tool revealed that CD38 and its correlated genes were significantly enriched in lymphocyte activation and T cell differentiation regulation. Collectively, the bioinformatics analysis revealed that CD38 might serve as a potential diagnostic predictor for SKCM.
Collapse
Affiliation(s)
- Xianwang Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China.,Laboratory of Oncology, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Pengli Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Lei Ge
- Laboratory of Oncology, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Juan Wang
- Department of Pediatrics, The Second School of Clinical Medicine and Jingzhou Central Hospital, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Syed Manzar Abbas Shah Naqvi
- Laboratory of Oncology, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Shujuan Hu
- Department of Sports Medicine, School of Education and Physical Education, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
24
|
Zhang H, Chai W, Yang W, Han W, Mou W, Xi Y, Chen X, Wang H, Wang W, Qin H, Wang H, Ma X, Wang X, Gui J. The increased IL-17-producing γδT cells promote tumor cell proliferation and migration in neuroblastoma. Clin Immunol 2020; 211:108343. [PMID: 31931123 DOI: 10.1016/j.clim.2020.108343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
Neuroblastoma (NB) is the most common solid extracranial malignancy in children with a considerable chance of metastatic progression. Prevalent evidence supports the anti-tumor role of γδT cells and these cells have been testing in clinical trials for constraining tumor growth. A small subpopulation of γδT cells releasing IL-17, however, were demonstrated to exert tumor-promoting effects in many aspects. In this study, we found an augment of IL-17+ γδT cells both in in vitro PAM-stimulated γδT-cell expanding culture and circulating γδT cells in NB patients. These patient-origin cells expanded in vitro by PAM in the presence of IL-17 polarizing condition were shown to promote the proliferation and migration of NB cells. Furthermore, an intrinsic preference for IL-17 polarization in NB γδT cells was revealed by mRNA microarray and Western Blot, which pointed to an up-regulated expression of multiple Th17-development related genes in addition to an increased phosphorylation level of STAT3.
Collapse
Affiliation(s)
- Hui Zhang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wenjia Chai
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei Yang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei Han
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wenjun Mou
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yue Xi
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xi Chen
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Hui Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Hong Qin
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Huanmin Wang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xiaoli Ma
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xiaolin Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| | - Jingang Gui
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
25
|
Boison D, Yegutkin GG. Adenosine Metabolism: Emerging Concepts for Cancer Therapy. Cancer Cell 2019; 36:582-596. [PMID: 31821783 PMCID: PMC7224341 DOI: 10.1016/j.ccell.2019.10.007] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/23/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022]
Abstract
Adenosine is a key metabolic and immune-checkpoint regulator implicated in the tumor escape from the host immune system. Major gaps in knowledge that impede the development of effective adenosine-based therapeutics include: (1) lack of consideration of redundant pathways controlling ATP and adenosine levels; (2) lack of distinction between receptor-dependent and -independent effects of adenosine, and (3) focus on extracellular adenosine without consideration of intracellular metabolism and compartmentalization. In light of current clinical trials, we provide an overview of adenosine metabolism and point out the need for a more careful evaluation of the entire purinome in emerging cancer therapies.
Collapse
Affiliation(s)
- Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA; Rutgers Brain Health Institute, Piscataway, NJ 08854, USA.
| | - Gennady G Yegutkin
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, Turku, 20520, Finland.
| |
Collapse
|
26
|
Morandi F, Airoldi I, Marimpietri D, Bracci C, Faini AC, Gramignoli R. CD38, a Receptor with Multifunctional Activities: From Modulatory Functions on Regulatory Cell Subsets and Extracellular Vesicles, to a Target for Therapeutic Strategies. Cells 2019; 8:E1527. [PMID: 31783629 PMCID: PMC6953043 DOI: 10.3390/cells8121527] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
CD38 is a multifunctional cell surface protein endowed with receptor/enzymatic functions. The protein is generally expressed at low/intermediate levels on hematological tissues and some solid tumors, scoring the highest levels on plasma cells (PC) and PC-derived neoplasia. CD38 was originally described as a receptor expressed by activated cells, mainly T lymphocytes, wherein it also regulates cell adhesion and cooperates in signal transduction mediated by major receptor complexes. Furthermore, CD38 metabolizes extracellular NAD+, generating ADPR and cyclic ADPR. This ecto-enzyme controls extra-cellular nucleotide homeostasis and intra-cellular calcium fluxes, stressing its relevance in multiple physiopathological conditions (infection, tumorigenesis and aging). In clinics, CD38 was adopted as a cell activation marker and in the diagnostic/staging of leukemias. Quantitative surface CD38 expression by multiple myeloma (MM) cells was the basic criterion used for therapeutic application of anti-CD38 monoclonal antibodies (mAbs). Anti-CD38 mAbs-mediated PC depletion in autoimmunity and organ transplants is currently under investigation. This review analyzes different aspects of CD38's role in regulatory cell populations and how these effects are obtained. Characterizing CD38 functional properties may widen the extension of therapeutic applications for anti-CD38 mAbs. The availability of therapeutic mAbs with different effects on CD38 enzymatic functions may be rapidly translated to immunotherapeutic strategies of cell immune defense.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratory of Stem Cell and Cell Therapy, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (I.A.); (D.M.)
| | - Irma Airoldi
- Laboratory of Stem Cell and Cell Therapy, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (I.A.); (D.M.)
| | - Danilo Marimpietri
- Laboratory of Stem Cell and Cell Therapy, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (I.A.); (D.M.)
| | - Cristiano Bracci
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (C.B.); (A.C.F.)
- CeRMS, University of Torino, 10126 Torino, Italy
| | - Angelo Corso Faini
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (C.B.); (A.C.F.)
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-171 77 Stockholm, Sweden;
| |
Collapse
|
27
|
Horenstein AL, Morandi F, Bracci C, Pistoia V, Malavasi F. Functional insights into nucleotide-metabolizing ectoenzymes expressed by bone marrow-resident cells in patients with multiple myeloma. Immunol Lett 2018; 205:40-50. [PMID: 30447309 DOI: 10.1016/j.imlet.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
Human myeloma cells grow in a hypoxic acidic niche in the bone marrow. Cross talk among cellular components of this closed niche generates extracellular adenosine, which promotes tumor cell survival. This is achieved through the binding of adenosine to purinergic receptors into complexes that function as an autocrine/paracrine signal factor with immune regulatory activities that i) down-regulate the functions of most immune effector cells and ii) enhance the activity of cells that suppress anti-tumor immune responses, thus facilitating the escape of malignant myeloma cells from immune surveillance. Here we review recent findings confirming that the dominant phenotype for survival of tumor cells is that where the malignant cells have been metabolically reprogrammed for the generation of lactic acidosis in the bone marrow niche. Adenosine triphosphate and nicotinamide-adenine dinucleotide extruded from tumor cells, along with cyclic adenosine monophosphate, are the main intracellular energetic/messenger molecules that serve as leading substrates in the extracellular space for membrane-bound ectonucleotidases metabolizing purine nucleotides to signaling adenosine. Within this mechanistic framework, the adenosinergic substrate conversion can vary significantly according to the metabolic environment. Indeed, the neoplastic expansion of plasma cells exploits both enzymatic networks and hypoxic acidic conditions for migrating and homing to a protected niche and for evading the immune response. The expression of multiple specific adenosine receptors in the niche completes the profile of a complex regulatory framework whose signals modify multiple myeloma and host immune responses.
Collapse
Affiliation(s)
- A L Horenstein
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Italy; CeRMS, University of Torino, Torino, Italy.
| | - F Morandi
- Stem Cell Laboratory and Cell Therapy Center, Istituto Giannina Gaslini, Genova, Italy
| | - C Bracci
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Italy; CeRMS, University of Torino, Torino, Italy
| | - V Pistoia
- Immunology Area, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - F Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Italy; CeRMS, University of Torino, Torino, Italy
| |
Collapse
|