1
|
Dudziak D, Heger L, Agace WW, Bakker J, de Gruijl TD, Dress RJ, Dutertre CA, Fenton TM, Fransen MF, Ginhoux F, Heyman O, Horev Y, Hornsteiner F, Kandiah V, Kles P, Lubin R, Mizraji G, Prokopi A, Saar O, Sopper S, Stoitzner P, Strandt H, Sykora MM, Toffoli EC, Tripp CH, van Pul K, van de Ven R, Wilensky A, Yona S, Zelle-Rieser C. Guidelines for preparation and flow cytometry analysis of human nonlymphoid tissue DC. Eur J Immunol 2024:e2250325. [PMID: 39668411 DOI: 10.1002/eji.202250325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single-cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor-draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single-cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Diana Dudziak
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen, Germany
| | - William W Agace
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Immunology Section, Lund University, Lund, Sweden
| | - Joyce Bakker
- Institute for Infection and Immunology, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Institute for Infection and Immunology, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, Amsterdam, The Netherlands
| | - Regine J Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Thomas M Fenton
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Marieke F Fransen
- Institute for Infection and Immunology, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Department of Pulmonary Diseases, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- SingHealth Duke-NUS Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Oded Heyman
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Yael Horev
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Florian Hornsteiner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Vinitha Kandiah
- Institute for Infection and Immunology, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, Amsterdam, The Netherlands
| | - Paz Kles
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Ruth Lubin
- Faculty of Dental Medicine, The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Israel
| | - Gabriel Mizraji
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Anastasia Prokopi
- Institute for Infection and Immunology, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, Amsterdam, The Netherlands
| | - Or Saar
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Sieghart Sopper
- Internal Medicine V, Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Center, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helen Strandt
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martina M Sykora
- Internal Medicine V, Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Center, Innsbruck, Austria
| | - Elisa C Toffoli
- Institute for Infection and Immunology, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, Amsterdam, The Netherlands
| | - Christoph H Tripp
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kim van Pul
- Institute for Infection and Immunology, Cancer Immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Medical Oncology, Amsterdam, The Netherlands
- Department of Otolaryngology, Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
| | - Asaf Wilensky
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Israel
| | - Simon Yona
- Faculty of Dental Medicine, The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Israel
| | - Claudia Zelle-Rieser
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Fu C, Wang J, Ma T, Yin C, Zhou L, Clausen BE, Mi QS, Jiang A. GSK-3β in Dendritic Cells Exerts Opposite Functions in Regulating Cross-Priming and Memory CD8 T Cell Responses Independent of β-Catenin. Vaccines (Basel) 2024; 12:1037. [PMID: 39340067 PMCID: PMC11436163 DOI: 10.3390/vaccines12091037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
GSK-3β plays a critical role in regulating the Wnt/β-catenin signaling pathway, and manipulating GSK-3β in dendritic cells (DCs) has been shown to improve the antitumor efficacy of DC vaccines. Since the inhibition of GSK-3β leads to the activation of β-catenin, we hypothesize that blocking GSK-3β in DCs negatively regulates DC-mediated CD8 T cell immunity and antitumor immunity. Using CD11c-GSK-3β-/- conditional knockout mice in which GSK-3β is genetically deleted in CD11c-expressing DCs, we surprisingly found that the deletion of GSK-3β in DCs resulted in increased antitumor immunity, which contradicted our initial expectation of reduced antitumor immunity due to the presumed upregulation of β-catenin in DCs. Indeed, we found by both Western blot and flow cytometry that the deletion of GSK-3β in DCs did not lead to augmented expression of β-catenin protein, suggesting that GSK-3β exerts its function independent of β-catenin. Supporting this notion, our single-cell RNA sequencing (scRNA-seq) analysis revealed that GSK-3β-deficient DCs exhibited distinct gene expression patterns with minimally overlapping differentially expressed genes (DEGs) compared to DCs with activated β-catenin. This suggests that the deletion of GSK-3β in DCs is unlikely to lead to upregulation of β-catenin at the transcriptional level. Consistent with enhanced antitumor immunity, we also found that CD11c-GSK-3β-/- mice exhibited significantly augmented cross-priming of antigen-specific CD8 T cells following DC-targeted vaccines. We further found that the deletion of GSK-3β in DCs completely abrogated memory CD8 T cell responses, suggesting that GSK-3β in DCs also plays a negative role in regulating the differentiation and/or maintenance of memory CD8 T cells. scRNA-seq analysis further revealed that although the deletion of GSK-3β in DCs positively regulated transcriptional programs for effector differentiation and function of primed antigen-specific CD8 T cells in CD11c-GSK-3β-/- mice during the priming phase, it resulted in significantly reduced antigen-specific memory CD8 T cells, consistent with diminished memory responses. Taken together, our data demonstrate that GSK-3β in DCs has opposite functions in regulating cross-priming and memory CD8 T cell responses, and GSK-3β exerts its functions independent of its regulation of β-catenin. These novel insights suggest that targeting GSK-3β in cancer immunotherapies must consider its dual role in CD8 T cell responses.
Collapse
Affiliation(s)
- Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Jie Wang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Tianle Ma
- Department of Computer Science and Engineering, School of Engineering and Computer Science, Oakland University, Rochester, MI 48309, USA
| | - Congcong Yin
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Björn E Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
He F, Wu Z, Liu C, Zhu Y, Zhou Y, Tian E, Rosin-Arbesfeld R, Yang D, Wang MW, Zhu D. Targeting BCL9/BCL9L enhances antigen presentation by promoting conventional type 1 dendritic cell (cDC1) activation and tumor infiltration. Signal Transduct Target Ther 2024; 9:139. [PMID: 38811552 PMCID: PMC11137111 DOI: 10.1038/s41392-024-01838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 03/08/2024] [Accepted: 04/21/2024] [Indexed: 05/31/2024] Open
Abstract
Conventional type 1 dendritic cells (cDC1) are the essential antigen-presenting DC subset in antitumor immunity. Suppressing B-cell lymphoma 9 and B-cell lymphoma 9-like (BCL9/BCL9L) inhibits tumor growth and boosts immune responses against cancer. However, whether oncogenic BCL9/BCL9L impairs antigen presentation in tumors is still not completely understood. Here, we show that targeting BCL9/BCL9L enhanced antigen presentation by stimulating cDC1 activation and infiltration into tumor. Pharmacological inhibition of BCL9/BCL9L with a novel inhibitor hsBCL9z96 or Bcl9/Bcl9l knockout mice markedly delayed tumor growth and promoted antitumor CD8+ T cell responses. Mechanistically, targeting BCL9/BCL9L promoted antigen presentation in tumors. This is due to the increase of cDC1 activation and tumor infiltration by the XCL1-XCR1 axis. Importantly, using single-cell transcriptomics analysis, we found that Bcl9/Bcl9l deficient cDC1 were superior to wild-type (WT) cDC1 at activation and antigen presentation via NF-κB/IRF1 signaling. Together, we demonstrate that targeting BCL9/BCL9L plays a crucial role in cDC1-modulated antigen presentation of tumor-derived antigens, as well as CD8+ T cell activation and tumor infiltration. Targeting BCL9/BCL9L to regulate cDC1 function and directly orchestrate a positive feedback loop necessary for optimal antitumor immunity could serve as a potential strategy to counter immune suppression and enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Fenglian He
- Department of Pharmacology, Minhang Hospital, and Key Laboratory of Smart Drug Delivery, Shanghai Engineering Research Center of Immune Therapy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhongen Wu
- Department of Pharmacology, Minhang Hospital, and Key Laboratory of Smart Drug Delivery, Shanghai Engineering Research Center of Immune Therapy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chenglong Liu
- Department of Pharmacology, Minhang Hospital, and Key Laboratory of Smart Drug Delivery, Shanghai Engineering Research Center of Immune Therapy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yuanyuan Zhu
- Department of Pharmacology, Minhang Hospital, and Key Laboratory of Smart Drug Delivery, Shanghai Engineering Research Center of Immune Therapy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yan Zhou
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Enming Tian
- Department of Pharmacology, Minhang Hospital, and Key Laboratory of Smart Drug Delivery, Shanghai Engineering Research Center of Immune Therapy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Rina Rosin-Arbesfeld
- Department of Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dehua Yang
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Research Center for Deepsea Bioresources, Sanya, China.
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan.
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China.
| | - Di Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shandong Academy of Pharmaceutical Science, Jinan, China.
| |
Collapse
|
4
|
Toffoli EC, van Vliet AA, Forbes C, Arns AJ, Verheul HWM, Tuynman J, van der Vliet HJ, Spanholtz J, de Gruijl TD. Allogeneic NK cells induce the in vitro activation of monocyte-derived and conventional type-2 dendritic cells and trigger an inflammatory response under cancer-associated conditions. Clin Exp Immunol 2024; 216:159-171. [PMID: 38330230 PMCID: PMC11036108 DOI: 10.1093/cei/uxae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Natural killer (NK) cells are innate lymphocytes capable to recognize and kill virus-infected and cancer cells. In the past years, the use of allogeneic NK cells as anti-cancer therapy gained interest due to their ability to induce graft-versus-cancer responses without causing graft-versus-host disease and multiple protocols have been developed to produce high numbers of activated NK cells. While the ability of these cells to mediate tumor kill has been extensively studied, less is known about their capacity to influence the activity of other immune cells that may contribute to a concerted anti-tumor response in the tumor microenvironment (TME). In this study, we analyzed how an allogeneic off-the-shelf cord blood stem cell-derived NK-cell product influenced the activation of dendritic cells (DC). Crosstalk between NK cells and healthy donor monocyte-derived DC (MoDC) resulted in the release of IFNγ and TNF, MoDC activation, and the release of the T-cell-recruiting chemokines CXCL9 and CXCL10. Moreover, in the presence of prostaglandin-E2, NK cell/MoDC crosstalk antagonized the detrimental effect of IL-10 on MoDC maturation leading to higher expression of multiple (co-)stimulatory markers. The NK cells also induced activation of conventional DC2 (cDC2) and CD8+ T cells, and the release of TNF, GM-CSF, and CXCL9/10 in peripheral blood mononuclear cells of patients with metastatic colorectal cancer. The activated phenotype of MoDC/cDC2 and the increased release of pro-inflammatory cytokines and T-cell-recruiting chemokines resulting from NK cell/DC crosstalk should contribute to a more inflamed TME and may thus enhance the efficacy of T-cell-based therapies.
Collapse
Affiliation(s)
- E C Toffoli
- Department of Medical Oncology, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - A A van Vliet
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Glycostem Therapeutics, Oss, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
| | - C Forbes
- Department of Medical Oncology, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - A J Arns
- Department of Medical Oncology, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - H W M Verheul
- Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - J Tuynman
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - H J van der Vliet
- Department of Medical Oncology, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Lava Therapeutics, Utrecht, The Netherlands
| | - J Spanholtz
- Glycostem Therapeutics, Oss, The Netherlands
| | - T D de Gruijl
- Department of Medical Oncology, Amsterdam UMC location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Wondergem NE, Nijenhuis DNLM, Poell JB, Leemans CR, Brakenhoff RH, van de Ven R. At the Crossroads of Molecular Biology and Immunology: Molecular Pathways for Immunological Targeting of Head and Neck Squamous Cell Carcinoma. FRONTIERS IN ORAL HEALTH 2022; 2:647980. [PMID: 35047999 PMCID: PMC8757702 DOI: 10.3389/froh.2021.647980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Recent advances in immunotherapy for head and neck squamous cell carcinoma (HNSCC) have led to implementation of anti-programmed death receptor 1 (PD-1) immunotherapy to standard of care for recurrent/metastatic HNSCC. However, the majority of tumors do not respond to these therapies, indicating that these tumors are not immunogenic or other immunosuppressive mechanisms might be at play. Aim: Given their role in carcinogenesis as well as in immune modulation, we discuss the relation between the STAT3, PI3K/AKT/mTOR and Wnt signaling pathways to identify potential targets to empower the immune response against HNSCC. Results: We focused on three pathways. First, STAT3 is often overactivated in HNSCC and induces the secretion of immunosuppressive cytokines, thereby promoting recruitment of immune suppressive regulatory T cells and myeloid-derived suppressor cells to the tumor microenvironment (TME) while hampering the development of dendritic cells. Second, PI3K/AKT/mTOR mutational activation results in increased tumor proliferation but could also be important in HNSCC immune evasion due to the downregulation of components in the antigen-processing machinery. Third, canonical Wnt signaling is overactivated in >20% of HNSCC and could be an interesting pleotropic target since it is related to increased tumor cell proliferation and the development of an immunosuppressive HNSCC TME. Conclusion: The molecular pathology of HNSCC is complex and heterogeneous, varying between sites and disease etiology (i.e., HPV). The in HNSCC widely affected signaling pathways STAT3, PI3K/AKT/mTOR and Wnt are implicated in some of the very mechanisms underlying immune evasion of HNSCC, thereby representing promising targets to possibly facilitate immunotherapy response.
Collapse
Affiliation(s)
- Niels E Wondergem
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Dennis N L M Nijenhuis
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jos B Poell
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - C René Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Rieneke van de Ven
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
6
|
Michielon E, López González M, Burm JLA, Waaijman T, Jordanova ES, de Gruijl TD, Gibbs S. Micro-environmental cross-talk in an organotypic human melanoma-in-skin model directs M2-like monocyte differentiation via IL-10. Cancer Immunol Immunother 2020; 69:2319-2331. [PMID: 32507967 PMCID: PMC7568725 DOI: 10.1007/s00262-020-02626-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Preclinical assessment of novel therapies to fight cancer requires models that reflect the human physiology and immune response. Here, we established an in vitro three-dimensional (3D) reconstructed organotypic human melanoma-in-skin (Mel-RhS) model to investigate cellular and molecular features of tumor formation over a period of 6 weeks. Tumor nests developed over time at the epidermal-dermal junction and spread towards the dermis, in places disrupting the basement membrane. This coincided with secretion of matrix metalloproteinase 9 (MMP-9) by melanoma cells. These features resemble the initial stages of invasive melanoma. Interestingly, while the SK-MEL-28 cell line did not secrete detectable levels of interleukin-10 (IL-10) in traditional two-dimensional monolayers, it did express IL-10 in the 3D Mel-RhS, as did the surrounding keratinocytes and fibroblasts. This cellular cross-talk-induced secretion of IL-10 in the Mel-RhS indicated the generation of an immune suppressive microenvironment. Culture supernatants from Mel-RhS interfered with monocyte-to-dendritic-cell differentiation, leading to the development of M2-like macrophages, which was in part prevented by antibody-mediated IL-10 blockade. Indeed, high-dimensional single-cell analysis revealed a shift within the monocyte population away from a CD163+PD-L1+ M2-like phenotype upon IL-10 blockade. Thus, the 3D configuration of the Mel-RhS model revealed a role for IL-10 in immune escape through misdirected myeloid differentiation, which would have been missed in classical monolayer cultures.
Collapse
Affiliation(s)
- Elisabetta Michielon
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marta López González
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Judith L A Burm
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Taco Waaijman
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Ekaterina S Jordanova
- Center for Gynecologic Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Tumor Microenvironment: Implications in Melanoma Resistance to Targeted Therapy and Immunotherapy. Cancers (Basel) 2020; 12:cancers12102870. [PMID: 33036192 PMCID: PMC7601592 DOI: 10.3390/cancers12102870] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The response to pharmacological treatments is deeply influenced by the tight interactions between the tumor cells and the microenvironment. In this review we describe, for melanoma, the most important mechanisms of resistance to targeted therapy and immunotherapy mediated by the components of the microenvironment. In addition, we briefly describe the most recent therapeutic advances for this pathology. The knowledge of molecular mechanisms, which are underlying of drug resistance, is fundamental for the development of new therapeutic approaches for the treatment of melanoma patients. Abstract Antitumor therapies have made great strides in recent decades. Chemotherapy, aggressive and unable to discriminate cancer from healthy cells, has given way to personalized treatments that, recognizing and blocking specific molecular targets, have paved the way for targeted and effective therapies. Melanoma was one of the first tumor types to benefit from this new care frontier by introducing specific inhibitors for v-Raf murine sarcoma viral oncogene homolog B (BRAF), mitogen-activated protein kinase kinase (MEK), v-kit Hardy–Zuckerman 4 feline sarcoma viral oncogene homolog (KIT), and, recently, immunotherapy. However, despite the progress made in the melanoma treatment, primary and/or acquired drug resistance remains an unresolved problem. The molecular dynamics that promote this phenomenon are very complex but several studies have shown that the tumor microenvironment (TME) plays, certainly, a key role. In this review, we will describe the new melanoma treatment approaches and we will analyze the mechanisms by which TME promotes resistance to targeted therapy and immunotherapy.
Collapse
|
8
|
Kamal MA, Al-Zahrani MH, Khan SH, Khan MH, Al-Subhi HA, Kuerban A, Aslam M, Al-Abbasi FA, Anwar F. Tubulin Proteins in Cancer Resistance: A Review. Curr Drug Metab 2020; 21:178-185. [DOI: 10.2174/1389200221666200226123638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
Cancer cells are altered with cell cycle genes or they are mutated, leading to a high rate of proliferation
compared to normal cells. Alteration in these genes leads to mitosis dysregulation and becomes the basis of tumor
progression and resistance to many drugs. The drugs which act on the cell cycle fail to arrest the process, making
cancer cell non-responsive to apoptosis or cell death. Vinca alkaloids and taxanes fall in this category and are
referred to as antimitotic agents. Microtubule proteins play an important role in mitosis during cell division as a
target site for vinca alkaloids and taxanes. These proteins are dynamic in nature and are composed of α-β-tubulin
heterodimers. β-tubulin specially βΙΙΙ isotype is generally altered in expression within cancerous cells. Initially,
these drugs were very effective in the treatment of cancer but failed to show their desired action after initial
chemotherapy. The present review highlights some of the important targets and their mechanism of resistance
offered by cancer cells with new promising drugs from natural sources that can lead to the development of a new
approach to chemotherapy.
Collapse
Affiliation(s)
- Mohammad Amjad Kamal
- Metabolomics and Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maryam Hassan Al-Zahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salman Hasan Khan
- Department of Orthodontics, and Dentofacial Orthopaedics, TMU Dental College, Moradabad, Uttar Pradesh, India
| | - Mateen Hasan Khan
- Department of Pharmacology, Shri Venkateshwara University, Gajraula, Amroha, Uttar Pradesh, India
| | - Hani Awad Al-Subhi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abudukadeer Kuerban
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Aslam
- Department of Statistics, Faculy of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Ahmed Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Rotman J, Heeren AM, Gassama AA, Lougheed SM, Pocorni N, Stam AGM, Bleeker MCG, Zijlmans HJMAA, Mom CH, Kenter GG, Jordanova ES, de Gruijl TD. Adenocarcinoma of the Uterine Cervix Shows Impaired Recruitment of cDC1 and CD8 + T Cells and Elevated β-Catenin Activation Compared with Squamous Cell Carcinoma. Clin Cancer Res 2020; 26:3791-3802. [PMID: 32220890 DOI: 10.1158/1078-0432.ccr-19-3826] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/14/2020] [Accepted: 03/23/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Adenocarcinoma of the uterine cervix is the second most common type of cervical cancer after squamous cell carcinoma (SCC). Although both subtypes are treated similarly, patients with adenocarcinoma have a worse prognosis. In this study, immunologic features of the tumor microenvironment in these two subsets were pursued with potential therapeutic implications. EXPERIMENTAL DESIGN The immune microenvironment of primary tumors and nonmetastatic tumor-draining lymph nodes (TDLN) was compared between patients with cervical adenocarcinoma (n = 16) and SCC (n = 20) by polychromatic flow cytometry and by transcriptional profiling of the primary tumors (n = 299) using publicly available data from The Cancer Genome Atlas (TCGA). RESULTS Flow cytometric analyses revealed intact T-cell differentiation in TDLNs, but hampered effector T-cell trafficking to the primary tumors in adenocarcinoma, as compared with SCC. TCGA analysis demonstrated higher expression of chemokines involved in effector T-cell homing (CXCL9/10/11) in SCC primary tumors as compared with adenocarcinoma primary tumors, which was highly correlated to a transcriptional signature for type I conventional dendritic cells (cDC1). This was consistent with elevated frequencies of CD141/BDCA3+cDC1 in primary tumor SCC samples relative to adenocarcinoma and correspondingly elevated levels of CXCL9 and CXCL10 in 24-hour ex vivo cultures. Hampered cDC1 recruitment in adenocarcinoma was in turn related to lower transcript levels of cDC1-recruiting chemokines and an elevated β-catenin activation score and was associated with poor overall survival. CONCLUSIONS Our data have identified an opportunity for the investigation of potentially novel therapeutic interventions in adenocarcinoma of the cervix, that is, β-catenin inhibition and cDC1 mobilization.
Collapse
Affiliation(s)
- Jossie Rotman
- Cancer Center Amsterdam (CCA), Center for Gynecologic Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - A Marijne Heeren
- Cancer Center Amsterdam (CCA), Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Awa A Gassama
- Cancer Center Amsterdam (CCA), Center for Gynecologic Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Sinead M Lougheed
- Cancer Center Amsterdam (CCA), Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Noëlle Pocorni
- Cancer Center Amsterdam (CCA), Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Anita G M Stam
- Cancer Center Amsterdam (CCA), Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Maaike C G Bleeker
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Henry J M A A Zijlmans
- Center for Gynecologic Oncology Amsterdam (CGOA), The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, the Netherlands
| | - Constantijne H Mom
- Cancer Center Amsterdam (CCA), Center for Gynecologic Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands.,Cancer Center Amsterdam (CCA), Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Gemma G Kenter
- Cancer Center Amsterdam (CCA), Center for Gynecologic Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands.,Center for Gynecologic Oncology Amsterdam (CGOA), The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, the Netherlands
| | - Ekaterina S Jordanova
- Cancer Center Amsterdam (CCA), Center for Gynecologic Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands.,Cancer Center Amsterdam (CCA), Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tanja D de Gruijl
- Cancer Center Amsterdam (CCA), Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Suryawanshi A, Hussein MS, Prasad PD, Manicassamy S. Wnt Signaling Cascade in Dendritic Cells and Regulation of Anti-tumor Immunity. Front Immunol 2020; 11:122. [PMID: 32132993 PMCID: PMC7039855 DOI: 10.3389/fimmu.2020.00122] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/16/2020] [Indexed: 01/26/2023] Open
Abstract
Dendritic cells (DCs) control the strength and quality of antigen-specific adaptive immune responses. This is critical for launching a robust immunity against invading pathogens while maintaining a state of tolerance to self-antigens. However, this also represents a fundamental barrier to anti-tumor immune responses and cancer immunotherapy. DCs in the tumor microenvironment (TME) play a key role in this process. The factors in the TME and signaling networks that program DCs to a regulatory state are not fully understood. Recent advances point to novel mechanisms by which the canonical Wnt signaling cascade in DCs regulates immune suppression, and the same pathway in tumors is associated with the evasion of anti-tumor immunity. Here, we review these recent advances in the context of the pleiotropic effects of the Wnts in shaping anti-tumor immune responses by modulating DC functions. In addition, we will discuss how Wnt/β-catenin pathway in DCs can be targeted for successful cancer immunotherapy.
Collapse
Affiliation(s)
- Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Mohamed S Hussein
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Puttur D Prasad
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Santhakumar Manicassamy
- Georgia Cancer Center, Augusta University, Augusta, GA, United States.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|