1
|
Thiebaut PA, Isnard P, Couronné L, Kaltenbach S, Lepine C, Sibon D, Balducci E, Ruminy P, Badoual C, Brière J, Hermine O, Asnafi V, Gaulard P, Bruneau J, Molina TJ. Multimodal integration of clinic, pathology, and genomics for a rare diagnosis of EBV-positive primary mediastinal large B-cell lymphoma. Virchows Arch 2024:10.1007/s00428-024-03836-2. [PMID: 38834916 DOI: 10.1007/s00428-024-03836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Affiliation(s)
- Pierre-Alain Thiebaut
- Department of Pathology, Necker-Enfants Malades and Robert Debré University Hospitals, APHP, Université Paris Cité, 149, Rue de Sèvres, 75015, Paris, France
| | - Pierre Isnard
- Department of Pathology, Necker-Enfants Malades and Robert Debré University Hospitals, APHP, Université Paris Cité, 149, Rue de Sèvres, 75015, Paris, France.
| | - Lucile Couronné
- Laboratory of Onco-Hematology, Necker-Enfants Malades University Hospital, APHP, Université Paris Cité, Paris, France
| | - Sophie Kaltenbach
- Laboratory of Onco-Hematology, Necker-Enfants Malades University Hospital, APHP, Université Paris Cité, Paris, France
| | - Charles Lepine
- Department of Pathology, Georges Pompidou University Hospital, APHP, Université Paris Cité, Paris, France
| | - David Sibon
- Department of Hematology, Necker-Enfants Malades University Hospital, APHP, Université Paris Cité, Paris, France
| | - Estelle Balducci
- Laboratory of Onco-Hematology, Necker-Enfants Malades University Hospital, APHP, Université Paris Cité, Paris, France
| | - Philippe Ruminy
- INSERM U1245, UNIROUEN, University of Normandie, Rouen, France
| | - Cécile Badoual
- Department of Pathology, Georges Pompidou University Hospital, APHP, Université Paris Cité, Paris, France
| | - Josette Brière
- Department of Pathology, Necker-Enfants Malades and Robert Debré University Hospitals, APHP, Université Paris Cité, 149, Rue de Sèvres, 75015, Paris, France
| | - Olivier Hermine
- Department of Hematology, Necker-Enfants Malades University Hospital, APHP, Université Paris Cité, Paris, France
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, Necker-Enfants Malades University Hospital, APHP, Université Paris Cité, Paris, France
| | - Phillippe Gaulard
- Department of Pathology, University Hospital Henri Mondor, AP-HP, Créteil, France
| | - Julie Bruneau
- Department of Pathology, Necker-Enfants Malades and Robert Debré University Hospitals, APHP, Université Paris Cité, 149, Rue de Sèvres, 75015, Paris, France
| | - Thierry Jo Molina
- Department of Pathology, Necker-Enfants Malades and Robert Debré University Hospitals, APHP, Université Paris Cité, 149, Rue de Sèvres, 75015, Paris, France
| |
Collapse
|
2
|
Cerchietti L. Genetic mechanisms underlying tumor microenvironment composition and function in diffuse large B-cell lymphoma. Blood 2024; 143:1101-1111. [PMID: 38211334 PMCID: PMC10972714 DOI: 10.1182/blood.2023021002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
ABSTRACT Cells in the tumor microenvironment (TME) of diffuse large B-cell lymphoma (DLBCL) show enormous diversity and plasticity, with functions that can range from tumor inhibitory to tumor supportive. The patient's age, immune status, and DLBCL treatments are factors that contribute to the shaping of this TME, but evidence suggests that genetic factors, arising principally in lymphoma cells themselves, are among the most important. Here, we review the current understanding of the role of these genetic drivers of DLBCL in establishing and modulating the lymphoma microenvironment. A better comprehension of the relationship between lymphoma genetic factors and TME biology should lead to better therapeutic interventions, especially immunotherapies.
Collapse
Affiliation(s)
- Leandro Cerchietti
- Hematology and Oncology Division, Medicine Department, New York-Presbyterian Hospital, Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY
| |
Collapse
|
3
|
Li JW, Deng C, Zhou XY, Deng R. The biology and treatment of Epstein-Barr virus-positive diffuse large B cell lymphoma, NOS. Heliyon 2024; 10:e23921. [PMID: 38234917 PMCID: PMC10792184 DOI: 10.1016/j.heliyon.2023.e23921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
EBV positive Diffuse Large B-cell lymphoma, not otherwise specified (EBV+DLBCL-NOS) referred to DLBCL with expression of EBV encoded RNA in tumor nucleus. EBV+DLBCL-NOS patients present with more advanced clinical stages and frequent extranodal involvement. Although rituximab-containing immunochemotherapy regimens can significantly improve outcomes in patients with EBV+DLBCL, the best first-line treatment needs to be further explored. Due to the relatively low incidence and regional variation of EBV+DLBCL-NOS, knowledge about this particular subtype of lymphoma remains limited. Some signaling pathways was abnormally activated in EBV+DLBCL-NOS, including NF-κB and JAK/STAT pathways) and other signal transduction pathways. In addition, immune processes such as interferon response, antigen-presenting system and immune checkpoint molecule abnormalities were also observed. Currently, chimeric antigen receptor T-cell (CAR-T) therapy, chemotherapy combined with immunotherapy and novel targeted therapeutic drugs are expected to improve the prognosis of EBV+DLBCL-NOS patients, but more studies are needed to confirm this.
Collapse
Affiliation(s)
- Ji-Wei Li
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Chao Deng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Renfang Deng
- Department of Oncology, The Second Hospital of Zhuzhou City, Zhuzhou, 412000, China
| |
Collapse
|
4
|
Sausen DG, Poirier MC, Spiers LM, Smith EN. Mechanisms of T cell evasion by Epstein-Barr virus and implications for tumor survival. Front Immunol 2023; 14:1289313. [PMID: 38179040 PMCID: PMC10764432 DOI: 10.3389/fimmu.2023.1289313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent oncogenic virus estimated to infect greater than 90% of the world's population. Following initial infection, it establishes latency in host B cells. EBV has developed a multitude of techniques to avoid detection by the host immune system and establish lifelong infection. T cells, as important contributors to cell-mediated immunity, make an attractive target for these immunoevasive strategies. Indeed, EBV has evolved numerous mechanisms to modulate T cell responses. For example, it can augment expression of programmed cell death ligand-1 (PD-L1), which inhibits T cell function, and downregulates the interferon response, which has a strong impact on T cell regulation. It also modulates interleukin secretion and can influence major histocompatibility complex (MHC) expression and presentation. In addition to facilitating persistent EBV infection, these immunoregulatory mechanisms have significant implications for evasion of the immune response by tumor cells. This review dissects the mechanisms through which EBV avoids detection by host T cells and discusses how these mechanisms play into tumor survival. It concludes with an overview of cancer treatments targeting T cells in the setting of EBV-associated malignancy.
Collapse
Affiliation(s)
- D. G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | | | | |
Collapse
|
5
|
Qian K, Fu S, Wang J, Li Y, Xian J, Ye J. Major histocompatibility complex class IIα and IIβ of pufferfish (Takifugu obscurus): Identification and functional characterization in response to bacterial challenge. JOURNAL OF FISH DISEASES 2023; 46:1049-1064. [PMID: 37357462 DOI: 10.1111/jfd.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023]
Abstract
Classical major histocompatibility complex (MHC) class II molecules play an essential role in immune system. In this study, MHC IIα (Pf-MHC IIα) and MHC IIβ (Pf-MHC IIβ) homology genes from pufferfish (Takifugu obscurus) were cloned and their functional characterization in response to bacterial challenge was identified. The nucleotide sequences of the open reading frames (ORFs) of pufferfish Pf-MHC IIα and Pf-MHC IIβ were 708 bp and 750 bp, encoding 235 aa and 249 aa, respectively. The structure of Pf-MHC IIα or Pf-MHC IIβ contained a signal peptide, an α1/β1 domain, an α2/β2 domain, a transmembrane region and a cytoplasmic region. Multiple sequence alignment and phylogenetic analysis showed that Pf-MHC IIα and Pf-MHC IIβ molecules had the highest similarity with Fugu rubripes (Takifugu rubripes). Cellular localization analysis indicated that the distribution of Pf-MHC IIα and Pf-MHC IIβ was in the lymphocyte membrane and cytoplasm. qRT-PCR results showed that Pf-MHC IIα and Pf-MHC IIβ expressed relatively high in skin, gills and gut. In addition, after stimulation challenge in vitro (lipopolysaccharide, or polyinosinic: polycytidylic acid) and in vivo (A. hydrophila), the mRNA expressions of Pf-MHC IIα and Pf-MHC IIβ were significantly up-regulated in lymphocytes and in tissues of skin, gills, gut and head kidney. Moreover, Pf-MHC IIα or Pf-MHC IIβ neutralization reduced the ability of A. hydrophila to induce the expressions of lymphocyte cytokines (TNF-α, IL-1β and IL-10). Overall, it is speculated that Pf-MHC IIα and Pf-MHC IIβ may play an important role in the host response against A. hydrophila in pufferfish.
Collapse
Affiliation(s)
- Kun Qian
- Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shengli Fu
- Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Junru Wang
- Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yuan Li
- Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jianan Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, CATAS, Haikou, China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
6
|
Soo Hoo WI, Higa K, McCormick AA. Vaccination against Epstein-Barr Latent Membrane Protein 1 Protects against an Epstein-Barr Virus-Associated B Cell Model of Lymphoma. BIOLOGY 2023; 12:983. [PMID: 37508413 PMCID: PMC10376452 DOI: 10.3390/biology12070983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
In this study, we demonstrate that expression of viral latent membrane protein 1 (LMP1) in a mouse B cell line renders the animals responsive to protection from a 38C13-LMP1 tumor challenge with a novel vaccine. The Epstein-Barr virus (EBV) preferentially infects circulating B lymphocytes, has oncogenic potential, and is associated with a wide variety of B cell lymphomas. EBV is ectotrophic to human cells, and currently there are no B cell animal models of EBV-associated lymphoma that can be used to investigate vaccine immunotherapy. Since most EBV-infected human tumor cells express latent membrane protein 1 (LMP1) on their surface, this viral antigen was tested as a potential target for an anticancer vaccine in a mouse model. Here, we describe a new mouse model of LMP1-expressing B cell lymphoma produced with plasmid transduction of 38C13 into mouse B cells. The expression of LMP-1 was confirmed with a western blot analysis and immunocytochemistry. We then designed a novel LMP1 vaccine, by fusing viral antigen LMP1 surface loop epitopes to the surface of a viral antigen carrier, the Tobacco Mosaic virus (TMV). Vaccinated mice produced high titer antibodies against the TMV-LMP1 vaccine; however, cellular responses were at the baseline, as measured with IFNγ ELISpot. Despite this, the vaccine showed significant protection from a 38C13-LMP1 tumor challenge. To provide additional immune targets, we compared TMV-LMP1 peptide immunization with DNA immunization with the full-length LMP1 gene. Anti-LMP1 antibodies were significantly higher in TMV-LMP1-vaccinated mice compared to the DNA-immunized mice, but, as predicted, DNA-vaccinated mice had improved cellular responses using IFNγ ELISpot. Surprisingly, the TMV-LMP1 vaccine provided protection from a 38C13-LMP1 tumor challenge, while the DNA vaccine did not. Thus, we demonstrated that LMP1 expression in a mouse B cell line is responsive to antibody immunotherapy that may be applied to EBV-associated disease.
Collapse
Affiliation(s)
- Wesley I Soo Hoo
- College of Pharmacy, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Kaylie Higa
- College of Pharmacy, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Alison A McCormick
- College of Pharmacy, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| |
Collapse
|
7
|
Takahara T, Nakamura S, Tsuzuki T, Satou A. The Immunology of DLBCL. Cancers (Basel) 2023; 15:835. [PMID: 36765793 PMCID: PMC9913124 DOI: 10.3390/cancers15030835] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy and is the most common type of malignant lymphoid neoplasm. While some DLBCLs exhibit strong cell-autonomous survival and proliferation activity, others depend on interactions with non-malignant cells for their survival and proliferation. Recent next-generation sequencing studies have linked these interactions with the molecular classification of DLBCL. For example, germinal center B-cell-like DLBCL tends to show strong associations with follicular T cells and epigenetic regulation of immune recognition molecules, whereas activated B-cell-like DLBCL shows frequent genetic aberrations affecting the class I major histocompatibility complex. Single-cell technologies have also provided detailed information about cell-cell interactions and the cell composition of the microenvironment of DLBCL. Aging-related immunological deterioration, i.e., immunosenescence, also plays an important role in DLBCL pathogenesis, especially in Epstein-Barr virus-positive DLBCL. Moreover, DLBCL in "immune-privileged sites"-where multiple immune-modulating mechanisms exist-shows unique biological features, including frequent down-regulation of immune recognition molecules and an immune-tolerogenic tumor microenvironment. These advances in understanding the immunology of DLBCL may contribute to the development of novel therapies targeting immune systems.
Collapse
Affiliation(s)
- Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya 466-8550, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan
| |
Collapse
|
8
|
He M, Liu B, Tang G, Jiao L, Liu X, Yin S, Wang T, Chen J, Gao L, Ni X, Wang L, Xu L, Yang J. B2M mutation paves the way for immune tolerance in pathogenesis of Epstein-Barr virus positive diffuse large B-cell lymphomas. J Cancer 2022; 13:3615-3622. [PMID: 36606194 PMCID: PMC9809314 DOI: 10.7150/jca.75813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
This study focused genetic pathogenesis and tumor microenvironment of Epstein-Barr virus (EBV) positive diffuse large B-cell lymphomas (DLBCL) in patients without immunodeficiency. DNA samples from these cases were sequenced by next generation sequencing (NGS) using a selected gene panel. Results revealed that most gene mutations were not specific for EBV positive DLBCL. However, B2M (β2-microglobulin) mutations were significantly increased and HLA-I or HLA-II expression was decreased in these cases, which was related to patient's poor outcome. B2M mutations and deregulation of B2M expression were further confirmed by Sanger sequencing and immunohistochemistry. Reducing the infiltration of CD8+ T lymphocytes, related to decreased expression of HLA-I or HLA-II was found in these patients. These results suggest that the mutations of B2M could cause the disruption of the expression and functions of this important subunit of HLA, leading to decreased expression of HLA-I or HLA-II and subsequently to reduce T lymphocyte infiltration in tumor tissues. The consequence of this event lessens the recognition and elimination of EBV+ tumor cells by host immunity and paves the way for the host immune tolerance to EBV+ tumor cells by evading immune recognition and escaping the T lymphocyte killing.
Collapse
Affiliation(s)
- Miaoxia He
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433.,✉ Corresponding author: Miaoxia He, MD;PhD. Department of Hematology, Changhai Hospital, 168 Changhai Road, Building 17, Room 709, Shanghai, China 200433 . Phone number: 86-18317172656; Fax: 86-21-31162260. Jianmin Yang, MD; PhD. Department of Hematology, Changhai Hospital, 168 Changhai Road, Building 6, Room 709, Shanghai, China 200433. ,; Phone number: 86-21-31161285; Fax: 86-21-31161285
| | - Bin Liu
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Gusheng Tang
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Lijuan Jiao
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Xuefei Liu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Shuyi Yin
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Tao Wang
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Jie Chen
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Lei Gao
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Xiong Ni
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Libin Wang
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Lili Xu
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433
| | - Jianmin Yang
- Departments of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, China 200433.,✉ Corresponding author: Miaoxia He, MD;PhD. Department of Hematology, Changhai Hospital, 168 Changhai Road, Building 17, Room 709, Shanghai, China 200433 . Phone number: 86-18317172656; Fax: 86-21-31162260. Jianmin Yang, MD; PhD. Department of Hematology, Changhai Hospital, 168 Changhai Road, Building 6, Room 709, Shanghai, China 200433. ,; Phone number: 86-21-31161285; Fax: 86-21-31161285
| |
Collapse
|
9
|
Xie W, Medeiros LJ, Li S, Tang G, Fan G, Xu J. PD-1/PD-L1 Pathway: A Therapeutic Target in CD30+ Large Cell Lymphomas. Biomedicines 2022; 10:biomedicines10071587. [PMID: 35884893 PMCID: PMC9313053 DOI: 10.3390/biomedicines10071587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
The programmed death-ligands, PD-L1 and PD-L2, reside on tumor cells and can bind with programmed death-1 protein (PD-1) on T-cells, resulting in tumor immune escape. PD-1 ligands are highly expressed in some CD30+ large cell lymphomas, including classic Hodgkin lymphoma (CHL), primary mediastinal large B-cell lymphoma (PMBL), Epstein–Barr virus (EBV)-positive diffuse large B-cell lymphoma (EBV+ DLBCL), and anaplastic large cell lymphoma (ALCL). The genetic alteration of the chromosome 9p24.1 locus, the location of PD-L1, PD-L2, and JAK2 are the main mechanisms leading to PD-L1 and PD-L2 overexpression and are frequently observed in these CD30+ large cell lymphomas. The JAK/STAT pathway is also commonly constitutively activated in these lymphomas, further contributing to the upregulated expression of PD-L1 and PD-L2. Other mechanisms underlying the overexpression of PD-L1 and PD-L2 in some cases include EBV infection and the activation of the mitogen-activated protein kinase (MAPK) pathway. These cellular and molecular mechanisms provide a scientific rationale for PD-1/PD-L1 blockade in treating patients with relapsed/refractory (R/R) disease and, possibly, in newly diagnosed patients. Given the high efficacy of PD-1 inhibitors in patients with R/R CHL and PMBL, these agents have become a standard treatment in these patient subgroups. Preliminary studies of PD-1 inhibitors in patients with R/R EBV+ DLBCL and R/R ALCL have also shown promising results. Future directions for these patients will likely include PD-1/PD-L1 blockade in combination with other therapeutic agents, such as brentuximab or traditional chemotherapy regimens.
Collapse
Affiliation(s)
- Wei Xie
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA; (W.X.); (G.F.)
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
| | - Guang Fan
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA; (W.X.); (G.F.)
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
- Correspondence: ; Tel.: +1-713-794-1220; Fax: +1-713-563-3166
| |
Collapse
|
10
|
Expression of PD-1, PD-L1 and PD-L2 in Lymphomas in Patients with Pre-Existing Rheumatic Diseases-A Possible Association with High Rheumatoid Arthritis Disease Activity. Cancers (Basel) 2022; 14:cancers14061509. [PMID: 35326658 PMCID: PMC8946311 DOI: 10.3390/cancers14061509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Current research seeks to identify subgroups of non-Hodgkin lymphoma (NHL) patients responsive to PD-1 blocking agents. Whether patients with pre-existing rheumatic diseases might constitute such a subgroup is unknown. We determined intratumoral expression of PD-1 and its ligands in lymphoma patients with pre-existing rheumatic diseases. We included 215 patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) or Sjögren's syndrome with subsequent lymphoma and 74 diffuse large B-cell lymphoma (DLBCL) controls without rheumatic disease. PD-1 and PD-ligand immunohistochemical markers were applied on tumor tissue microarrays. The number of PD-1+ tumor infiltrating leukocytes (TILs) and proportions of PD-L1+ and PD-L2+ tumor cells and TILs were calculated and correlated with clinical data. Expression of PD-L1 in tumor cells and TILs was highest in classical Hodgkin lymphoma and DLBCL. In DLBCLs, expression of PD-1 in TILs and PD-L1 in tumor cells was similar in RA, SLE and controls. In RA-DLBCL, high expression of PD-L1 in tumor cells was significantly more common in patients with the most severe RA disease and was associated with inferior overall survival in multivariable analysis.
Collapse
|
11
|
Liu ZH, Zhang L, Jing FJ, Xiao SX, Gao Y, Bian HY, Zhao X. Genetic Polymorphisms in NLRP3 Inflammasome-Associated Genes in Patients with B-Cell Non-Hodgkin's Lymphoma. J Inflamm Res 2021; 14:5687-5697. [PMID: 34754215 PMCID: PMC8570379 DOI: 10.2147/jir.s329090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose The role of NLRP3 inflammasome in the progression of many diseases has been increasingly recognized. However, the function of this molecular assembly in the development and progression of B-cell non-Hodgkin's lymphoma remains unclear. Patients and Methods In this study, we investigated the polymorphisms in the NLRP3 inflammasome associated genes in 281 patients with B-cell non-Hodgkin's lymphoma and 385 age- and gender-matched healthy controls. Results We found that IL-18 (rs1946518) and NFκB-94 ins/del (rs28362491) contributed to susceptibility to B-cell non-Hodgkin's lymphoma. Specifically, the allele "G" in IL-18 (rs1946518) and allele "ins" in NFκB-94 ins/del (rs28362491) were significantly associated with the risk of disease. The AA genotype of CARD8 (rs2043211) and the higher level of serum lactate dehydrogenase (LDH) led to statistically poorer B-cell non-Hodgkin's lymphoma survival. Less frequent genotype TT of CARD8 (rs2043211) was observed in patients with higher LDH level, clinical stages III-IV of disease, and IPI 3-5, although the relationship did not reach statistical significance. However, IPI is an independent prognostic factor for B-cell non-Hodgkin's lymphoma. Conclusion IL-18 (rs1946518) and NFκB-94 ins/del (rs28362491) gene polymorphisms appear to be the factors influencing the risk of B-cell non-Hodgkin's lymphoma. CARD8 (rs2043211) polymorphisms are important factors for the survival of patients with this disease.
Collapse
Affiliation(s)
- Zhi-He Liu
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Lin Zhang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Fan-Jing Jing
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Shu-Xin Xiao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Yan Gao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Hai-Yan Bian
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Xia Zhao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| |
Collapse
|
12
|
Li X, Zhang W. Expression of PD-L1 in EBV-associated malignancies. Int Immunopharmacol 2021; 95:107553. [PMID: 33765613 DOI: 10.1016/j.intimp.2021.107553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus infection is closely related to the occurrence and development of a variety of malignant tumors. Tumor immunotherapy has been combined with modern biological high-tech technology, and has become the fourth cancer treatment mode after surgery, chemotherapy and radiotherapy. In 2013, immunotherapy was named the first of ten scientific breakthroughs by science. It aims to control and destroy tumor cells by stimulating and enhancing autoimmune function. In recent years, immune checkpoint inhibitors (ICIs) targeting PD-L1 have become a research hotspot in the field of cancer. Recent studies have shown that EBV infection can upregulate PD-L1 through complex mechanisms. Further understanding of these mechanisms and prevention of hyperprogressive disease (HPD) can make PD-L1 immune checkpoint inhibitors an effective way of immunotherapy for EBV related malignant tumors.
Collapse
Affiliation(s)
- Xiaoxu Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China; Clinical Laboratory, The Second People's Hospital of Wuhu City, Wuhu 241001, Anhui, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
13
|
Liu B, Shao Y, Fu R. Current research status of HLA in immune-related diseases. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:340-350. [PMID: 33657268 PMCID: PMC8127548 DOI: 10.1002/iid3.416] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Human leukocyte antigen (HLA), also known as human major histocompatibility complex (MHC), is encoded by the HLA gene complex, and is currently known to have the highest gene density and the most polymorphisms among human chromosomal areas. HLA is divided into class I antigens, class II antigens, and class III antigens according to distribution and function. Classical HLA class I antigens include HLA-A, HLA-B, and HLA-C; HLA class II antigens include HLA-DP, HLA-DQ, and HLA-DR; nonclassical HLA class I and II molecules include HLA-F, E, H, X, DN, DO, and DM; and others, such as complement, are class III antigens. HLA is closely related to the body's immune response, regulation, and surveillance and is of great significance in the study of autoimmune diseases, tumor immunity, organ transplantation, and reproductive immunity. HLA is an important research topic that bridges immunology and clinical diseases. With the development of research methods and technologies, there will be more discoveries and broader prospects.
Collapse
Affiliation(s)
- Bingnan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yuanyuan Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, PR China
| |
Collapse
|
14
|
Takahara T, Satou A, Ishikawa E, Kohno K, Kato S, Suzuki Y, Takahashi E, Ohashi A, Asano N, Tsuzuki T, Nakamura S. Clinicopathological analysis of neoplastic PD-L1-positive EBV + diffuse large B cell lymphoma, not otherwise specified, in a Japanese cohort. Virchows Arch 2020; 478:541-552. [PMID: 32803453 DOI: 10.1007/s00428-020-02901-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022]
Abstract
The programmed death 1 (PD1)/PD1 ligand (PD-L1) axis plays an important role in the pathogenesis of Epstein-Barr virus-positive diffuse large B cell lymphoma, not otherwise specified (EBV+ DLBCL, NOS). Here, we describe PD-L1 expression by EBV+ DLBCL, NOS in order to evaluate its possible contribution to the pathogenesis of this tumor. The study included 57 cases of EBV+ DLBCL, NOS. The median patient age was 69 years and 95% (n = 54) were aged > 45. Extranodal lesions were present in 39 (69%) at initial diagnosis. PD-L1 expression (mAb SP142-positive staining) was present in more than 5% of tumor cells in only six cases (11%), in clear contrast to the 77% reported in cases aged under 45 years. Among the PD-L1+ cases, three were nodal lesions. All six PD-L1+ cases progressed in the 3 years after diagnosis and four of the six patients died of the disease within 2 years. PD-L1+ cases had significantly shorter PFS (P = 0.002) and relatively short OS (P = 0.26), compared with PD-L1- cases. EBV+ DLBCL, NOS in the elderly infrequently expressed PD-L1 and had poor prognosis. PD-L1 expression in EBV+ DLBCL, NOS of the elderly sheds light on the pathogenetic role of immune senescence.
Collapse
Affiliation(s)
- Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata, Nagakute, 480-1195, Japan.
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata, Nagakute, 480-1195, Japan
| | - Eri Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kei Kohno
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Seiichi Kato
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yuka Suzuki
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Emiko Takahashi
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata, Nagakute, 480-1195, Japan
| | - Akiko Ohashi
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata, Nagakute, 480-1195, Japan
| | - Naoko Asano
- Department of Clinical Laboratory, Nagano Prefectural Suzaka Hospital, Nagano, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata, Nagakute, 480-1195, Japan
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
15
|
Salik B, Smyth MJ, Nakamura K. Targeting immune checkpoints in hematological malignancies. J Hematol Oncol 2020; 13:111. [PMID: 32787882 PMCID: PMC7425174 DOI: 10.1186/s13045-020-00947-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapies such as anti-programmed death 1 (PD-1) and anti-CTLA-4 (cytotoxic T lymphocyte-associated protein 4) have dramatically transformed treatment in solid tumor oncology. While immunotherapeutic approaches such as stem cell transplantation and anti-cancer monoclonal antibodies have made critical contributions to improve outcomes in hematological malignancies, clinical benefits of ICB are observed in only limited tumor types that are particularly characterized by a high infiltration of immune cells. Importantly, even patients that initially respond to ICB are unable to achieve long-term disease control using these therapies. Indeed, primary and acquired resistance mechanisms are differentially orchestrated in hematological malignancies depending on tumor types and/or genotypes, and thus, an in-depth understanding of the disease-specific immune microenvironments will be essential in improving efficacy. In addition to PD-1 and CTLA-4, various T cell immune checkpoint molecules have been characterized that regulate T cell responses in a non-redundant manner. Several lines of evidence suggest that these T cell checkpoint molecules might play unique roles in hematological malignancies, highlighting their potential as therapeutic targets. Targeting innate checkpoint molecules on natural killer cells and/or macrophages has also emerged as a rational approach against tumors that are resistant to T cell-mediated immunity. Given that various monoclonal antibodies against tumor surface proteins have been clinically approved in hematological malignancies, innate checkpoint blockade might play a key role to augment antibody-mediated cellular cytotoxicity and phagocytosis. In this review, we discuss recent advances and emerging roles of immune checkpoint blockade in hematological malignancies.
Collapse
Affiliation(s)
- Basit Salik
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia
| | - Kyohei Nakamura
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia.
| |
Collapse
|