1
|
Zhao L, Wang X, Liu H, Lang J. Chemotherapy-induced increase in CD47 expression in epithelial ovarian cancer. Gland Surg 2024; 13:1770-1784. [PMID: 39544975 PMCID: PMC11558286 DOI: 10.21037/gs-24-400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
Background Epithelial ovarian cancer (EOC) remains the most lethal gynecological malignancy with limited treatment options. CD47 is a critical immune checkpoint for tumor immune evasion and has been targeted in various clinical trials. This study aimed to assess the impact of chemotherapy on CD47 expression in EOC in order to determine the potential and optimal timing of CD47-targeted therapy in ovarian cancer. We analyzed the expression of CD47 in ovarian cancer and the effect of chemotherapy on the expression of CD47 in ovarian cancer tissues. Furthermore, we investigated the effect of chemotherapy on the expression of CD47 in ovarian cancer cells. Methods CD47 expression was examined using immunohistochemistry (IHC) of specimens from 78 patients with EOC who underwent neoadjuvant chemotherapy (NACT) and interval debulking surgery (IDS) with paired tissue specimens obtained before and after NACT. A retrospective review of the medical records was conducted to correlate demographic and survival data. Subsequently, we employed reverse transcription quantitative polymerase chain reaction (RT-qPCR) and flow cytometry analysis to examine and compare CD47 expression across human ovarian surface epithelial cell line (HOSE), SKOV3, and ES2 cells and to characterize the changes in CD47 expression in SKOV3 and ES2 cells after cisplatin treatment. Results CD47 expression was observed in 63 out of 78 (80.8%) cases before NACT. The expression of CD47 was not associated with the clinicopathological characteristics or the prognosis of patients with EOC. After three cancer specimens were excluded due to the absence of cancer cells following NACT, Wilcoxon exact tests of 75 pairs of matched specimens indicated that the expression of CD47 increased after chemotherapy (P=0.006). CD47 was expressed at varying levels in HOSE ovarian epithelial cells and SKOV3 and ES2 ovarian cancer cells. Notably, the CD47 messenger RNA (mRNA) expression of HOSE cells was observed to be lower than that of the SKOV3 and ES2 ovarian cancer cells (P<0.001). Following treatment with cisplatin, RT-qPCR indicated an increase in CD47 mRNA expression in SKOV3 and ES2 cells (P<0.001). Flow cytometry revealed a notable elevation in the cell surface CD47 protein mean fluorescence intensity of cisplatin-treated SKOV3 and ES2 cells (P<0.001). Conclusions CD47 is highly expressed in ovarian cancer, and NACT increases the expression of CD47, which may contribute to tumor immune evasion. It is possible that platinum-based chemotherapy may result in elevated CD47 mRNA expression and cell surface CD47 protein expression.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Reproductive Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Xueqin Wang
- Department of Reproductive Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Haining Liu
- Department of Reproductive Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Liu Y, Weng L, Wang Y, Zhang J, Wu Q, Zhao P, Shi Y, Wang P, Fang L. Deciphering the role of CD47 in cancer immunotherapy. J Adv Res 2024; 63:129-158. [PMID: 39167629 PMCID: PMC11380025 DOI: 10.1016/j.jare.2023.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Immunotherapy has emerged as a novel strategy for cancer treatment following surgery, radiotherapy, and chemotherapy. Immune checkpoint blockade and Chimeric antigen receptor (CAR)-T cell therapies have been successful in clinical trials. Cancer cells evade immune surveillance by hijacking inhibitory pathways via overexpression of checkpoint genes. The Cluster of Differentiation 47 (CD47) has emerged as a crucial checkpoint for cancer immunotherapy by working as a "don't eat me" signal and suppressing innate immune signaling. Furthermore, CD47 is highly expressed in many cancer types to protect cancer cells from phagocytosis via binding to SIRPα on phagocytes. Targeting CD47 by either interrupting the CD47-SIRPα axis or combing with other therapies has been demonstrated as an encouraging therapeutic strategy in cancer immunotherapy. Antibodies and small molecules that target CD47 have been explored in pre- and clinical trials. However, formidable challenges such as the anemia and palate aggregation cannot be avoided because of the wide presentation of CD47 on erythrocytes. AIM OF VIEW This review summarizes the current knowledge on the regulation and function of CD47, and provides a new perspective for immunotherapy targeting CD47. It also highlights the clinical progress of targeting CD47 and discusses challenges and potential strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review provides a comprehensive understanding of targeting CD47 in cancer immunotherapy, it also augments the concept of combination immunotherapy strategies by employing both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Linjun Weng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yanjin Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi, Medical Center, 39216 Jackson, MS, USA
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Pengcheng Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, No.266 Xincun West Road, Zibo 255000, Shandong Province, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China.
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Xing L, Wang Z, Feng Y, Luo H, Dai G, Sang L, Zhang C, Qian J. The biological roles of CD47 in ovarian cancer progression. Cancer Immunol Immunother 2024; 73:145. [PMID: 38832992 PMCID: PMC11150368 DOI: 10.1007/s00262-024-03708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024]
Abstract
Ovarian cancer is one of the most lethal malignant tumors, characterized by high incidence and poor prognosis. Patients relapse occurred in 65-80% after initial treatment. To date, no effective treatment has been established for these patients. Recently, CD47 has been considered as a promising immunotherapy target. In this paper, we reviewed the biological roles of CD47 in ovarian cancer and summarized the related mechanisms. For most types of cancers, the CD47/Sirpα immune checkpoint has attracted the most attention in immunotherapy. Notably, CD47 monoclonal antibodies and related molecules are promising in the immunotherapy of ovarian cancer, and further research is needed. In the future, new immunotherapy regimens targeting CD47 can be applied to the clinical treatment of ovarian cancer patients.
Collapse
Affiliation(s)
- Linan Xing
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Zhao Wang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Yue Feng
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Haixia Luo
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Guijiang Dai
- Department of Comprehensive Office, The Second Affiliated Hospital of MuDanjiang Medical University, Mudanjiang, 157009, People's Republic of China
| | - Lin Sang
- Department of Obstetrics and Gynecology, People's Hospital of Anji, Huzhou, 310022, People's Republic of China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Jianhua Qian
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
4
|
Luo X, Mo J, Zhang M, Huang W, Bao Y, Zou R, Yao L, Yuan L. CD47-a novel prognostic predicator in epithelial ovarian cancer and correlations with clinicopathological and gene mutation features. World J Surg Oncol 2024; 22:44. [PMID: 38317230 PMCID: PMC10845810 DOI: 10.1186/s12957-024-03308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is insensitive to immunotherapy due to its poor immunogenicity; thus, suitable biomarkers need to be identified for better prognostic stratification and individualized treatment. CD47 is a novel immunotherapy target; however, its impact on EOC prognosis is controversial and correlation with genetic features is unclear. The aim of this study was to investigate the prognostic significance of CD47 and its correlations with biological behaviors and genetic features of EOC. METHODS Immunohistochemistry (IHC) and next-generation sequencing (NGS) were performed to examine expressions of CD47, PD-L1, and genomic mutations in the tissue samples of 75 EOC patients. Various clinicopathologic and genomic features were then evaluated to determine their correlation with CD47 expression. Kaplan-Meier analysis and Cox regression analysis were used to identify independent prognostic factors. Risk score modeling was then established, and the predictive capacity of this model was further confirmed by nomogram analysis. RESULTS CD47 was mainly expressed in the tumor cell membrane and cytoplasm, and the rate of high CD47 expression was 63.7%. CD47 expression was associated with various clinicopathological factors, including FIGO stage, CA125 and HE4 value, presence of multidisciplinary surgeries, presence and volume of ascites, lymph-node metastasis, Ki-67 index and platinum-resistant, as well as genetic characteristics like BRCA mutation, HRD status, and TP53 mutation in EOC. Patients with high CD47 expression showed worse prognosis than the low-expression group. Cox regression analysis demonstrated that CA125, CD47, and BRCA mutation were independent factors for EOC prognosis. Patients were then categorized into high-risk and low-risk subgroups based on the risk score of the aforementioned independent factors, and the prognosis of the high-risk group was worse than those of the low-risk group. The nomogram showed adequate discrimination with a concordance index of 0.777 (95% CI, 0.732-0.822). The calibration curve showed good consistency. CONCLUSION CD47 correlated with various malignant biology and genetic characteristics of EOC and may play pivotal and multifaceted roles in the tumor microenvironment of EOC Finally, we constructed a reliable prediction model centered on CD47 and integrated CA125 and BRCA to better guide high-risk population management.
Collapse
Affiliation(s)
- Xukai Luo
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jiahang Mo
- Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Min Zhang
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Wu Huang
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Yiting Bao
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Ruoyao Zou
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Liangqing Yao
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Lei Yuan
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
5
|
Trotter TN, Dagotto CE, Serra D, Wang T, Yang X, Acharya CR, Wei J, Lei G, Lyerly HK, Hartman ZC. Dormant tumors circumvent tumor-specific adaptive immunity by establishing a Treg-dominated niche via DKK3. JCI Insight 2023; 8:e174458. [PMID: 37847565 PMCID: PMC10721325 DOI: 10.1172/jci.insight.174458] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Approximately 30% of breast cancer survivors deemed free of disease will experience locoregional or metastatic recurrence even up to 30 years after initial diagnosis, yet how residual/dormant tumor cells escape immunity elicited by the primary tumor remains unclear. We demonstrate that intrinsically dormant tumor cells are indeed recognized and lysed by antigen-specific T cells in vitro and elicit robust immune responses in vivo. However, despite close proximity to CD8+ killer T cells, dormant tumor cells themselves support early accumulation of protective FoxP3+ T regulatory cells (Tregs), which can be targeted to reduce tumor burden. These intrinsically dormant tumor cells maintain a hybrid epithelial/mesenchymal state that is associated with immune dysfunction, and we find that the tumor-derived, stem cell/basal cell protein Dickkopf WNT signaling pathway inhibitor 3 (DKK3) is critical for Treg inhibition of CD8+ T cells. We also demonstrate that DKK3 promotes immune-mediated progression of proliferative tumors and is significantly associated with poor survival and immunosuppression in human breast cancers. Together, these findings reveal that latent tumors can use fundamental mechanisms of tolerance to alter the T cell microenvironment and subvert immune detection. Thus, targeting these pathways, such as DKK3, may help render dormant tumors susceptible to immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - H. Kim Lyerly
- Department of Surgery, and
- Department of Pathology/Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| | - Zachary C. Hartman
- Department of Surgery, and
- Department of Pathology/Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
6
|
Sebben D, Strohle G, Roy PS, Li H. Gold-nanoparticle-embedded hydrogel droplets with enhanced fluorescence for imaging and quantification of proteins in cells. Mikrochim Acta 2023; 190:144. [PMID: 36939899 DOI: 10.1007/s00604-023-05728-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
Conventional cellular protein detection techniques such as immunocytochemistry and flow cytometry require abundant cells, posing multiple challenges, including difficulty and cost for obtaining enough cells and the potential for clogging the instrument when using flow cytometry. Also, it is challenging to conduct cellular protein imaging and quantification simultaneously from a single experiment. We present a novel 3D platform, which integrates highly biocompatible cell-entrapped alginate hydrogel droplet array with gold-nanoparticle (AuNP)-based metal enhanced fluorescence (MEF), to achieve simultaneous imaging and quantification of proteins in intact cells in a sensitive manner. Compared to 2D immunocytochemistry, this 3D system allows for a higher cell loading capacity per unit area; together with the MEF-based signal enhancement from the embedded AuNPs, sensitive protein quantification was realized. Furthermore, compared to flow cytometry, this platform allows for protein imaging from individual cells. Taking the detection of EpCAM protein in ovarian cancer cells as a model, we optimized the AuNP size and concentration for optimal fluorescent signals. The 5 nm AuNPs at 6.54 × 1013 particles/mL proved to be the most effective in signal enhancement, providing 2.4-fold higher signals compared to that without AuNPs and 6.4-fold higher signals than that of 2D immunocytochemistry. The number of cells required in our technology is 1-3 orders of magnitude smaller than that of conventional methods. This AuNP-embedded hydrogel platform combines the benefits of immunocytochemistry and flow cytometry, providing increased assay sensitivity while also allowing for qualitative analysis through imaging, suitable for protein determination in a variety of cells.
Collapse
Affiliation(s)
- David Sebben
- School of Engineering, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Gisela Strohle
- School of Engineering, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Promit Sinha Roy
- School of Engineering, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Huiyan Li
- School of Engineering, University of Guelph, Guelph, ON, N1G2W1, Canada.
| |
Collapse
|
7
|
Köseer AS, Di Gaetano S, Arndt C, Bachmann M, Dubrovska A. Immunotargeting of Cancer Stem Cells. Cancers (Basel) 2023; 15:1608. [PMID: 36900399 PMCID: PMC10001158 DOI: 10.3390/cancers15051608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The generally accepted view is that CSCs hijack the signaling pathways attributed to normal stem cells that regulate the self-renewal and differentiation processes. Therefore, the development of selective targeting strategies for CSC, although clinically meaningful, is associated with significant challenges because CSC and normal stem cells share many important signaling mechanisms for their maintenance and survival. Furthermore, the efficacy of this therapy is opposed by tumor heterogeneity and CSC plasticity. While there have been considerable efforts to target CSC populations by the chemical inhibition of the developmental pathways such as Notch, Hedgehog (Hh), and Wnt/β-catenin, noticeably fewer attempts were focused on the stimulation of the immune response by CSC-specific antigens, including cell-surface targets. Cancer immunotherapies are based on triggering the anti-tumor immune response by specific activation and targeted redirecting of immune cells toward tumor cells. This review is focused on CSC-directed immunotherapeutic approaches such as bispecific antibodies and antibody-drug candidates, CSC-targeted cellular immunotherapies, and immune-based vaccines. We discuss the strategies to improve the safety and efficacy of the different immunotherapeutic approaches and describe the current state of their clinical development.
Collapse
Affiliation(s)
- Ayse Sedef Köseer
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Simona Di Gaetano
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| |
Collapse
|
8
|
Ding J, Zhang Y, Che Y. Ovarian cancer stem cells: Critical roles in anti-tumor immunity. Front Genet 2022; 13:998220. [PMID: 36437919 PMCID: PMC9685611 DOI: 10.3389/fgene.2022.998220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Ovarian cancer is a significant cause of cancer-related mortality in women. Over the past 3 decades, there has been a high incidence of recurrent chemoresistant disease, despite the relative effectiveness of current treatment strategies. This is partly attributed to cancer stem cells (CSC), a subpopulation that has acquired stem cell properties that allow these cells to evade standard chemotherapy and cause disease recurrence. Therefore, there is an urgent need for basic knowledge about CSC to develop innovative therapeutic approaches for ovarian cancer. These CSC subpopulations have been identified in ovarian cancer cell lines, tumors or ascites, and findings suggest that ovarian CSCs may be as heterogeneous as the disease itself. CSCs regulate the phenotype and function of immune cells involved in antitumor immunity, so a better understanding of the signaling pathways that interact between CSCs, immune cells and tumor cells will pave the way for the clinical application of CS in cancer immunotherapy. This review will focus on the markers currently used to identify and isolate these cells summarize current knowledge on the molecular and cellular mechanisms responsible for CSC-dependent regulation of antitumor immune responses. We will discuss the signaling pathways involved in CSC survival, replication, and differentiation as well as potential therapeutic targeting strategies.
Collapse
|
9
|
Fang Y, Zhong T, Yang L, Luo F, Li Q, Wang D, Li Q, Fan Y, Yang X. Spiropachysine A suppresses hepatocellular carcinoma proliferation by inducing methuosis in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154151. [PMID: 35584581 DOI: 10.1016/j.phymed.2022.154151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Spiropachysine A is the extracted compound of traditional Chinese ethnic medicine Pachysandra axillaries Franch. var. styiosa (Dunn) M. Cheng. Spiropachysine A is the primary active steroidal alkaloids (SAs) widely used to facilitate blood circulation and relieve pain and inflammation. Few previous studies have investigated the anti-cancer activity of Spiropachysine A to treat hepatocellular carcinoma (HCC), and its molecular mechanism remains unknown. PURPOSE This study aims to investigate the anti-cancer activity of Spiropachysine A and the underlying mechanisms by inducing methuosis in vitro and in vivo. METHODS Here, the activity of Spiropachysine A against cancer was evaluated by the experiments with MHCC-97H cells and the xenografted mice model. The cell proliferation was examined using MTT assay, and cell morphological characteristics were observed by microscope cellular imaging. The effects of autophagy, paraptosis, and oncosis on cytoplasmic vacuolisation were detected using immunofluorescence staining, transmission electron microscopy (TEM) and western blotting (WB). The cell cycle distribution and apoptosis were analysed by flow cytometry. Hematoxylin eosin (H & E) staining was used to observe the pathological changes of the tissues. RESULTS The in vitro and in vivo results indicated that Spiropachysine A could inhibit HCC cells proliferation (IC50 = 2.39 ± 0.21 μM against MHCC-97H cells) and tumor growth (TGI = 32.81 ± 0.23% at 25 mg/kg and 50.32 ± 0.26% at 50 mg/kg). The morphological changes of the treated cells showed that cell proliferation inhibition caused by Spiropachysine A was associated with numerous cytoplasmic vacuolization. Mechanistically, Spiropachysine A-induced methuosis rather than autophagy or arapaptic because the autophagy flux was blocked, leading to the increased LC3-II/I value and an accumulation of selective autophagy substrate p62. And, there was no activation of the regulatory parapaptic MAPK pathway. Additionally, the TEM and Lucifer yellow (LY) accumulation data confirmed that Spiropachysine A significantly triggered methuosis instead of oncosis. Further, the study indicated that the anti-proliferative activity of Spiropachysine A was independent of PCD since no alterations in apoptosis and cell cycle arrest-related proteins were observed after Spiropachysine A treatment. Impressively, the increased expression of Rac1 was observed in Spiropachysine A-treated MHCC-97H cells and its xenograft tumours, confirming that Spiropachysine A inhibited cell proliferation and induced methuosis through Ras/Rac1 signal pathways. CONCLUSIONS Spiropachysine A was collectively identified as a novel methuosis inducer that suppresses HCC in vitro and in vivo. The underlying mechanisms might be involved in the Ras/Rac1 pathway. Such data predict that Spiropachysine A is a promising candidate for developing novel chemotherapeutic agents as a methuosis inducer for cancer therapy.
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Ting Zhong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Lishou Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Fang Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Qing Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Daoping Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Qiji Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Yanhua Fan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China.
| | - Xiaosheng Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China.
| |
Collapse
|
10
|
Shepherd TG, Dick FA. Principles of dormancy evident in high-grade serous ovarian cancer. Cell Div 2022; 17:2. [PMID: 35321751 PMCID: PMC8944075 DOI: 10.1186/s13008-022-00079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
In cancer, dormancy refers to a clinical state in which microscopic residual disease becomes non-proliferative and is largely refractory to chemotherapy. Dormancy was first described in breast cancer where disease can remain undetected for decades, ultimately leading to relapse and clinical presentation of the original malignancy. A long latency period can be explained by withdrawal from cell proliferation (cellular dormancy), or a balance between proliferation and cell death that retains low levels of residual disease (tumor mass dormancy). Research into cellular dormancy has revealed features that define this state. They include arrest of cell proliferation, altered cellular metabolism, and unique cell dependencies and interactions with the microenvironment. These characteristics can be shared by dormant cells derived from disparate primary disease sites, suggesting common features exist between them. High-grade serous ovarian cancer (HGSOC) disseminates to locations throughout the abdominal cavity by means of cellular aggregates called spheroids. These growth-arrested and therapy-resistant cells are a strong contributor to disease relapse. In this review, we discuss the similarities and differences between ovarian cancer cells in spheroids and dormant properties reported for other cancer disease sites. This reveals that elements of dormancy, such as cell cycle control mechanisms and changes to metabolism, may be similar across most forms of cellular dormancy. However, HGSOC-specific aspects of spheroid biology, including the extracellular matrix organization and microenvironment, are obligatorily disease site specific. Collectively, our critical review of current literature highlights places where HGSOC cell dormancy may offer a more tractable experimental approach to understand broad principles of cellular dormancy in cancer.
Collapse
Affiliation(s)
- Trevor G Shepherd
- London Regional Cancer Program, London Health Sciences Centre, London, ON, N6A 5W9, Canada.,Department of Obstetrics & Gynaecology, Western University, London, ON, N6A 5C1, Canada
| | - Frederick A Dick
- London Regional Cancer Program, London Health Sciences Centre, London, ON, N6A 5W9, Canada. .,Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada. .,Children's Health Research Institute, London, ON, N6A 4V2, Canada.
| |
Collapse
|
11
|
Lu W, Zhang F, Zhong X, Wei J, Xiao H, Tu R. Immune Subtypes Characterization Identifies Clinical Prognosis, Tumor Microenvironment Infiltration, and Immune Response in Ovarian Cancer. Front Mol Biosci 2022; 9:801156. [PMID: 35386298 PMCID: PMC8977982 DOI: 10.3389/fmolb.2022.801156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Because of the modest immunotherapeutic response among ovarian carcinoma (OC) patients, it is significant to evaluate antitumor immune response and develop more effective precision immunotherapeutic regimens. Here, this study aimed to determine diverse immune subtypes of OC.Methods: This study curated the expression profiles of prognostic immunologically relevant genes and conducted consensus clustering analyses for determining immune subtypes among OC patients in TCGA cohort. With Boruta algorithm, characteristic genes were screened for conducting an immune scoring system through principal component analysis algorithm. The single-sample gene set enrichment analysis and ESTIAMTE methods were adopted for quantifying the immune infiltrates and responses to chemotherapeutic agents were estimated with pRRophetic algorithm. Two immunotherapeutic cohorts were used for investigating the efficacy of immune score in predicting therapeutic benefits.Results: Two immune subtypes were conducted among 377 OC patients. Immune subtype 2 was characterized by worse clinical prognosis, more frequent genetic variations and mutations, enhanced immune infiltrates, and increased expression of MHC molecules and programmed cell death protein 1/programmed death ligand 1 (PD-1/PD-L1). In total, 30 prognosis-relevant characteristic immune subtype–derived genes were identified for constructing the immune score of OC patients. High immune score was linked with more dismal prognosis, decreased immune infiltrations, and expression of MHC molecules. High immune score presented favorable sensitivity to doxorubicin and vinorelbine and reduced sensitivity to cisplatin. In addition, immune score possessed the potential in predicting benefits from anti–PD-1/PD-L1 therapy.Conclusion: Collectively, our findings propose two complex and diverse immune subtypes of OC. Quantitative assessment of immune subtypes in individual patients strengthens the understanding of tumor microenvironment features and promotes more effective immunotherapeutic regimens.
Collapse
Affiliation(s)
- Weihong Lu
- Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Fei Zhang
- Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Xiaolin Zhong
- Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Jinhua Wei
- Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Hongyang Xiao
- Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Hongyang Xiao, ; Ruiqin Tu,
| | - Ruiqin Tu
- Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Hongyang Xiao, ; Ruiqin Tu,
| |
Collapse
|
12
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
13
|
Yu L, Ding Y, Wan T, Deng T, Huang H, Liu J. Significance of CD47 and Its Association With Tumor Immune Microenvironment Heterogeneity in Ovarian Cancer. Front Immunol 2021; 12:768115. [PMID: 34966389 PMCID: PMC8710451 DOI: 10.3389/fimmu.2021.768115] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/23/2021] [Indexed: 01/11/2023] Open
Abstract
Background It was reported that tumor heterogeneity and the surrounding tumor microenvironment (TME) in ovarian cancer affects immunotherapy efficacy and patient outcomes. And the TME of ovarian cancer is intrinsically heterogeneous. CD47 plays vital roles in cell functional behavior and immune homeostasis relating to cancer prognosis. But how it affects TME and its contribution to heterogeneity in ovarian cancer has not been fully illustrated. Therefore, we aimed to identify a prognostic biomarker which may help explain tumor immune microenvironment heterogeneity of ovarian cancer. Methods Cancer single-cell state atlas (CancerSEA) was used to evaluate functional role of CD47. Several bioinformatics database including Oncomine, Gene Expression Profiling Interaction Analysis (GEPIA), Tumor Immune Estimation Resource (TIMER), The Human Protein Atlas (HPA), Ualcan and Kaplan-Meier plotter (KM plotter) were applied to illustrate correlation of CD47 with ovarian cancer prognosis and immune infiltration. Tumor Immune Single-cell Hub (TISCH) single cell database was employed to evaluate correlation of CD47 with tumor microenvironment. GeneMANIA was implemented to identify regulation networks of CD47. Differentially expressed genes (DEGs) between CD47 high and low expression groups were analyzed with R package DESeq2. Kyoto encyclopedia of genes and genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) were utilized to explore how CD47 affect the immune related cell signaling pathway. Results CD47 expression was upregulated and connected to worse OS and PFS in ovarian cancer. Close relation was found between CD47 expression level and immune infiltration in ovarian cancer, especially with Treg cells, Monocytes, Macrophages and T cell exhaustion (P<0.05). The CD47 expression level was relatively low in plasma cells, dendritic cells and Mono/Macro cells of OV_GSE115007, in myofibroblasts, fibroblasts and endothelial cells of OV_GSE118828, compared to malignant cells of OV_GSE118828 dataset. The cell components and distribution in primary and metastatic ovarian cancer are quite distinct, which may lead to TME heterogeneity of ovarian cancer. Conclusion Our results indicated that CD47 is closely correlated to ovarian cancer immune microenvironment and might induce ovarian cancer heterogeneity. Therefore, CD47 may be used as a candidate prognostic biomarker and provide us with new insights into potential immunotherapy in ovarian cancer patients.
Collapse
Affiliation(s)
- Lan Yu
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Ding
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ting Wan
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ting Deng
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - He Huang
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jihong Liu
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
14
|
Patel PM, Connolly MR, Coe TM, Calhoun A, Pollok F, Markmann JF, Burdorf L, Azimzadeh A, Madsen JC, Pierson RN. Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Front Immunol 2021; 12:681504. [PMID: 34566955 PMCID: PMC8458821 DOI: 10.3389/fimmu.2021.681504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The recent dramatic advances in preventing "initial xenograft dysfunction" in pig-to-non-human primate heart transplantation achieved by minimizing ischemia suggests that ischemia reperfusion injury (IRI) plays an important role in cardiac xenotransplantation. Here we review the molecular, cellular, and immune mechanisms that characterize IRI and associated "primary graft dysfunction" in allotransplantation and consider how they correspond with "xeno-associated" injury mechanisms. Based on this analysis, we describe potential genetic modifications as well as novel technical strategies that may minimize IRI for heart and other organ xenografts and which could facilitate safe and effective clinical xenotransplantation.
Collapse
Affiliation(s)
- Parth M. Patel
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Margaret R. Connolly
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Taylor M. Coe
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anthony Calhoun
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Franziska Pollok
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - James F. Markmann
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lars Burdorf
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Agnes Azimzadeh
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joren C. Madsen
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Richard N. Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Wu CC, Hsu YT, Chang CL. Hyperthermic intraperitoneal chemotherapy enhances antitumor effects on ovarian cancer through immune-mediated cancer stem cell targeting. Int J Hyperthermia 2021; 38:1013-1022. [PMID: 34192990 DOI: 10.1080/02656736.2021.1945688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
PURPOSE We aimed to determine the effects and possible mechanisms of hyperthermic intraperitoneal chemotherapy (HIPEC) in targeting ovarian cancer stem-like cells (CSCs). METHODS Murine ovarian cancer cell lines presenting CSC surface markers were grown intraperitoneally in both immunocompetent and immunodeficient mice, which were then treated by intraperitoneal hyperthermia with the chemotherapeutic agents: paclitaxel and cisplatin. Tumor growth was measured by non-invasive luminescent imaging. Intraperitoneal immune cells, such as CD4+, CD8+ T cells, macrophages, and dendritic cells, were evaluated through flow cytometry analysis. RESULTS Combined hyperthermia and chemotherapy exhibited an efficient therapeutic effect in the immunocompetent mice. However, a similar effect was not observed in the immunodeficient mice. Intraperitoneal hyperthermia increased the number of Intraperitoneal macrophages and dendritic cells that were lost due to chemotherapy. Compared with ovarian cancer bulk cells, CSCs were more susceptible to phagocytosis by macrophages. CONCLUSION We demonstrated that the superior therapeutic efficacy and reduced proportion of CSCs associated with intraperitoneal hyperthermic chemotherapy were immune-related. Hyperthermia recruits the phagocytes that target surviving CSCs after chemotherapy. These results provide a novel mechanism for the efficacy of HIPEC in treating ovarian cancer.
Collapse
Affiliation(s)
- Chao-Chih Wu
- Departmental of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Yun-Ting Hsu
- Departmental of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Chih-Long Chang
- Departmental of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan.,Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|