1
|
Lee TY, von Mehren M. Novel pharmacotherapies for the treatment of liposarcoma: a comprehensive update. Expert Opin Pharmacother 2024:1-14. [PMID: 39535168 DOI: 10.1080/14656566.2024.2427333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Liposarcomas are malignancies of adipocytic lineage and represent one of the most common types of soft tissue sarcomas. They encompass multiple histologies, each with unique molecular profiles. Treatment for localized disease includes resection, potentially with perioperative radiation or systemic therapy. Treatment for unresectable or metastatic disease revolves around palliative systemic therapy, for which improved therapies are urgently needed. AREAS COVERED We reviewed the literature on novel therapies in clinical development for liposarcomas within the past 5 years and discuss their potential impact on future treatment strategies. EXPERT OPINION Understanding of the molecular characteristics of liposarcoma subtypes has led to testing of several targeted therapies, including inhibitors of amplified gene products (CDK4 and MDM2) and upregulated proteins (XPO1). Immuno-oncology has played an increasing role in the treatment of liposarcomas, with checkpoint inhibition showing promise in dedifferentiated liposarcomas, and immune therapies targeting cancer testis antigens NY-ESO-1 and MAGE family proteins poised to become an option for myxoid/round cell liposarcomas. The search for novel agents from existing classes (tyrosine kinase inhibitors) with efficacy in liposarcoma also continues. Combination therapies as well as biomarker identification for patient selection of therapies warrant ongoing exploration.
Collapse
Affiliation(s)
- Teresa Y Lee
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Margaret von Mehren
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
2
|
Baharom F, Hermans D, Delamarre L, Seder RA. Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment. Nat Rev Immunol 2024:10.1038/s41577-024-01091-9. [PMID: 39433884 DOI: 10.1038/s41577-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
T cells have a critical role in mediating antitumour immunity. The success of immune checkpoint inhibitors (ICIs) for cancer treatment highlights how enhancing endogenous T cell responses can mediate tumour regression. However, mortality remains high for many cancers, especially in the metastatic setting. Based on advances in the genetic characterization of tumours and identification of tumour-specific antigens, individualized therapeutic cancer vaccines targeting mutated tumour antigens (neoantigens) are being developed to generate tumour-specific T cells for improved therapeutic responses. Early clinical trials using individualized neoantigen vaccines for patients with advanced disease had limited clinical efficacy despite demonstrated induction of T cell responses. Therefore, enhancing T cell activity by improving the magnitude, quality and breadth of T cell responses following vaccination is one current goal for improving outcome against metastatic tumours. Another major consideration is how T cells can be further optimized to function within the tumour microenvironment (TME). In this Perspective, we focus on neoantigen vaccines and propose a new approach, termed Vax-Innate, in which vaccination through intravenous delivery or in combination with tumour-targeting immune modulators may improve antitumour efficacy by simultaneously increasing the magnitude, quality and breadth of T cells while transforming the TME into a largely immunostimulatory environment for T cells.
Collapse
Affiliation(s)
| | - Dalton Hermans
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Robert A Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Alsalloum A, Shevchenko JA, Sennikov S. NY-ESO-1 antigen: A promising frontier in cancer immunotherapy. Clin Transl Med 2024; 14:e70020. [PMID: 39275923 PMCID: PMC11399778 DOI: 10.1002/ctm2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
Significant strides have been made in identifying tumour-associated antigens over the past decade, revealing unique epitopes crucial for targeted cancer therapy. Among these, the New York esophageal squamous cell carcinoma (NY-ESO-1) protein, a cancer/testis antigen, stands out. This protein is presented on the cell surface by major histocompatibility complex class I molecules and exhibits restricted expression in germline cells and various cancers, marking it as an immune-privileged site. Remarkably, NY-ESO-1 serves a dual role as both a tumour-associated antigen and its own adjuvant, implying a potential function as a damage-associated molecular pattern. It elicits strong humoural immune responses, with specific antibody frequencies significantly correlating with disease progression. These characteristics make NY-ESO-1 an appealing candidate for developing effective and specific immunotherapy, particularly for advanced stages of disease. In this review, we provide a comprehensive overview of NY-ESO-1 as an immunogenic tumour antigen. We then explore the diverse strategies for targeting NY-ESO-1, including cancer vaccination with peptides, proteins, DNA, mRNA, bacterial vectors, viral vectors, dendritic cells and artificial adjuvant vector cells, while considering the benefits and drawbacks of each strategy. Additionally, we offer an in-depth analysis of adoptive T-cell therapies, highlighting innovative techniques such as next-generation NY-ESO-1 T-cell products and the integration with lymph node-targeted vaccines to address challenges and enhance therapeutic efficacy. Overall, this comprehensive review sheds light on the evolving landscape of NY-ESO-1 targeting and its potential implications for cancer treatment, opening avenues for future tailored directions in NY-ESO-1-specific immunotherapy. HIGHLIGHTS: Endogenous immune response: NY-ESO-1 exhibited high immunogenicity, activating endogenous dendritic cells, T cells and B cells. NY-ESO-1-based cancer vaccines: NY-ESO-1 vaccines using protein/peptide, RNA/DNA, microbial vectors and artificial adjuvant vector cells have shown promise in enhancing immune responses against tumours. NY-ESO-1-specific T-cell receptor-engineered cells: NY-ESO-1-targeted T cells, along with ongoing innovations in engineered natural killer cells and other cell therapies, have improved the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Alaa Alsalloum
- Laboratory of Molecular ImmunologyFederal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical ImmunologyNovosibirskRussia
- Faculty of Natural SciencesNovosibirsk State UniversityNovosibirskRussia
| | - Julia A. Shevchenko
- Laboratory of Molecular ImmunologyFederal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical ImmunologyNovosibirskRussia
| | - Sergey Sennikov
- Laboratory of Molecular ImmunologyFederal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical ImmunologyNovosibirskRussia
- Department of ImmunologyV. Zelman Institute for Medicine and PsychologyNovosibirsk State UniversityNovosibirskRussia
| |
Collapse
|
4
|
Zhou XP, Xing JP, Sun LB, Tian SQ, Luo R, Liu WH, Song XY, Gao SH. Molecular characteristics and systemic treatment options of liposarcoma: A systematic review. Biomed Pharmacother 2024; 178:117204. [PMID: 39067161 DOI: 10.1016/j.biopha.2024.117204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Liposarcoma (LPS) is a rare soft tissue sarcoma that develops from the differentiation of fat cells, typically occurring in the lower extremities and retroperitoneal space. Depending on its histological morphology and molecular changes, LPS can be divided into various subtypes, each exhibiting distinct biological behaviors. During treatment, especially for LPS arising in the retroperitoneum, the extent and quality of the initial surgery are critically important. Treatment strategies must be tailored to the specific type of LPS. Over the past few decades, the treatment of LPS has undergone numerous advancements, with new therapeutic approaches such as targeted drugs and immunotherapies continually emerging. This paper reviews the biological characteristics, molecular alterations, as well as surgical and pharmacological treatments of various LPS subtypes, with the aim of enhancing clinicians' understanding and emphasizing the importance of individualized precision therapy. With a deeper understanding of the biological characteristics and molecular alterations of LPS, future treatment trends are likely to focus more on developing personalized treatment plans to better address the various types of LPS.
Collapse
Affiliation(s)
- Xuan-Peng Zhou
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Jian-Peng Xing
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Luan-Biao Sun
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Sheng-Qi Tian
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Ran Luo
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Wen-Hao Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xin-Yuan Song
- The Chinese University of Hong Kong, New Territories 999077, Hong Kong Special Administrative Region of China
| | - Shuo-Hui Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| |
Collapse
|
5
|
Wood GE, Meyer C, Petitprez F, D'Angelo SP. Immunotherapy in Sarcoma: Current Data and Promising Strategies. Am Soc Clin Oncol Educ Book 2024; 44:e432234. [PMID: 38781557 DOI: 10.1200/edbk_432234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Traditionally sarcomas have been considered immunologically quiet tumours, with low tumour mutational burden (TMB) and an immunosuppressive tumour microenvironment (TME), consisting of decreased T-cell infiltration and elevated levels of H1F1α, macrophages and neutrophils.1,2 However, research has shown that a subset of sarcomas are immunologically 'hot' with either high TMB, PDL-1 expression, CD8+ T cells or presence of tertiary lymphoid structures (TLS) demonstrating sensitivity to immunotherapy.3,4 Here, we review the current evidence for immunotherapy use in bone sarcomas (BS) and soft tissue sarcomas (STS), with immune checkpoint inhibitors (ICI) and adoptive cellular therapies including engineered T-cell therapies, chimeric antigen receptor (CAR) T-cell therapies, tumour infiltrating lymphocytes (TILs) and cancer vaccines and biomarkers of response.
Collapse
Affiliation(s)
- Georgina E Wood
- University College Hospital of London, London, United Kingdom
| | | | | | | |
Collapse
|
6
|
Jirovec A, Flaman A, Godbout E, Serrano D, Werier J, Purgina B, Diallo JS. Immune profiling of dedifferentiated liposarcoma and identification of novel antigens for targeted immunotherapy. Sci Rep 2024; 14:11254. [PMID: 38755218 PMCID: PMC11099179 DOI: 10.1038/s41598-024-61860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Dedifferentiated liposarcoma (DDLS) is an aggressive, recurring sarcoma with limited treatments. T-cell immunotherapies selectively target malignant cells, holding promise against DDLS. The development of successful immunotherapy for DDLS requires a thorough evaluation of the tumor immune microenvironment and the identification and characterization of targetable immunogenic tumor antigens. To assess the complexity of the human DDLS tumor immune microenvironment and to identify target antigens, we used the nCounter NanoString platform, analyzing gene expression profiles across 29 DDLS and 10 healthy adipose tissue samples. Hierarchical clustering of tumors based on expression of tumor inflammation signature genes revealed two distinct groups, consisting of 15 inflamed tumors and 14 non-inflamed tumors, demonstrating tumor heterogeneity within this sarcoma subtype. Among the identified antigens, PBK and TTK exhibited substantial upregulation in mRNA expression compared to healthy adipose tissue controls, further corroborated by positive protein expression by IHC. This data shows considerable inter-tumoral heterogeneity of inflammation, which should be taken into consideration when designing an immunotherapy for DDLS, and provides a novel targetable antigen in DDLS. The results of this study lay the groundwork for the development of a novel immunotherapy for this highly aggressive sarcoma.
Collapse
Affiliation(s)
- Anna Jirovec
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
- Centre for Innovative Cancer Research, Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada.
| | - Ashley Flaman
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Elena Godbout
- Centre for Innovative Cancer Research, Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada
| | - Daniel Serrano
- Centre for Innovative Cancer Research, Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada
| | - Joel Werier
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Orthopedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| | - Bibianna Purgina
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Jean-Simon Diallo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Innovative Cancer Research, Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada
| |
Collapse
|
7
|
Walker K, Simister SK, Carr-Ascher J, Monument MJ, Thorpe SW, Randall RL. Emerging innovations and advancements in the treatment of extremity and truncal soft tissue sarcomas. J Surg Oncol 2024; 129:97-111. [PMID: 38010997 DOI: 10.1002/jso.27526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
In this special edition update on soft tissue sarcomas (STS), we cover classifications, emerging technologies, prognostic tools, radiation schemas, and treatment disparities in extremity and truncal STS. We discuss the importance of enhancing local control and reducing complications, including the role of innovative imaging, surgical guidance, and hypofractionated radiation. We review advancements in systemic and immunotherapeutic treatments and introduce disparities seen in this vulnerable population that must be considered to improve overall patient care.
Collapse
Affiliation(s)
- Kyle Walker
- Department of Orthopaedics, University of California, Davis, Sacramento, California, USA
| | - Samuel K Simister
- Department of Orthopaedics, University of California, Davis, Sacramento, California, USA
| | - Janai Carr-Ascher
- Department of Hematology and Oncology, University of California, Davis, Sacramento, California, USA
| | - Michael J Monument
- Department of Surgery, The University of Calgary, Calgary, Alberta, Canada
| | - Steven W Thorpe
- Department of Orthopaedics, University of California, Davis, Sacramento, California, USA
| | - R Lor Randall
- Department of Orthopaedics, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
8
|
Anastasiou M, Kyriazoglou A, Kotsantis I, Economopoulou P, Kyrkasiadou M, Giannopoulou A, Kosmidou A, Smerdi D, Moutafi M, Gavrielatou N, Psyrri A. Immune checkpoint inhibitors in sarcomas: a systematic review. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 20:100407. [PMID: 38192615 PMCID: PMC10772240 DOI: 10.1016/j.iotech.2023.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Sarcomas are tumors that originate from mesenchymal cells. The variety of sarcomas' response to chemotherapy and the wide range of prognosis reflect their heterogeneity. In order to improve the rates of response, the research has been orientated toward other forms of therapy, such as targeted therapies and immunotherapy or toward combinations of them. Immune checkpoint inhibitors (ICIs) have been the highlight of immunotherapy in the last decade. Although ICIs are already included in the guidelines of different malignancies, their clinical benefit in sarcomas is still under study. Alveolar soft part sarcomas, undifferentiated pleomorphic sarcomas and other subtypes of sarcoma with high presence of tertiary lymphoid structures tend to respond to ICIs, but further investigation is still needed. Furthermore, the search of predictive biomarkers to determine the type of sarcomas that are sensitive to ICIs is still very challenging. This review will focus on the results of clinical trials, which examine the effect of ICIs and their combination with chemotherapy, targeted therapies and other forms of immunotherapy in sarcomas.
Collapse
Affiliation(s)
- M. Anastasiou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - A. Kyriazoglou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - I. Kotsantis
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - P. Economopoulou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - M. Kyrkasiadou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - A. Giannopoulou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - A. Kosmidou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - D. Smerdi
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - M. Moutafi
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - N. Gavrielatou
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - A. Psyrri
- Section of Medical Oncology, 2nd Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| |
Collapse
|
9
|
Wang J, Ge H, Tian Z. Immunotherapy Plus Radiotherapy for the Treatment of Sarcomas: Is There a Potential for Synergism? Onco Targets Ther 2023; 16:385-397. [PMID: 37313391 PMCID: PMC10258041 DOI: 10.2147/ott.s410693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Soft tissue sarcoma (STS) is a highly heterogeneous malignant tumor derived from mesenchymal tissue. Advanced STS has a poor response to the current anti-cancer therapeutic options, with a median overall survival of less than two years. Thus, new and more effective treatment methods for STS are needed. Increasing evidence has shown that immunotherapy and radiotherapy have synergistic therapeutic effects against malignant tumors. In addition, immunoradiotherapy has yielded positive results in clinical trials for various cancers. In this review, we discuss the synergistic mechanism of immunoradiotherapy in cancer treatment and the application of this combined regimen for the treatment of several cancers. In addition, we summarize the existing evidence on the use of immunoradiotherapy for the treatment of STS and the relevant clinical trials that are currently ongoing. Furthermore, we identify challenges in the use of immunoradiotherapy for the treatment of sarcomas and propose methods and precautions for overcoming these challenges. Lastly, we propose clinical research strategies and future research directions to help in the research and treatment of STS.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Department of Bone and Soft Tissue, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People’s Republic of China
| | - Hong Ge
- Department of Radiotherapy, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People’s Republic of China
| | - Zhichao Tian
- Department of Bone and Soft Tissue, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan Province, 450008, People’s Republic of China
| |
Collapse
|
10
|
Sprooten J, Laureano RS, Vanmeerbeek I, Govaerts J, Naulaerts S, Borras DM, Kinget L, Fucíková J, Špíšek R, Jelínková LP, Kepp O, Kroemer G, Krysko DV, Coosemans A, Vaes RD, De Ruysscher D, De Vleeschouwer S, Wauters E, Smits E, Tejpar S, Beuselinck B, Hatse S, Wildiers H, Clement PM, Vandenabeele P, Zitvogel L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in oncology. Oncoimmunology 2023; 12:2219591. [PMID: 37284695 PMCID: PMC10240992 DOI: 10.1080/2162402x.2023.2219591] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Immunogenic cell death (ICD) refers to an immunologically distinct process of regulated cell death that activates, rather than suppresses, innate and adaptive immune responses. Such responses culminate into T cell-driven immunity against antigens derived from dying cancer cells. The potency of ICD is dependent on the immunogenicity of dying cells as defined by the antigenicity of these cells and their ability to expose immunostimulatory molecules like damage-associated molecular patterns (DAMPs) and cytokines like type I interferons (IFNs). Moreover, it is crucial that the host's immune system can adequately detect the antigenicity and adjuvanticity of these dying cells. Over the years, several well-known chemotherapies have been validated as potent ICD inducers, including (but not limited to) anthracyclines, paclitaxels, and oxaliplatin. Such ICD-inducing chemotherapeutic drugs can serve as important combinatorial partners for anti-cancer immunotherapies against highly immuno-resistant tumors. In this Trial Watch, we describe current trends in the preclinical and clinical integration of ICD-inducing chemotherapy in the existing immuno-oncological paradigms.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Daniel M. Borras
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Jitka Fucíková
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Radek Špíšek
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Lenka Palová Jelínková
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Liguecontre le Cancer, Université de Paris, sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Liguecontre le Cancer, Université de Paris, sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Institut du Cancer Paris CARPEM, Paris, France
| | - Dmitri V. Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Insitute Ghent, Ghent University, Ghent, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rianne D.W. Vaes
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Steven De Vleeschouwer
- Department Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Department Neuroscience, Laboratory for Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Els Wauters
- Laboratory of Respiratory Diseases and Thoracic Surgery (Breathe), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, Katholiek Universiteit Leuven, Leuven, Belgium
- Cell Death and Inflammation Unit, VIB-Ugent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Benoit Beuselinck
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Paul M. Clement
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-Ugent Center for Inflammation Research (IRC), Ghent, Belgium
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laurence Zitvogel
- Tumour Immunology and Immunotherapy of Cancer, European Academy of Tumor Immunology, Gustave Roussy Cancer Center, Inserm, Villejuif, France
| | - Abhishek D. Garg
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Seong G, D’Angelo SP. New therapeutics for soft tissue sarcomas: Overview of current immunotherapy and future directions of soft tissue sarcomas. Front Oncol 2023; 13:1150765. [PMID: 37007160 PMCID: PMC10052453 DOI: 10.3389/fonc.2023.1150765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Soft tissue sarcoma is a rare and aggressive disease with a 40 to 50% metastasis rate. The limited efficacy of traditional approaches with surgery, radiation, and chemotherapy has prompted research in novel immunotherapy for soft tissue sarcoma. Immune checkpoint inhibitors such as anti-CTLA-4 and PD-1 therapies in STS have demonstrated histologic-specific responses. Some combinations of immunotherapy with chemotherapy, TKI, and radiation were effective. STS is considered a ‘cold’, non-inflamed tumor. Adoptive cell therapies are actively investigated in STS to enhance immune response. Genetically modified T-cell receptor therapy targeting cancer testis antigens such as NY-ESO-1 and MAGE-A4 demonstrated durable responses, especially in synovial sarcoma. Two early HER2-CAR T-cell trials have achieved stable disease in some patients. In the future, CAR-T cell therapies will find more specific targets in STS with a reliable response. Early recognition of T-cell induced cytokine release syndrome is crucial, which can be alleviated by immunosuppression such as steroids. Further understanding of the immune subtypes and biomarkers will promote the advancement of soft tissue sarcoma treatment.
Collapse
Affiliation(s)
- Gyuhee Seong
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Sandra P. D’Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States
- *Correspondence: Sandra P. D’Angelo,
| |
Collapse
|
12
|
Pilavaki P, Panagi M, Arifi S, Jones RL, Stylianopoulos T, Constantinidou A. Exploring the landscape of immunotherapy approaches in sarcomas. Front Oncol 2023; 12:1069963. [PMID: 36686827 PMCID: PMC9853527 DOI: 10.3389/fonc.2022.1069963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Sarcomas comprise a heterogenous group of malignancies, of more than 100 different entities, arising from mesenchymal tissue, and accounting for 1% of adult malignancies. Surgery, radiotherapy and systemic therapy constitute the therapeutic armamentarium against sarcomas, with surgical excision and conventional chemotherapy, remaining the mainstay of treatment for local and advanced disease, respectively. The prognosis for patients with metastatic disease is dismal and novel therapeutic approaches are urgently required to improve survival outcomes. Immunotherapy, is a rapidly evolving field in oncology, which has been successfully applied in multiple cancers to date. Immunomodulating antibodies, adoptive cellular therapy, cancer vaccines, and cytokines have been tested in patients with different types of sarcomas through clinical trials, pilot studies, retrospective and prospective studies. The results of these studies regarding the efficacy of different types of immunotherapies in sarcomas are conflicting, and the application of immunotherapy in daily clinical practice remains limited. Additional clinical studies are ongoing in an effort to delineate the role of immunotherapy in patients with specific sarcoma subtypes.
Collapse
Affiliation(s)
- Pampina Pilavaki
- Medical School, University of Cyprus, Nicosia, Cyprus
- Medical Oncology, Bank of Cyprus Oncology Center, Nicosia, Cyprus
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering University of Cyprus, Nicosia, Cyprus
| | - Samia Arifi
- Medical Oncology Department, Hassan II University Hospital/Faculty of Medicine and Pharmacy University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Robin L. Jones
- Sarcoma Unit, Royal Marsden National Health Service (NHS) Foundation Trust, London, London, United Kingdom
- Sarcoma Clinical Trial Unit, Institute of Cancer Research, London, United Kingdom
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering University of Cyprus, Nicosia, Cyprus
| | - Anastasia Constantinidou
- Medical School, University of Cyprus, Nicosia, Cyprus
- Medical Oncology, Bank of Cyprus Oncology Center, Nicosia, Cyprus
- Cyprus Cancer Research Institute, Nicosia, Cyprus
| |
Collapse
|
13
|
Song Z, Lu L, Gao Z, Zhou Q, Wang Z, Sun L, Zhou Y. Immunotherapy for liposarcoma: emerging opportunities and challenges. Future Oncol 2022; 18:3449-3461. [PMID: 36214331 DOI: 10.2217/fon-2021-1549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Liposarcoma (LPS) is a rare adipocyte-derived malignancy accounting for 20% of all soft tissue sarcomas. Although surgery and chemotherapy are the standard treatment for LPS, the large tumor burden and high recurrence rate make it difficult to treat, especially when the disease progresses. With the progress of immunotherapies in other tumors such as melanoma and lung cancer, interest has been risen in exploring immunotherapy for LPS. This review discusses the understanding of the tumor microenvironment of LPS; the current status of immunotherapy in LPS, including immune checkpoint inhibitors, adoptive cell therapy, cancer vaccines, oncolytic viruses and combination therapies; and the future directions for exploiting strategies to make the effect of immunotherapy stronger and more durable.
Collapse
Affiliation(s)
- Zhengqing Song
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lili Lu
- Biotherapy Centre, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zixu Gao
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiwen Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhiming Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Sun
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, 200032, China
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Biotherapy Centre, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
14
|
Panagi M, Pilavaki P, Constantinidou A, Stylianopoulos T. Immunotherapy in soft tissue and bone sarcoma: unraveling the barriers to effectiveness. Theranostics 2022; 12:6106-6129. [PMID: 36168619 PMCID: PMC9475460 DOI: 10.7150/thno.72800] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/21/2022] [Indexed: 11/05/2022] Open
Abstract
Sarcomas are uncommon malignancies of mesenchymal origin that can arise throughout the human lifespan, at any part of the body. Surgery remains the optimal treatment modality whilst response to conventional treatments, such as chemotherapy and radiation, is minimal. Immunotherapy has emerged as a novel approach to treat different cancer types but efficacy in soft tissue sarcoma and bone sarcoma is limited to distinct subtypes. Growing evidence shows that cancer-stroma cell interactions and their microenvironment play a key role in the effectiveness of immunotherapy. However, the pathophysiological and immunological properties of the sarcoma tumor microenvironment in relation to immunotherapy advances, has not been broadly reviewed. Here, we provide an up-to-date overview of the different immunotherapy modalities as potential treatments for sarcoma, identify barriers posed by the sarcoma microenvironment to immunotherapy, highlight their relevance for impeding effectiveness, and suggest mechanisms to overcome these barriers.
Collapse
Affiliation(s)
- Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | | | - Anastasia Constantinidou
- Medical School, University of Cyprus, Nicosia, Cyprus
- Bank of Cyprus Oncology Centre, Nicosia, Cyprus
- Cyprus Cancer Research Institute, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
15
|
Bai R, Yuan C. Kita-Kyushu Lung Cancer Antigen-1 (KK-LC-1): A Promising Cancer Testis Antigen. Aging Dis 2022; 13:1267-1277. [PMID: 35855340 PMCID: PMC9286905 DOI: 10.14336/ad.2021.1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer has always been a huge problem in the field of human health, and its early diagnosis and treatment are the key to solving this problem. Cancer testis antigens (CTAs) are a family of multifunctional proteins that are specifically expressed in male spermatozoa and tumor cells but not in healthy somatic cells. Studies have found that CTAs are involved in the occurrence and development of tumors, and some CTAs trigger immunogenicity, which suggests a possibility of tumor immunotherapy. The differential expression and function of CTAs in normal tissues and tumor cells can promote the screening of tumor markers and the development of new immunotherapies. This article introduces the expression of Kita-Kyushu lung cancer antigen-1 (KK-LC-1), a new member of the CTA family, in different types of tumors and its role in immunotherapy.
Collapse
Affiliation(s)
- Rui Bai
- 1Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng Yuan
- 2Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Moreno Tellez C, Leyfman Y, D'Angelo SP, Wilky BA, Dufresne A. Immunotherapy in Sarcoma: Where Do Things Stand? Surg Oncol Clin N Am 2022; 31:381-397. [PMID: 35715140 DOI: 10.1016/j.soc.2022.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Early experiences with modern immunotherapy have been disappointing in trials of unselected sarcoma subtypes. However, remarkable efficacy has been observed with immune checkpoint inhibitors (ICIs) in a subset of patients, with the most promising outcomes to date in alveolar soft part sarcoma, cutaneous angiosarcoma, undifferentiated pleomorphic sarcoma (UPS), and dedifferentiated liposarcoma (dLPS). Adoptive cellular therapies targeting cancer testis antigens have shown promising activity, but only synovial sarcoma (SS) and myxoid/round cell liposarcomas reliably express these targets. The majority of sarcomas are immunologically "cold" with sparse immune infiltration, which may explain the poor response to immunotherapy. Current immunotherapy trials for sarcomas explore combination therapies with checkpoint inhibitors to overcome immune evasion and novel targets in adoptive cellular therapies. The role of tertiary lymphoid structures, PD-L1 expression, tumor mutational burden, microsatellite instability, and tumor lymphocytes as biomarkers for response are areas of active investigation. In this review, we highlight prior and ongoing clinical efforts to improve outcomes with immunotherapy and discuss the current state of understanding for biomarkers to select patients most likely to benefit from this approach.
Collapse
Affiliation(s)
- Cristiam Moreno Tellez
- Department of Medicine, University of Colorado School of Medicine, 12801 E 17th Avenue, Mailstop 8117, Aurora, CO 80045, USA
| | - Yan Leyfman
- Department of Hematology Oncology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Sandra P D'Angelo
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, 300 East 66th Street, New York, NY 10065, USA
| | - Breelyn A Wilky
- Department of Medicine, University of Colorado School of Medicine, 12801 E 17th Avenue, Mailstop 8117, Aurora, CO 80045, USA.
| | - Armelle Dufresne
- Department of Medical Oncology, Centre Leon Berard, 28 rue Laennec, Lyon 69008, France
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW To summarize the development of modified T-cell therapies in sarcomas and discuss relevant published and ongoing clinical trials to date. RECENT FINDINGS Numerous clinical trials are underway evaluating tumor-specific chimeric antigen receptor T cells and high affinity T-cell receptor (TCR)-transduced T cells in sarcomas. Notably, translocation-dependent synovial sarcoma and myxoid/round cell liposarcoma are the subject of several phase II trials evaluating TCRs targeting cancer testis antigens New York esophageal squamous cell carcinoma-1 (NY-ESO-1) and melanoma antigen-A4 (MAGE A4), and response rates of up to 60% have been observed for NY-ESO-1 directed, modified T cells in synovial sarcoma. Challenges posed by modified T-cell therapy include limitations conferred by HLA-restriction, non-immunogenic tumor microenvironments (TME), aggressive lymphodepletion and immune-mediated toxicities restricting coinfusion of cytokines. SUMMARY Cellular therapy to augment the adaptive immune response through delivery of modified T cells is an area of novel therapeutic development in sarcomas where a reliably expressed, ubiquitous target antigen can be identified. Therapeutic tools to improve the specificity, signaling, proliferation and persistence of modified TCRs and augment clinical responses through safe manipulation of the sarcoma TME will be necessary to harness the full potential of this approach.
Collapse
|
18
|
Lipid A analog CRX-527 conjugated to synthetic peptides enhances vaccination efficacy and tumor control. NPJ Vaccines 2022; 7:64. [PMID: 35739113 PMCID: PMC9226002 DOI: 10.1038/s41541-022-00484-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Adjuvants play a determinant role in cancer vaccination by optimally activating APCs and shaping the T cell response. Bacterial-derived lipid A is one of the most potent immune-stimulators known, and is recognized via Toll-like receptor 4 (TLR4). In this study, we explore the use of the synthetic, non-toxic, lipid A analog CRX-527 as an adjuvant for peptide cancer vaccines. This well-defined adjuvant was covalently conjugated to antigenic peptides as a strategy to improve vaccine efficacy. We show that coupling of this TLR4 agonist to peptide antigens improves vaccine uptake by dendritic cells (DCs), maturation of DCs and T cell activation in vitro, and stimulates DC migration and functional T cell priming in vivo. This translates into enhanced tumor protection upon prophylactic and therapeutic vaccination via intradermal injection against B16-OVA melanoma and HPV-related TC1 tumors. These results highlight the potential of CRX-527 as an adjuvant for molecularly defined cancer vaccines, and support the design of adjuvant-peptide conjugates as a strategy to optimize vaccine formulation.
Collapse
|
19
|
Affiliation(s)
- Christian F Meyer
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
20
|
Liu Z, Xu N, Zhao L, Yu J, Zhang P. Bifunctional lipids in tumor vaccines: An outstanding delivery carrier and promising immune stimulator. Int J Pharm 2021; 608:121078. [PMID: 34500059 DOI: 10.1016/j.ijpharm.2021.121078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Cancer is still a major threat for human life, and the cancer immunotherapy can be more optimized to prolong life. However, the effect of immunotherapy is not encouraging. In order to achieve outstanding immune effect, it is necessary to strengthen antigens uptake of antigen presenting cells. Adjuvants were added to vaccines to achieve this purpose, which could be divided into two types: as an immunostimulatory molecule, the innate immunities of the body were triggered; or as a delivery carrier, and antigens were cross-delivery through the "cytoplasmic pathway" and released at a specific location. This paper reviewed the relevant research status of tumor vaccine immune adjuvants in recent years. Among the review, the function, combination strategies and derivatives of lipid A were discussed in detail. In addition, some suggestions on the existing problems and research direction of lipids as tumor vaccine adjuvants were put forward.
Collapse
Affiliation(s)
- Zhiling Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Na Xu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Lin Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jia Yu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
21
|
Chawla SP, Van Tine BA, Pollack SM, Ganjoo KN, Elias AD, Riedel RF, Attia S, Choy E, Okuno SH, Agulnik M, von Mehren M, Livingston MB, Keedy VL, Verschraegen CF, Philip T, Bohac GC, Yurasov S, Yakovich A, Lu H, Chen M, Maki RG. Phase II Randomized Study of CMB305 and Atezolizumab Compared With Atezolizumab Alone in Soft-Tissue Sarcomas Expressing NY-ESO-1. J Clin Oncol 2021; 40:1291-1300. [PMID: 34260265 DOI: 10.1200/jco.20.03452] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE CMB305 is a heterologous prime-boost vaccination regimen created to prime NY-ESO-1-specific CD8 T-cell populations and then activate the immune response with a potent TLR-4 agonist. This open-label randomized phase II trial was designed to investigate the efficacy and safety of adding the CMB305 regimen to atezolizumab (anti-programmed death ligand-1 therapy) in comparison with atezolizumab alone in patients with synovial sarcoma or myxoid liposarcoma. PATIENTS AND METHODS Patients with locally advanced, relapsed, or metastatic synovial sarcoma or myxoid liposarcoma (any grade) were randomly assigned to receive CMB305 with atezolizumab (experimental arm) or atezolizumab alone (control arm). The primary end points were progression-free survival (PFS) and overall survival (OS) analyzed using the Kaplan-Meier method. Safety and immune responses were assessed. RESULTS A total of 89 patients were enrolled; 55.1% had received ≥ 2 prior lines of chemotherapy. Median PFS was 2.6 months and 1.6 months in the combination and control arms, respectively (hazard ratio, 0.9; 95% CI, 0.6 to 1.3). Median OS was 18 months in both treatment arms. Patients treated with combination therapy had a significantly higher rate of treatment-induced NY-ESO-1-specific T cells (P = .01) and NY-ESO-1-specific antibody responses (P < .0001). In a post hoc analysis of all dosed patients, OS was longer (36 months) in the subset who developed anti-NY-ESO-1 T-cell immune response (hazard ratio, 0.3; P = .02). CONCLUSION Although the combination of CMB305 and atezolizumab did not result in significant increases in PFS or OS compared with atezolizumab alone, some patients demonstrated evidence of an anti-NY-ESO-1 immune response and appeared to fare better by imaging than those without such an immune response. Combining prime-boost vaccines such as CMB305 with anti-programmed death ligand-1 therapies merits further evaluation in other clinical contexts.
Collapse
Affiliation(s)
| | - Brian A Van Tine
- Siteman Cancer Center, Washington University School of Medicine in St Louis, St Louis, MO
| | - Seth M Pollack
- Fred Hutchinson Cancer Research Center, Seattle, WA.,Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | | | - Edwin Choy
- Massachusetts General Hospital, Boston, MA
| | | | - Mark Agulnik
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL.,City of Hope Comprehensive Cancer Center, Duarte, CA
| | | | | | - Vicki L Keedy
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | | | | | - G Chet Bohac
- Immune Design Corp, South San Francisco, CA.,MacroGenics Inc, Rockville, MD
| | - Sergey Yurasov
- Immune Design Corp, South San Francisco, CA.,Nuvation Bio Inc, San Francisco, CA
| | - Adam Yakovich
- Immune Design Corp, South San Francisco, CA.,Replimune Group Inc, Woburn, MA
| | - Hailing Lu
- Immune Design Corp, South San Francisco, CA.,Seattle Genetics Inc, Bothell, WA
| | - Michael Chen
- Immune Design Corp, South San Francisco, CA.,Sangamo Therapeutics Inc, Brisbane, CA
| | - Robert G Maki
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Mitchell G, Pollack SM, Wagner MJ. Targeting cancer testis antigens in synovial sarcoma. J Immunother Cancer 2021; 9:jitc-2020-002072. [PMID: 34083416 PMCID: PMC8183285 DOI: 10.1136/jitc-2020-002072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/02/2023] Open
Abstract
Synovial sarcoma (SS) is a rare cancer that disproportionately affects children and young adults. Cancer testis antigens (CTAs) are proteins that are expressed early in embryonic development, but generally not expressed in normal tissue. They are aberrantly expressed in many different cancer types and are an attractive therapeutic target for immunotherapies. CTAs are expressed at high levels in SS. This high level of CTA expression makes SS an ideal cancer for treatment strategies aimed at harnessing the immune system to recognize aberrant CTA expression and fight against the cancer. Pivotal clinical trials are now underway, with the potential to dramatically alter the landscape of SS management and treatment from current standards of care. In this review, we describe the rationale for targeting CTAs in SS with a focus on NY-ESO-1 and MAGE-A4, the current state of vaccine and T-cell receptor-based therapies, and consider emerging opportunities for future development.
Collapse
Affiliation(s)
| | - Seth M Pollack
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Oncology, University of Washington, Seattle, Washington, USA.,Lurie Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Michael J Wagner
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA .,Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
23
|
Tsuchiya R, Yoshimatsu Y, Noguchi R, Ono T, Sei A, Takeshita F, Sugaya J, Iwata S, Yoshida A, Ohtori S, Kawai A, Kondo T. Establishment and characterization of NCC-SS4-C1: a novel patient-derived cell line of synovial sarcoma. Hum Cell 2021; 34:998-1007. [PMID: 33611700 DOI: 10.1007/s13577-021-00509-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/13/2021] [Indexed: 11/26/2022]
Abstract
Synovial sarcoma (SS) is defined as a monomorphic blue spindle cell sarcoma showing variable epithelial differentiation, and is characterized by a specific fusion gene, SS18-SSX. Although SS is rare, it accounts for approximately 8% of all soft tissue sarcomas, which occupies a significant proportion of soft tissue tumors. The prognosis of SS is unfavorable, with 5-year survival rate of 50-60%, and only a few anti-cancer agents are recommended for its treatment. Thus, we need to urgently establish novel treatment methods. Patient-derived cell lines are essential tools in basic research and pre-clinical studies. However, there are only 4 publicly available SS cell lines. Therefore, we established a novel SS cell line, NCC-SS4-C1, using surgically resected tumor tissues of a patient with SS. The cell line maintained the characteristic fusion gene, SS18-SSX1, and copy number alteration, in concordance with the original tumor. The cells also exhibited moderate cell proliferation, invasion ability, and spheroid formation ability. Moreover, a drug-screening test using 4 SS cell lines, including NCC-SS4-C1, demonstrated the significant anti-proliferative effects of ALK and HDAC inhibitors. Thus, we concluded that the NCC-SS4-C1 cell line is a useful tool for basic and pre-clinical studies of SS.
Collapse
Affiliation(s)
- Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akane Sei
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Fumitaka Takeshita
- Department of Translational Oncology, Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Jun Sugaya
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
24
|
Paijens ST, Leffers N, Daemen T, Helfrich W, Boezen HM, Cohlen BJ, Melief CJM, de Bruyn M, Nijman HW. Antigen-specific active immunotherapy for ovarian cancer. Cochrane Database Syst Rev 2018; 9:CD007287. [PMID: 30199097 PMCID: PMC6513204 DOI: 10.1002/14651858.cd007287.pub4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND This is the second update of the review first published in the Cochrane Library (2010, Issue 2) and later updated (2014, Issue 9).Despite advances in chemotherapy, the prognosis of ovarian cancer remains poor. Antigen-specific active immunotherapy aims to induce tumour antigen-specific anti-tumour immune responses as an alternative treatment for ovarian cancer. OBJECTIVES Primary objective• To assess the clinical efficacy of antigen-specific active immunotherapy for the treatment of ovarian cancer as evaluated by tumour response measured by Response Evaluation Criteria In Solid Tumors (RECIST) and/or cancer antigen (CA)-125 levels, response to post-immunotherapy treatment, and survival differences◦ In addition, we recorded the numbers of observed antigen-specific humoral and cellular responsesSecondary objective• To establish which combinations of immunotherapeutic strategies with tumour antigens provide the best immunological and clinical results SEARCH METHODS: For the previous version of this review, we performed a systematic search of the Cochrane Central Register of Controlled Trials (CENTRAL; 2009, Issue 3), in the Cochrane Library, the Cochrane Gynaecological Cancer Group Specialised Register, MEDLINE and Embase databases, and clinicaltrials.gov (1966 to July 2009). We also conducted handsearches of the proceedings of relevant annual meetings (1996 to July 2009).For the first update of this review, we extended the searches to October 2013, and for this update, we extended the searches to July 2017. SELECTION CRITERIA We searched for randomised controlled trials (RCTs), as well as non-randomised studies (NRSs), that included participants with epithelial ovarian cancer, irrespective of disease stage, who were treated with antigen-specific active immunotherapy, irrespective of type of vaccine, antigen used, adjuvant used, route of vaccination, treatment schedule, and reported clinical or immunological outcomes. DATA COLLECTION AND ANALYSIS Two reviews authors independently extracted the data. We evaluated the risk of bias for RCTs according to standard methodological procedures expected by Cochrane, and for NRSs by using a selection of quality domains deemed best applicable to the NRS. MAIN RESULTS We included 67 studies (representing 3632 women with epithelial ovarian cancer). The most striking observations of this review address the lack of uniformity in conduct and reporting of early-phase immunotherapy studies. Response definitions show substantial variation between trials, which makes comparison of trial results unreliable. Information on adverse events is frequently limited. Furthermore, reports of both RCTs and NRSs frequently lack the relevant information necessary for risk of bias assessment. Therefore, we cannot rule out serious biases in most of the included trials. However, selection, attrition, and selective reporting biases are likely to have affected the studies included in this review. GRADE ratings were high only for survival; for other primary outcomes, GRADE ratings were very low.The largest body of evidence is currently available for CA-125-targeted antibody therapy (17 studies, 2347 participants; very low-certainty evidence). Non-randomised studies of CA-125-targeted antibody therapy suggest improved survival among humoral and/or cellular responders, with only moderate adverse events. However, four large randomised placebo-controlled trials did not show any clinical benefit, despite induction of immune responses in approximately 60% of participants. Time to relapse with CA-125 monoclonal antibody versus placebo, respectively, ranged from 10.3 to 18.9 months versus 10.3 to 13 months (six RCTs, 1882 participants; high-certainty evidence). Only one RCT provided data on overall survival, reporting rates of 80% in both treatment and placebo groups (three RCTs, 1062 participants; high-certainty evidence). Other small studies targeting many different tumour antigens have presented promising immunological results. As these strategies have not yet been tested in RCTs, no reliable inferences about clinical efficacy can be made. Given the promising immunological results and the limited side effects and toxicity reported, exploration of clinical efficacy in large well-designed RCTs may be worthwhile. AUTHORS' CONCLUSIONS We conclude that despite promising immunological responses, no clinically effective antigen-specific active immunotherapy is yet available for ovarian cancer. Results should be interpreted cautiously, as review authors found a significant dearth of relevant information for assessment of risk of bias in both RCTs and NRSs.
Collapse
Affiliation(s)
- Sterre T Paijens
- University Medical Center Groningen (UMCG)Obstetrics & GynaecologyGroningenNetherlands9713 GZ
| | - Ninke Leffers
- University Medical Center Groningen (UMCG)Obstetrics & GynaecologyGroningenNetherlands9713 GZ
| | - Toos Daemen
- University Medical Center Groningen (UMCG)GroningenNetherlands9713 GZ
| | - Wijnand Helfrich
- University Medical Center Groningen (UMCG)Department of Surgery. Translational Surgical OncologyGroningenNetherlands9713 GZ
| | - H Marike Boezen
- University Medical Center Groningen (UMCG)Unit Chronic Airway Diseases, Department of EpidemiologyGroningenNetherlands9713 GZ
| | - Ben J Cohlen
- Isala Clinics, Location SophiaDepartment of Obstetrics & GynaecologyDr van Heesweg 2P O Box 10400ZwolleNetherlands3515 BE
| | - Cornelis JM Melief
- Leiden University Medical CenterDepartment of Immunohaematology and Blood TransfusionPO Box 9600E3‐QLeidenNetherlands2300 RC
| | - Marco de Bruyn
- University Medical Center Groningen (UMCG)Obstetrics & GynaecologyGroningenNetherlands9713 GZ
| | - Hans W Nijman
- University Medical Center Groningen (UMCG)GroningenNetherlands9713 GZ
| | | |
Collapse
|