1
|
Shi Z, Li Z, Zhang M. Emerging roles of intratumor microbiota in cancer: tumorigenesis and management strategies. J Transl Med 2024; 22:837. [PMID: 39261861 PMCID: PMC11391643 DOI: 10.1186/s12967-024-05640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
The intricate interplay between the host and its microbiota has garnered increasing attention in the past decade. Specifically, the emerging recognition of microorganisms within diverse cancer tissues, previously presumed sterile, has ignited a resurgence of enthusiasm and research endeavors. Four potential migratory routes have been identified as the sources of intratumoral microbial "dark matter," including direct invasion of mucosal barriers, spreading from normal adjacent tissue, hematogenous spread, and lymphatic drainage, which contribute to the highly heterogeneous features of intratumor microbiota. Importantly, multitudes of studies delineated the roles of intratumor microbiota in cancer initiation and progression, elucidating underlying mechanisms such as genetic alterations, epigenetic modifications, immune dysfunctions, activating oncogenic pathways, and inducing metastasis. With the deepening understanding of intratumoral microbial composition, novel microbiota-based strategies for early cancer diagnosis and prognostic stratification continue to emerge. Furthermore, intratumor microbiota exerts significant influence on the efficacy of cancer therapeutics, particularly immunotherapy, making it an enticing target for intervention in cancer treatment. In this review, we present a comprehensive discussion of the current understanding pertaining to the developmental history, heterogeneous profiles, underlying originations, and carcinogenic mechanisms of intratumor microbiota, and uncover its potential predictive and intervention values, as well as several inevitable challenges as a target for personalized cancer management strategies.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China.
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China.
| |
Collapse
|
2
|
Krull D, Haynes P, Kesarwani A, Tessier J, Chen BJ, Hunter K, Rodriguez D, Liang Y, Mansfield J, McClain M, Ramos C, Bonnevie E, Anguiano E. A best practices framework for spatial biology studies in drug discovery and development: enabling successful cohort studies using digital spatial profiling. J Histotechnol 2024:1-20. [PMID: 39225147 DOI: 10.1080/01478885.2024.2391683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The discovery of biomarkers, essential for successful drug development, is often hindered by the limited availability of tissue samples, typically obtained through core needle biopsies. Standard 'omics platforms can consume significant amounts of tissue, forcing scientist to trade off spatial context for high-plex assays, such as genome-wide assays. While bulk gene expression approaches and standard single-cell transcriptomics have been valuable in defining various molecular and cellular mechanisms, they do not retain spatial context. As such, they have limited power in resolving tissue heterogeneity and cell-cell interactions. Current spatial transcriptomics platforms offer limited transcriptome coverage and have low throughput, restricting the number of samples that can be analyzed daily or even weekly. While the Digital Spatial Profiling (DSP) method does not provide single-cell resolution, it presents a significant advancement by enabling scalable whole transcriptome and ultrahigh-plex protein analysis from distinct tissue compartments and structures using a single tissue slide. These capabilities overcome significant constraints in biomarker analysis in solid tissue specimens. These advancements in tissue profiling play a crucial role in deepening our understanding of disease biology and in identifying potential therapeutic targets and biomarkers. To enhance the use of spatial biology tools in drug discovery and development, the DSP Scientific Consortium has created best practices guidelines. These guidelines, built on digital spatial profiling data and expertise, offer a practical framework for designing spatial studies and using current and future spatial biology platforms. The aim is to improve tissue analysis in all research areas supporting drug discovery and development.
Collapse
Affiliation(s)
- David Krull
- Precision Medicine, GlaxoSmithKline, Collegeville, USA
| | - Premi Haynes
- Cancer Immunology & Cell Therapy Thematic Research Center, Bristol Myers Squibb, Seattle, WA, USA
| | | | - Julien Tessier
- Precision Medicine and Computational Biology, Sanofi, Cambridge, USA
| | - Benjamin J Chen
- Translational Medicine, Bristol Myers Squibb, Cambridge, MA, USA
| | - Kelly Hunter
- Molecular Pathology and Histology, ProPath-UK Ltd, Hereford, UK
| | | | - Yan Liang
- Spatial Platforms Product Development and Support, NanoString Technologies Inc, Seattle, USA
| | - Jim Mansfield
- Research Business Development, Visiopharm Corp, Broomfield, USA
| | - Maxine McClain
- Spatial Platforms Product Development and Support, NanoString Technologies Inc, Seattle, USA
| | | | - Edward Bonnevie
- Cancer Immunology & Cell Therapy Thematic Research Center, Bristol Myers Squibb, Seattle, WA, USA
| | - Esperanza Anguiano
- Spatial Platforms Product Development and Support, NanoString Technologies Inc, Seattle, USA
| |
Collapse
|
3
|
Chen T, Wang M, Chen Y, Liu Y. Current challenges and therapeutic advances of CAR-T cell therapy for solid tumors. Cancer Cell Int 2024; 24:133. [PMID: 38622705 PMCID: PMC11017638 DOI: 10.1186/s12935-024-03315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
The application of chimeric antigen receptor (CAR) T cells in the management of hematological malignancies has emerged as a noteworthy therapeutic breakthrough. Nevertheless, the utilization and effectiveness of CAR-T cell therapy in solid tumors are still limited primarily because of the absence of tumor-specific target antigen, the existence of immunosuppressive tumor microenvironment, restricted T cell invasion and proliferation, and the occurrence of severe toxicity. This review explored the history of CAR-T and its latest advancements in the management of solid tumors. According to recent studies, optimizing the design of CAR-T cells, implementing logic-gated CAR-T cells and refining the delivery methods of therapeutic agents can all enhance the efficacy of CAR-T cell therapy. Furthermore, combination therapy shows promise as a way to improve the effectiveness of CAR-T cell therapy. At present, numerous clinical trials involving CAR-T cells for solid tumors are actively in progress. In conclusion, CAR-T cell therapy has both potential and challenges when it comes to treating solid tumors. As CAR-T cell therapy continues to evolve, further innovations will be devised to surmount the challenges associated with this treatment modality, ultimately leading to enhanced therapeutic response for patients suffered solid tumors.
Collapse
Affiliation(s)
- Tong Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mingzhao Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yanchao Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
4
|
Zeng M, Zhang W, Li Y, Yu L. Harnessing adenovirus in cancer immunotherapy: evoking cellular immunity and targeting delivery in cell-specific manner. Biomark Res 2024; 12:36. [PMID: 38528632 DOI: 10.1186/s40364-024-00581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
Recombinant adenovirus (rAd) regimens, including replication-competent oncolytic adenovirus (OAV) and replication-deficient adenovirus, have been identified as potential cancer therapeutics. OAV presents advantages such as selective replication, oncolytic efficacy, and tumor microenvironment (TME) remodeling. In this perspective, the principles and advancements in developing OAV toolkits are reviewed. The burgeoning rAd may dictate efficacy of conventional cancer therapies as well as cancer immunotherapies, including cancer vaccines, synergy with adoptive cell therapy (ACT), and TME reshaping. Concurrently, we explored the potential of rAd hitchhiking to adoptive immune cells or stem cells, highlighting how this approach facilitates synergistic interactions between rAd and cellular therapeutics at tumor sites. Results from preclinical and clinical trials in which immune and stem cells were infected with rAd have been used to address significant oncological challenges, such as postsurgical residual tumor tissue and metastatic tissue. Briefly, rAd can eradicate tumors through various mechanisms, resulting from tumor immunogenicity, reprogramming of the TME, enhancement of cellular immunity, and effective tumor targeting. In this context, we argue that rAd holds immense potential for enhancing cellular immunity and synergistically improving antitumor effects in combination with novel cancer immunotherapies.
Collapse
Affiliation(s)
- Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd. No, 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China.
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
5
|
Maher J. Chimeric Antigen Receptor (CAR) T-Cell Therapy for Patients with Lung Cancer: Current Perspectives. Onco Targets Ther 2023; 16:515-532. [PMID: 37425981 PMCID: PMC10327905 DOI: 10.2147/ott.s341179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Immunotherapy using chimeric antigen receptor (CAR)-engineered T-cells has achieved unprecedented efficacy in selected hematological cancers. However, solid tumors such as lung cancer impose several additional challenges to the attainment of clinical success using this emerging therapeutic modality. Lung cancer is the biggest cause of cancer-related mortality worldwide, accounting for approximately 1.8 million deaths worldwide each year. Obstacles to the development of CAR T-cell immunotherapy for lung cancer include the selection of safe tumor-selective targets, accounting for the large number of candidates that have been evaluated thus far. Tumor heterogeneity is also a key hurdle, meaning that single target-based approaches are susceptible to therapeutic failure through the emergence of antigen null cancers. There is also a need to enable CAR T-cells to traffic efficiently to sites of disease, to infiltrate tumor deposits and to operate within the hostile tumor microenvironment formed by solid tumors, resisting the onset of exhaustion. Multiple immune, metabolic, physical and chemical barriers operate at the core of malignant lesions, with potential for further heterogeneity and evolution in the face of selective therapeutic pressures. Although the extraordinarily adaptable nature of lung cancers has recently been unmasked, immunotherapy using immune checkpoint blockade can achieve long-term disease control in a small number of patients, establishing clinical proof of concept that immunotherapies can control advanced lung carcinomas. This review summarizes pre-clinical CAR T-cell research that is specifically focused on lung cancer in addition to published and ongoing clinical trial activity. A number of advanced engineering strategies are also described which are designed to bridge the gap to the attainment of meaningful efficacy using genetically engineered T-cells.
Collapse
Affiliation(s)
- John Maher
- King’s College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, Guy’s Cancer Centre, Great Maze Pond, London, SE1 9RT, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London, SE1 9RT, UK
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne, East Sussex, BN21 2UD, UK
| |
Collapse
|
6
|
Bryant JD, Lee JS, De Almeida A, Jacques J, Chang CH, Fassler W, Quéva C, Lerner L, Kennedy EM. Seneca Valley virus replicons are packaged in trans and have the capacity to overcome the limitations of viral transgene expression. Mol Ther Oncolytics 2023; 28:321-333. [PMID: 36938543 PMCID: PMC10018389 DOI: 10.1016/j.omto.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Oncolytic viruses (OVs) promote the anti-tumor immune response as their replication, and the subsequent lysis of tumor cells, triggers the activation of immune-sensing pathways. Arming OVs by expressing transgenes with the potential to promote immune cell recruitment and activation is an attractive strategy to enhance OVs' therapeutic benefit. For picornaviruses, a family of OVs with clinical experience, the expression of a transgene is limited by multiple factors: genome physical packaging limits, high rates of recombination, and viral-mediated inhibition of transgene secretion. Here, we evaluated strategies for arming Seneca Valley virus (SVV) with relevant immunomodulatory transgenes. Specificially in the contex of arming SVV, we evaluated transgene maximum size and stabiltity, transgene secretion, and the impact of transgene inclusion on viral fitness. We find that SVV is not capable of expressing secreted payloads and has a transgene packaging capacity of ∼10% of viral genome size. To enable transgene expression, we developed SVV replicons with greater transgene size capacity and secretion capabilities. SVV replicons can be packaged in trans by virus in co-infected cells to express immunomodulatory transgenes in surrounding cells, thus providing a means to enhance the potential of this therapeutic to augment the anti-tumor immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Edward M. Kennedy
- Oncorus, Inc., Andover, MA 01810, USA
- Corresponding author: Edward M. Kennedy, Oncorus, Inc., 4 Corporate Dr., Andover, MA 01810, USA.
| |
Collapse
|
7
|
Xiong F, Wang Q, Wu GH, Liu WZ, Wang B, Chen YJ. Direct and indirect effects of IFN-α2b in malignancy treatment: not only an archer but also an arrow. Biomark Res 2022; 10:69. [PMID: 36104718 PMCID: PMC9472737 DOI: 10.1186/s40364-022-00415-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Interferon-α2b (IFN-α2b) is a highly active cytokine that belongs to the interferon-α (IFN-α) family. IFN-α2b has beneficial antiviral, antitumour, antiparasitic and immunomodulatory activities. Direct and indirect antiproliferative effects of IFN-α2b have been found to occur via multiple pathways, mainly the JAK-STAT pathway, in certain cancers. This article reviews mechanistic studies and clinical trials on IFN-α2b. Potential regulators of the function of IFN-α2b were also reviewed, which could be utilized to relieve the poor response to IFN-α2b. IFN-α2b can function not only by enhancing the systematic immune response but also by directly killing tumour cells. Different parts of JAK-STAT pathway activated by IFN-α2b, such as interferon alpha and beta receptors (IFNARs), Janus kinases (JAKs) and IFN‐stimulated gene factor 3 (ISGF3), might serve as potential target for enhancing the pharmacological action of IFN-α2b. Despite some issues that remain to be solved, based on current evidence, IFN-α2b can inhibit disease progression and improve the survival of patients with certain types of malignant tumours. More efforts should be made to address potential adverse effects and complications.
Collapse
|
8
|
López-Cantillo G, Urueña C, Camacho BA, Ramírez-Segura C. CAR-T Cell Performance: How to Improve Their Persistence? Front Immunol 2022; 13:878209. [PMID: 35572525 PMCID: PMC9097681 DOI: 10.3389/fimmu.2022.878209] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 01/07/2023] Open
Abstract
Adoptive cell therapy with T cells reprogrammed to express chimeric antigen receptors (CAR-T cells) has been highly successful in patients with hematological neoplasms. However, its therapeutic benefits have been limited in solid tumor cases. Even those patients who respond to this immunotherapy remain at risk of relapse due to the short-term persistence or non-expansion of CAR-T cells; moreover, the hostile tumor microenvironment (TME) leads to the dysfunction of these cells after reinfusion. Some research has shown that, in adoptive T-cell therapies, the presence of less differentiated T-cell subsets within the infusion product is associated with better clinical outcomes. Naive and memory T cells persist longer and exhibit greater antitumor activity than effector T cells. Therefore, new methods are being studied to overcome the limitations of this therapy to generate CAR-T cells with these ideal phenotypes. In this paper, we review the characteristics of T-cell subsets and their implications in the clinical outcomes of adoptive therapy with CAR-T cells. In addition, we describe some strategies developed to overcome the reduced persistence of CAR T-cells and alternatives to improve this therapy by increasing the expansion ability and longevity of modified T cells. These methods include cell culture optimization, incorporating homeostatic cytokines during the expansion phase of manufacturing, modulation of CAR-T cell metabolism, manipulating signaling pathways involved in T-cell differentiation, and strategies related to CAR construct designs.
Collapse
Affiliation(s)
- Gina López-Cantillo
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Cesar Ramírez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
- Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| |
Collapse
|