1
|
Hua Y, Tian X, Zhang X, Song G, Liu Y, Zhao Y, Gao Y, Yin F. Applications and challenges of photodynamic therapy in the treatment of skin malignancies. Front Pharmacol 2024; 15:1476228. [PMID: 39364058 PMCID: PMC11446773 DOI: 10.3389/fphar.2024.1476228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Photodynamic Therapy (PDT), as a minimally invasive treatment method, has demonstrated its distinct advantages in the management of skin malignant tumors. This article examines the current application status of PDT, assesses its successful cases and challenges in clinical treatment, and anticipates its future development trends. PDT utilizes photosensitizers to interact with light of specific wavelengths to generate reactive oxygen species that selectively eradicate cancer cells. Despite PDT's exceptional performance in enhancing patients' quality of life and prognosis, the limitation of treatment depth and the side effects of photosensitizers remain unresolved issues. With the advancement of novel photosensitizers and innovative treatment technology, the application prospects of PDT are increasingly expansive. This article delves into the mechanism of PDT, its application in various skin malignancies, its advantages and limitations, and envisions its future development. We believe that through continuous technological enhancements and integration with other treatment technologies, PDT has the potential to assume a more pivotal role in the treatment of skin malignancies.
Collapse
Affiliation(s)
- Yunqi Hua
- Department of Medical Oncology, Baotou Cancer Hospital, Baotou, China
| | - Xiaoling Tian
- Department of Graduate School, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xinyi Zhang
- Department of Medical Oncology, Baotou Cancer Hospital, Baotou, China
| | - Ge Song
- Department of Graduate School, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yubo Liu
- Department of Graduate School, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ye Zhao
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Yuqian Gao
- Department of Medical Oncology, Baotou Cancer Hospital, Baotou, China
| | - Fangrui Yin
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| |
Collapse
|
2
|
Kobayashi H, Choyke PL. The role of interventional radiology and molecular imaging for near infrared photoimmunotherapy. Jpn J Radiol 2024; 42:820-824. [PMID: 38658501 PMCID: PMC11286635 DOI: 10.1007/s11604-024-01567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/26/2024]
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a recently approved cancer therapy for recurrent head and neck cancer. It involves the intravenous administration of an antibody-photoabsorber (IRDye700DX: IR700) conjugate (APC) to target cancer cells, followed 24 h later by exposure to near infrared light to activate cell-specific cytotoxicity. NIR-PIT selectively targets cancer cells for destruction and activates a strong anticancer host immunity. The fluorescent signal emitted by IR700 enables the visualization of the APC in vivo using fluorescence imaging. Similarly, the activation of IR700 during therapy can be monitored by loss of fluorescence. NIR-PIT can be used with a variety of antibodies and therefore, a variety of cancer types. However, in most cases, NIR-PIT requires direct light exposure only achieved with interstitial diffuser light fibers that are placed with image-guided interventional needle insertion. In addition, the unique nature of NIR-PIT cell death, means that metabolic molecular imaging techniques such as PET and diffusion MRI can be used to assess therapeutic outcomes. This mini-review focuses on the potential implications of NIR-PIT for interventional radiology and therapeutic monitoring.
Collapse
Affiliation(s)
- Hisataka Kobayashi
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, 10 Centre Drive, Bethesda, MD, 20892, USA.
| | - Peter L Choyke
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, 10 Centre Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
3
|
Quaye MB, Obaid G. Recent strides in macromolecular targeted photodynamic therapy for cancer. Curr Opin Chem Biol 2024; 81:102497. [PMID: 38971130 PMCID: PMC11323206 DOI: 10.1016/j.cbpa.2024.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
The recent approval of Akalux® for antibody-targeted photodynamic therapy (PDT) in Japan (also known as photoimmunotherapy), and the recent approval of Cytalux® for folate-specific image guided surgery by the FDA have motivated the continued development of macromolecular targeted PDT for cancer management. This review spotlights some of the most recent advances in macromolecular targeted PDT since 2021, exploring the latest advances in protein engineering, adaptive macromolecular constructs and nanotechnology, adoption of immune checkpoint inhibitors, and targeting using biomimetic membranes. These strategies summarized here attempt to expand the functionality, benefit, and success of macromolecular targeting for PDT to advance the technology beyond what has already entered into the clinical realm.
Collapse
Affiliation(s)
- Maxwell B Quaye
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
4
|
Kobayashi T, Noma K, Nishimura S, Kato T, Nishiwaki N, Ohara T, Kunitomo T, Kawasaki K, Akai M, Komoto S, Kashima H, Kikuchi S, Tazawa H, Shirakawa Y, Choyke PL, Kobayashi H, Fujiwara T. Near-infrared Photoimmunotherapy Targeting Cancer-Associated Fibroblasts in Patient-Derived Xenografts Using a Humanized Anti-Fibroblast Activation Protein Antibody. Mol Cancer Ther 2024; 23:1031-1042. [PMID: 38638034 DOI: 10.1158/1535-7163.mct-23-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/10/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Esophageal cancer remains a highly aggressive malignancy with a poor prognosis, despite ongoing advancements in treatments such as immunotherapy. The tumor microenvironment, particularly cancer-associated fibroblasts (CAF), plays a crucial role in driving the aggressiveness of esophageal cancer. In a previous study utilizing human-derived xenograft models, we successfully developed a novel cancer treatment that targeted CAFs with near-infrared photoimmunotherapy (NIR-PIT), as an adjuvant therapy. In this study, we sought to translate our findings toward clinical practice by employing patient-derived xenograft (PDX) models and utilizing humanized mAbs, specifically sibrotuzumab, which is an antihuman fibroblast activation protein (FAP) Ab and already being investigated in clinical trials as monotherapy. PDX models derived from patients with esophageal cancer were effectively established, preserving the expression of key biomarkers such as EGFR and FAP, as observed in primary tumors. The application of FAP-targeted NIR-PIT using sibrotuzumab, conjugated with the photosensitizer IR700DX, exhibited precise binding and selective elimination of FAP-expressing fibroblasts in vitro. Notably, in our in vivo investigations using both cell line-derived xenograft and PDX models, FAP-targeted NIR-PIT led to significant inhibition of tumor progression compared with control groups, all without inducing adverse events such as weight loss. Immunohistologic assessments revealed a substantial reduction in CAFs exclusively within the tumor microenvironment of both models, further supporting the efficacy of our approach. Thus, our study demonstrates the potential of CAF-targeted NIR-PIT employing sibrotuzumab as a promising therapeutic avenue for the clinical treatment of patients with esophageal cancer.
Collapse
Affiliation(s)
- Teruki Kobayashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Seitaro Nishimura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Takuya Kato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Noriyuki Nishiwaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Tomoyoshi Kunitomo
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Kento Kawasaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Masaaki Akai
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Satoshi Komoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Hajime Kashima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
- Department of Surgery, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Density, and Pharmaceutical Science, Okayama, Japan
| |
Collapse
|
5
|
Fukushima H, Furusawa A, Takao S, Thankarajan E, Luciano MP, Usama SM, Kano M, Okuyama S, Yamamoto H, Suzuki M, Kano M, Choyke PL, Schnermann MJ, Kobayashi H. Near-infrared duocarmycin photorelease from a Treg-targeted antibody-drug conjugate improves efficacy of PD-1 blockade in syngeneic murine tumor models. Oncoimmunology 2024; 13:2370544. [PMID: 38915782 PMCID: PMC11195482 DOI: 10.1080/2162402x.2024.2370544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Regulatory T cells (Tregs) play a crucial role in mediating immunosuppression in the tumor microenvironment. Furthermore, Tregs contribute to the lack of efficacy and hyperprogressive disease upon Programmed cell death protein 1 (PD-1) blockade immunotherapy. Thus, Tregs are considered a promising therapeutic target, especially when combined with PD-1 blockade. However, systemic depletion of Tregs causes severe autoimmune adverse events, which poses a serious challenge to Treg-directed therapy. Here, we developed a novel treatment to locally and predominantly damage Tregs by near-infrared duocarmycin photorelease (NIR-DPR). In this technology, we prepared anti-CD25 F(ab')2 conjugates, which site-specifically uncage duocarmycin in CD25-expressing cells upon exposure to NIR light. In vitro, CD25-targeted NIR-DPR significantly increased apoptosis of CD25-expressing HT2-A5E cells. When tumors were irradiated with NIR light in vivo, intratumoral CD25+ Treg populations decreased and Ki-67 and Interleukin-10 expression was suppressed, indicating impaired functioning of intratumoral CD25+ Tregs. CD25-targeted NIR-DPR suppressed tumor growth and improved survival in syngeneic murine tumor models. Of note, CD25-targeted NIR-DPR synergistically enhanced the efficacy of PD-1 blockade, especially in tumors with higher CD8+/Treg PD-1 ratios. Furthermore, the combination therapy induced significant anti-cancer immunity including maturation of dendritic cells, extensive intratumoral infiltration of cytotoxic CD8+ T cells, and increased differentiation into CD8+ memory T cells. Altogether, CD25-targeted NIR-DPR locally and predominantly targets Tregs in the tumor microenvironment and synergistically improves the efficacy of PD-1 blockade, suggesting that this combination therapy can be a rational anti-cancer combination immunotherapy.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Seiichiro Takao
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ebaston Thankarajan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Michael P Luciano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Makoto Kano
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Hiroshi Yamamoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Motofumi Suzuki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Miyu Kano
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
6
|
Fukushima H, Furusawa A, Takao S, Matikonda SS, Kano M, Okuyama S, Yamamoto H, Choyke PL, Schnermann MJ, Kobayashi H. Phototruncation cell tracking with near-infrared photoimmunotherapy using heptamethine cyanine dye to visualise migratory dynamics of immune cells. EBioMedicine 2024; 102:105050. [PMID: 38490105 PMCID: PMC10951901 DOI: 10.1016/j.ebiom.2024.105050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Noninvasive in vivo cell tracking is valuable in understanding the mechanisms that enhance anti-cancer immunity. We have recently developed a new method called phototruncation-assisted cell tracking (PACT), that uses photoconvertible cell tracking technology to detect in vivo cell migration. This method has the advantages of not requiring genetic engineering of cells and employing tissue-penetrant near-infrared light. METHODS We applied PACT to monitor the migration of immune cells between a tumour and its tumour-draining lymph node (TDLN) after near-infrared photoimmunotherapy (NIR-PIT). FINDINGS PACT showed a significant increase in the migration of dendritic cells (DCs) and macrophages from the tumour to the TDLN immediately after NIR-PIT. This migration by NIR-PIT was abrogated by inhibiting the sphingosine-1-phosphate pathway or Gαi signaling. These results were corroborated by intranodal immune cell profiles at two days post-treatment; NIR-PIT significantly induced DC maturation and increased and activated the CD8+ T cell population in the TDLN. Furthermore, PACT revealed that NIR-PIT significantly enhanced the migration of CD8+ T cells from the TDLN to the tumour four days post-treatment, which was consistent with the immunohistochemical assessment of tumour-infiltrating lymphocytes and tumour regression. INTERPRETATION Immune cells dramatically migrated between the tumour and TDLN following NIR-PIT, indicating its potential as an immune-stimulating therapy. Also, PACT is potentially applicable to a wide range of immunological research. FUNDING This work was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Centre for Cancer Research (grant number: ZIA BC011513 and ZIA BC011506).
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Seiichiro Takao
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Siddharth S Matikonda
- Chemical Biology Laboratory, Centre for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA
| | - Makoto Kano
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hiroshi Yamamoto
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Martin J Schnermann
- Chemical Biology Laboratory, Centre for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Makino T, Sato Y, Uraguchi K, Naoi Y, Fukuda Y, Ando M. Near-infrared photoimmunotherapy for salivary duct carcinoma. Auris Nasus Larynx 2024; 51:323-327. [PMID: 37775468 DOI: 10.1016/j.anl.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
In Japan, near-infrared photoimmunotherapy (NIR-PIT) was introduced in 2021 as a treatment option for unresectable recurrent head and neck cancer. The treatment targets the epidermal growth factor receptor (EGFR), which is overexpressed in 80-90 % of head and neck squamous cell carcinoma (HNSCC). NIR-PIT should theoretically show therapeutic efficacy if EGFR is expressed, even in nonsquamous cell carcinomas (non-SCC). To the best of our knowledge, there are no case reports of NIR-PIT for non-SCC. We performed NIR-PIT in a patient with non-SCC of the head and neck region. After performing two NIR-PIT treatments, small free clusters of residual tumor cells were observed. Immunostaining in this specimen revealed EGFR expression in residual tumor cells. The residual tumor cells had been irradiated sufficiently to achieve necrosis. It is suggested that not only laser irradiation and expression of EGFR but also other factors are involved in the efficacy of this treatment. Further investigation for these other factors is warranted.
Collapse
Affiliation(s)
- Takuma Makino
- Department of Otolaryngology-Head and Neck Surgery Okayama University Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Yasuharu Sato
- Department of Pathology Okayama University Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kensuke Uraguchi
- Department of Otolaryngology-Head and Neck Surgery Okayama University Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuto Naoi
- Department of Otolaryngology-Head and Neck Surgery Okayama University Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yujiro Fukuda
- Department of Otolaryngology Kawasaki Medical School, Okayama, Japan
| | - Mizuo Ando
- Department of Otolaryngology-Head and Neck Surgery Okayama University Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
8
|
Kumai T, Shinomiya H, Shibata H, Takahashi H, Kishikawa T, Okada R, Fujieda S, Sakashita M. Translational research in head and neck cancer: Molecular and immunological updates. Auris Nasus Larynx 2024; 51:391-400. [PMID: 37640594 DOI: 10.1016/j.anl.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis. Each year, approximately 880,000 patients are newly diagnosed with HNSCC worldwide, and 450,000 patients with HNSCC die. Risk factors for developing HNSCC have been identified, with cigarette smoking, alcohol consumption, and viral infections being the major factors. Owing to the prevalence of human papillomavirus infection, the number of HNSCC cases is increasing considerably. Surgery and chemoradiotherapy are the primary treatments for HNSCC. With advancements in tumor biology, patients are eligible for novel treatment modalities, namely targeted therapies, immunotherapy, and photoimmunotherapy. Because this area of research has rapidly progressed, clinicians should understand the basic biology of HNSCC to choose an appropriate therapy in the upcoming era of personalized medicine. This review summarized recent developments in tumor biology, focusing on epidemiology, genetic/epigenetic factors, the tumor microenvironment, microbiota, immunity, and photoimmunotherapy in HNSCC, as well as how these findings can be translated into clinical settings.
Collapse
Affiliation(s)
- Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | - Hirotaka Shinomiya
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Hirofumi Shibata
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Hideaki Takahashi
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Japan.
| | - Toshihiro Kishikawa
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan.
| | - Ryuhei Okada
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Masafumi Sakashita
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| |
Collapse
|
9
|
Carnet Le Provost K, Kepp O, Kroemer G, Bezu L. Trial watch: dexmedetomidine in cancer therapy. Oncoimmunology 2024; 13:2327143. [PMID: 38481729 PMCID: PMC10936656 DOI: 10.1080/2162402x.2024.2327143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024] Open
Abstract
Dexmedetomidine (DEX) is a highly selective α2-adrenoceptor agonist that is widely used in intensive and anesthetic care for its sedative and anxiolytic properties. DEX has the capacity to alleviate inflammatory pain while limiting immunosuppressive glucocorticoid stress during major surgery, thus harboring therapeutic benefits for oncological procedures. Recently, the molecular mechanisms of DEX-mediated anticancer effects have been partially deciphered. Together with additional preclinical data, these mechanistic insights support the hypothesis that DEX-induced therapeutic benefits are mediated via the stimulation of adaptive anti-tumor immune responses. Similarly, published clinical trials including ancillary studies described an immunostimulatory role of DEX during the perioperative period of cancer surgery. The impact of DEX on long-term patient survival remains elusive. Nevertheless, DEX-mediated immunostimulation offers an interesting therapeutic option for onco-anesthesia. Our present review comprehensively summarizes data from preclinical and clinical studies as well as from ongoing trials with a distinct focus on the role of DEX in overcoming (tumor microenvironment (TME)-imposed) cancer therapy resistance. The objective of this update is to guide clinicians in their choice toward immunostimulatory onco-anesthetic agents that have the capacity to improve disease outcome.
Collapse
Affiliation(s)
- Killian Carnet Le Provost
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Pôle de Biologie, Hôpital européen Georges Pompidou, AP-HP, Paris, France
| | - Lucillia Bezu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Gustave Roussy, Département Anesthésie, Chirurgie et Interventionnel, Villejuif, France
| |
Collapse
|
10
|
Nakajima K, Ogawa M. Near-infrared photoimmunotherapy and anti-cancer immunity. Int Immunol 2024; 36:57-64. [PMID: 37843836 DOI: 10.1093/intimm/dxad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/14/2023] [Indexed: 10/17/2023] Open
Abstract
The activation of the anti-cancer immune system is an important strategy to control cancer. A new form of cancer phototherapy, near-infrared photoimmunotherapy (NIR-PIT), was approved for clinical use in 2020 and uses IRDye® 700DX (IR700)-conjugated antibodies and NIR light. After irradiation with NIR light, the antibody-IR700 conjugate forms water-insoluble aggregations on the plasma membrane of target cells. This aggregation causes lethal damage to the plasma membrane, and effectively leads to immunogenic cell death (ICD). Subsequently, ICD activates anti-cancer immune cells such as dendritic cells and cytotoxic T cells. Combination therapy with immune-checkpoint blockade has synergistically improved the anti-cancer effects of NIR-PIT. Additionally, NIR-PIT can eliminate immunosuppressive immune cells in light-irradiated tumors by using specific antibodies against regulatory T cells and myeloid-derived suppressor cells. In addition to cancer-cell-targeted NIR-PIT, such immune-cell-targeted NIR-PIT has shown promising results by activating the anti-cancer immune system. Furthermore, NIR-PIT can be used to manipulate the tumor microenvironment by eliminating only targeted cells in the tumor, and thus it also can be used to gain insight into immunity in basic research.
Collapse
Affiliation(s)
- Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
11
|
Carnet Le Provost K, Kepp O, Kroemer G, Bezu L. Trial watch: beta-blockers in cancer therapy. Oncoimmunology 2023; 12:2284486. [PMID: 38126031 PMCID: PMC10732641 DOI: 10.1080/2162402x.2023.2284486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Compelling evidence supports the hypothesis that stress negatively impacts cancer development and prognosis. Irrespective of its physical, biological or psychological source, stress triggers a physiological response that is mediated by the hypothalamic-pituitary-adrenal axis and the sympathetic adrenal medullary axis. The resulting release of glucocorticoids and catecholamines into the systemic circulation leads to neuroendocrine and metabolic adaptations that can affect immune homeostasis and immunosurveillance, thus impairing the detection and eradication of malignant cells. Moreover, catecholamines directly act on β-adrenoreceptors present on tumor cells, thereby stimulating survival, proliferation, and migration of nascent neoplasms. Numerous preclinical studies have shown that blocking adrenergic receptors slows tumor growth, suggesting potential clinical benefits of using β-blockers in cancer therapy. Much of these positive effects of β-blockade are mediated by improved immunosurveillance. The present trial watch summarizes current knowledge from preclinical and clinical studies investigating the anticancer effects of β-blockers either as standalone agents or in combination with conventional antineoplastic treatments or immunotherapy.
Collapse
Affiliation(s)
- Killian Carnet Le Provost
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lucillia Bezu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Gustave Roussy, Département d’anesthésie, Chirurgie et Interventionnel, Villejuif, France
| |
Collapse
|
12
|
Fukushima H, Furusawa A, Kato T, Wakiyama H, Takao S, Okuyama S, Choyke PL, Kobayashi H. Intratumoral IL15 Improves Efficacy of Near-Infrared Photoimmunotherapy. Mol Cancer Ther 2023; 22:1215-1227. [PMID: 37461129 PMCID: PMC10592297 DOI: 10.1158/1535-7163.mct-23-0210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/09/2023] [Accepted: 07/14/2023] [Indexed: 10/03/2023]
Abstract
IL15 is a potent inducer of differentiation and proliferation of CD8+ T and natural killer (NK) cells, making it a promising candidate for cancer immunotherapy. However, limited efficacy of systemic monotherapy utilizing intravenous IL15 suggests the needs for alternative routes of administration or combination treatment with other therapies. Near-infrared photoimmunotherapy (NIR-PIT) is a highly selective anticancer treatment that elicits a massive release of tumor antigens and immunogenic signals. Here, we investigated whether intratumoral IL15 can enhance the effectiveness of cancer cell-targeted NIR-PIT using syngeneic murine tumor models. Intratumoral injection of IL15 was more effective than intraperitoneal IL15 in vivo in suppressing tumor growth and inducing intratumoral immune responses. When the efficacy of CD44-targeted NIR-PIT was compared in vivo between IL15-secreting MC38 (hIL15-MC38) and parental MC38 tumors, the hIL15-MC38/NIR-PIT group showed the best tumor growth inhibition and survival. In addition, the hIL15-MC38/NIR-PIT group showed significant dendritic cell maturation and significant increases in the number and Granzyme B expression of tumor-infiltrating CD8+ T, NK, and natural killer T cells compared with the treated parental line. Furthermore, intratumoral IL15 injection combined with CD44-targeted NIR-PIT showed significant tumor control in MC38 and Pan02-luc tumor models. In bilateral tumor models, CD44-targeted NIR-PIT in hIL15-MC38 tumors significantly suppressed the growth of untreated MC38 tumors, suggesting abscopal effects. Mice that achieved complete response after the combination therapy completely rejected later tumor rechallenge. In conclusion, local IL15 administration synergistically improves the efficacy of cancer cell-targeted NIR-PIT probably by inducing stronger anticancer immunity, indicating its potential as an anticancer treatment strategy.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Seiichiro Takao
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | |
Collapse
|
13
|
Mohiuddin TM, Zhang C, Sheng W, Al-Rawe M, Zeppernick F, Meinhold-Heerlein I, Hussain AF. Near Infrared Photoimmunotherapy: A Review of Recent Progress and Their Target Molecules for Cancer Therapy. Int J Mol Sci 2023; 24:2655. [PMID: 36768976 PMCID: PMC9916513 DOI: 10.3390/ijms24032655] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed molecular targeted cancer treatment, which selectively kills cancer cells or immune-regulatory cells and induces therapeutic host immune responses by administrating a cancer targeting moiety conjugated with IRdye700. The local exposure to near-infrared (NIR) light causes a photo-induced ligand release reaction, which causes damage to the target cell, resulting in immunogenic cell death (ICD) with little or no side effect to the surrounding normal cells. Moreover, NIR-PIT can generate an immune response in distant metastases and inhibit further cancer attack by combing cancer cells targeting NIR-PIT and immune regulatory cells targeting NIR-PIT or other cancer treatment modalities. Several recent improvements in NIR-PIT have been explored such as catheter-driven NIR light delivery, real-time monitoring of cancer, and the development of new target molecule, leading to NIR-PIT being considered as a promising cancer therapy. In this review, we discuss the progress of NIR-PIT, their mechanism and design strategies for cancer treatment. Furthermore, the overall possible targeting molecules for NIR-PIT with their application for cancer treatment are briefly summarised.
Collapse
|