1
|
Yao J, Ji L, Wang G, Ding J. Effect of neutrophils on tumor immunity and immunotherapy resistance with underlying mechanisms. Cancer Commun (Lond) 2025; 45:15-42. [PMID: 39485719 PMCID: PMC11758154 DOI: 10.1002/cac2.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Neutrophils are key mediators of the immune response and play essential roles in the development of tumors and immune evasion. Emerging studies indicate that neutrophils also play a critical role in the immunotherapy resistance in cancer. In this review, firstly, we summarize the novel classification and phenotypes of neutrophils and describe the regulatory relationships between neutrophils and tumor metabolism, flora microecology, neuroendocrine and tumor therapy from a new perspective. Secondly, we review the mechanisms by which neutrophils affect drug resistance in tumor immunotherapy from the aspects of the immune microenvironment, tumor antigens, and epigenetics. Finally, we propose several promising strategies for overcoming tumor immunotherapy resistance by targeting neutrophils and provide new research ideas in this area.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Linlin Ji
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Guang Wang
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Jin Ding
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|
2
|
Ajona D, Cragg MS, Pio R. The complement system in clinical oncology: Applications, limitations and challenges. Semin Immunol 2024; 77:101921. [PMID: 39700788 DOI: 10.1016/j.smim.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
The complement system, a key component of innate immunity, is involved in seemingly contradictory aspects of tumor progression and cancer therapy. It can act as an immune effector against cancer and modulate the antitumor activity of certain therapeutic antibodies, but it can also contribute to a tumor-promoting microenvironment. Understanding this dual role should lead to the development of better therapeutic tools, strategies for cancer treatment and biomarkers for the clinical management of cancer patients. Here, we review recent advances in the understanding of the role of complement in cancer, focusing on how these findings are being translated into the clinic. We highlight the activity of therapeutic agents that modulate the complement system, as well as combination therapies that integrate complement modulation with existing therapies. We conclude that the role of complement activation in cancer is a rapidly evolving field with the potential to translate findings into new therapeutic strategies and clinically useful biomarkers.
Collapse
Affiliation(s)
- Daniel Ajona
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ruben Pio
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
3
|
Han Y, Diao J, Wang X, Zhang S, Yuan L, Ping Y, Zhang Y, Luo H. Single-Cell RNA Sequencing Reveals That C5AR1 in Follicle Monocyte Cells Could Predict the Development of POI. J Inflamm Res 2024; 17:11221-11234. [PMID: 39717665 PMCID: PMC11664250 DOI: 10.2147/jir.s490996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024] Open
Abstract
Purpose To investigate the follicle microenvironments of women with premature ovarian insufficiency (POI), with normal ovarian reserve function, and who are older (age >40 years) and to identify potential therapeutic targets. Patients and Methods In total, 9 women who underwent in vitro fertilization(IVF) or intracytoplasmic sperm injection(ICSI) were included in this study. The first punctured follicle of each patient was used. Single-cell RNA sequencing was subsequently performed to explore the characteristics of the follicle microenvironments of women with POI, with a normal ovarian reserve and who were older. Results In total, 87,323 cells were isolated and grouped into six clusters: T cells, B cells, neutrophils, basophils, mononuclear phagocytes (MPs), and granulosa cells. The study demonstrated that the POI samples had a smaller component ratio of MPs than did the other samples. The correlation between MPs and granulosa cells may lead to the development of POI. We found that the gene that was simultaneously downregulated in the POI group compared with the normal and older age groups was HLA-DRB5. Moreover, we observed that HLA-DRB5 was expressed mainly in monocytes. The temporal differentiation trajectory revealed that different monocytes play important roles in the beginning and end stages of differentiation. The C5AR1 gene is highly expressed in monocytes. Conclusion Our findings revealed that the interaction between monocytes and granulocytes may contribute to the development of POI. We found that POI lacked HLA-DRB5 expression and had impaired antigen processing and presentation activities. To a certain extent, C5AR1 could be used to predict the development of POI.
Collapse
Affiliation(s)
- Ying Han
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Junrong Diao
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Xinyan Wang
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Shuai Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Lina Yuan
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Yaqiong Ping
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Yunshan Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Haining Luo
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| |
Collapse
|
4
|
Na JR, Liu Y, Fang K, Tan Y, Liang PP, Yan M, Chu JJ, Gao JM, Chen D, Zhang SX. Unraveling the potential biomarkers of immune checkpoint inhibitors in advanced ovarian cancer: a comprehensive review. Invest New Drugs 2024; 42:728-738. [PMID: 39432145 DOI: 10.1007/s10637-024-01478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
The ongoing research on the role of immunotherapy in advanced ovarian cancer (OC) and current clinical trials indicate that patients shown limited response to immune checkpoint inhibitor (ICI) monotherapy. When combined with other treatments or drugs, the efficacy of immunotherapy will be significantly improved. Biomarkers can be used to identify patients with better responses, thereby improving the precision and efficacy of immunotherapy. Key biomarkers for advanced OC include homologous repair deficiency, programmed death-ligand (PD-L) 1 expression, chemokines, and tumor infiltrating lymphocytes. These biomarkers could be applied in the future to select the most suitable patient populations. This review comprehensively examines the research and development of biomarkers in OC immunotherapy from three omics perspectives: genomics, transcriptomics, and proteomics, which may provide guidance for the effectiveness of OC immunotherapy strategies.
Collapse
Affiliation(s)
- Jian-Rong Na
- Department of Respiratory and Critical Care Medicine, the First Clinical College of Ningxia Medical University, Yinchuan, 750004, China
| | - Yaqin Liu
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Kun Fang
- Yinchuan Maternal and Child Health Hospital, Yinchuan, 750004, China
| | - Yuan Tan
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Pan-Pan Liang
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Mei Yan
- Ningxia Medical University General Hospital, Yinchuan, 750004, China
| | - Jiao-Jiao Chu
- Ningxia Medical University General Hospital, Yinchuan, 750004, China
| | - Jian-Mei Gao
- Ningxia Medical University General Hospital, Yinchuan, 750004, China
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China.
- Cancer Center, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
- Center of Translational Medicine, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| | - Shu-Xiang Zhang
- Department of Respiratory and Critical Care Medicine, the First Clinical College of Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
5
|
Merle NS, Roumenina LT. The complement system as a target in cancer immunotherapy. Eur J Immunol 2024; 54:e2350820. [PMID: 38996361 DOI: 10.1002/eji.202350820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Malignant cells are part of a complex network within the tumor microenvironment, where their interaction with host cells and soluble mediators, including complement components, is pivotal. The complement system, known for its role in immune defense and homeostasis, exhibits a dual effect on cancer progression. This dichotomy arises from its antitumoral opsonophagocytosis and cytotoxicity versus its protumoral chronic inflammation mediated by the C5a/C5aR1 axis, influencing antitumor T-cell responses. Recent studies have revealed distinct co-expression patterns of complement genes in various cancer types, correlating with prognosis. Notably, some cancers exhibit co-regulated overexpression of complement genes associated with poor prognosis, while others show favorable outcomes. However, significant intra-patient heterogeneity further complicates this classification. Moreover, the involvement of locally produced and intracellular complement proteins adds complexity to the tumor microenvironment dynamics. This review highlights the unique interplay of complement components within different cancers and patient cohorts, showing that "one size does not fit all", for complement in cancer. It summarizes the clinical trials for complement targeting in cancer, emphasizing the need for tailored therapeutic approaches. By elucidating the mechanistic basis of complement's context-dependent role, this review aims to facilitate the development of personalized cancer therapies, ultimately improving patient care and outcomes.
Collapse
Affiliation(s)
- Nicolas S Merle
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| |
Collapse
|
6
|
Zhao Q, Shao H, Zhang T. Single-cell RNA sequencing in ovarian cancer: revealing new perspectives in the tumor microenvironment. Am J Transl Res 2024; 16:3338-3354. [PMID: 39114691 PMCID: PMC11301471 DOI: 10.62347/smsg9047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/30/2024] [Indexed: 08/10/2024]
Abstract
Single-cell sequencing technology has emerged as a pivotal tool for unraveling the complexities of the ovarian tumor microenvironment (TME), which is characterized by its cellular heterogeneity and intricate cell-to-cell interactions. Ovarian cancer (OC), known for its high lethality among gynecologic malignancies, presents significant challenges in treatment and diagnosis, partly due to the complexity of its TME. The application of single-cell sequencing in ovarian cancer research has enabled the detailed characterization of gene expression profiles at the single-cell level, shedding light on the diverse cell populations within the TME, including cancer cells, stromal cells, and immune cells. This high-resolution mapping has been instrumental in understanding the roles of these cells in tumor progression, invasion, metastasis, and drug resistance. By providing insight into the signaling pathways and cell-to-cell communication mechanisms, single-cell sequencing facilitates the identification of novel therapeutic targets and the development of personalized medicine approaches. This review summarizes the advancement and application of single-cell sequencing in studying the stromal components and the broader TME in OC, highlighting its implications for improving diagnosis, treatment strategies, and understanding of the disease's underlying biology.
Collapse
Affiliation(s)
- Qiannan Zhao
- Department of Clinical Laboratory, Yantaishan HospitalYantai 264003, Shandong, P. R. China
| | - Huaming Shao
- Department of Medical Laboratory, Qingdao West Coast Second HospitalQingdao 266500, Shandong, P. R. China
| | - Tianmei Zhang
- Department of Gynecology, Yantaishan HospitalYantai 264003, Shandong, P. R. China
| |
Collapse
|
7
|
Xiao J, Yu X, Meng F, Zhang Y, Zhou W, Ren Y, Li J, Sun Y, Sun H, Chen G, He K, Lu L. Integrating spatial and single-cell transcriptomics reveals tumor heterogeneity and intercellular networks in colorectal cancer. Cell Death Dis 2024; 15:326. [PMID: 38729966 PMCID: PMC11087651 DOI: 10.1038/s41419-024-06598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 05/12/2024]
Abstract
Single cell RNA sequencing (scRNA-seq), a powerful tool for studying the tumor microenvironment (TME), does not preserve/provide spatial information on tissue morphology and cellular interactions. To understand the crosstalk between diverse cellular components in proximity in the TME, we performed scRNA-seq coupled with spatial transcriptomic (ST) assay to profile 41,700 cells from three colorectal cancer (CRC) tumor-normal-blood pairs. Standalone scRNA-seq analyses revealed eight major cell populations, including B cells, T cells, Monocytes, NK cells, Epithelial cells, Fibroblasts, Mast cells, Endothelial cells. After the identification of malignant cells from epithelial cells, we observed seven subtypes of malignant cells that reflect heterogeneous status in tumor, including tumor_CAV1, tumor_ATF3_JUN | FOS, tumor_ZEB2, tumor_VIM, tumor_WSB1, tumor_LXN, and tumor_PGM1. By transferring the cellular annotations obtained by scRNA-seq to ST spots, we annotated four regions in a cryosection from CRC patients, including tumor, stroma, immune infiltration, and colon epithelium regions. Furthermore, we observed intensive intercellular interactions between stroma and tumor regions which were extremely proximal in the cryosection. In particular, one pair of ligands and receptors (C5AR1 and RPS19) was inferred to play key roles in the crosstalk of stroma and tumor regions. For the tumor region, a typical feature of TMSB4X-high expression was identified, which could be a potential marker of CRC. The stroma region was found to be characterized by VIM-high expression, suggesting it fostered a stromal niche in the TME. Collectively, single cell and spatial analysis in our study reveal the tumor heterogeneity and molecular interactions in CRC TME, which provides insights into the mechanisms underlying CRC progression and may contribute to the development of anticancer therapies targeting on non-tumor components, such as the extracellular matrix (ECM) in CRC. The typical genes we identified may facilitate to new molecular subtypes of CRC.
Collapse
Affiliation(s)
- Jing Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xinyang Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
| | - Fanlin Meng
- CapitalBio Technology Corporation, Beijing, China
| | - Yuncong Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
| | - Wenbin Zhou
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
| | - Yonghong Ren
- CapitalBio Technology Corporation, Beijing, China
| | - Jingxia Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
| | - Yimin Sun
- CapitalBio Technology Corporation, Beijing, China
| | - Hongwei Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Zhuhai UM Science & Technology Research Institute, Zhuhai, Guangdong, China.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China.
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
O'Connell P. Uncovering mechanisms underlying complement-mediated cancer immune evasion. Mol Ther 2024; 32:277-278. [PMID: 38246164 PMCID: PMC10862000 DOI: 10.1016/j.ymthe.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Affiliation(s)
- Patrick O'Connell
- Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, The Mount Sinai Hospital, New York, NY, USA; Department of Pediatrics, The Mount Sinai Hospital, New York, NY, USA.
| |
Collapse
|
9
|
Chia TY, Billingham LK, Boland L, Katz JL, Arrieta VA, Shireman J, Rosas AL, DeLay SL, Zillinger K, Geng Y, Kruger J, Silvers C, Wang H, Vazquez Cervantes GI, Hou D, Wang S, Wan H, Sonabend A, Zhang P, Lee-Chang C, Miska J. The CXCL16-CXCR6 axis in glioblastoma modulates T-cell activity in a spatiotemporal context. Front Immunol 2024; 14:1331287. [PMID: 38299146 PMCID: PMC10827847 DOI: 10.3389/fimmu.2023.1331287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction Glioblastoma multiforme (GBM) pathobiology is characterized by its significant induction of immunosuppression within the tumor microenvironment, predominantly mediated by immunosuppressive tumor-associated myeloid cells (TAMCs). Myeloid cells play a pivotal role in shaping the GBM microenvironment and influencing immune responses, with direct interactions with effector immune cells critically impacting these processes. Methods Our study investigates the role of the CXCR6/CXCL16 axis in T-cell myeloid interactions within GBM tissues. We examined the surface expression of CXCL16, revealing its limitation to TAMCs, while microglia release CXCL16 as a cytokine. The study explores how these distinct expression patterns affect T-cell engagement, focusing on the consequences for T-cell function within the tumor environment. Additionally, we assessed the significance of CXCR6 expression in T-cell activation and the initial migration to tumor tissues. Results Our data demonstrates that CXCL16 surface expression on TAMCs results in predominant T-cell engagement with these cells, leading to impaired T-cell function within the tumor environment. Conversely, our findings highlight the essential role of CXCR6 expression in facilitating T-cell activation and initial migration to tumor tissues. The CXCL16-CXCR6 axis exhibits dualistic characteristics, facilitating the early stages of the T-cell immune response and promoting T-cell infiltration into tumors. However, once inside the tumor, this axis contributes to immunosuppression. Discussion The dual nature of the CXCL16-CXCR6 axis underscores its potential as a therapeutic target in GBM. However, our results emphasize the importance of carefully considering the timing and context of intervention. While targeting this axis holds promise in combating GBM, the complex interplay between TAMCs, microglia, and T cells suggests that intervention strategies need to be tailored to optimize the balance between promoting antitumor immunity and preventing immunosuppression within the dynamic tumor microenvironment.
Collapse
Affiliation(s)
- Tzu-Yi Chia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Leah K. Billingham
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lauren Boland
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, United States
| | - Joshua L. Katz
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Victor A. Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jack Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Aurora-Lopez Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Susan L. DeLay
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kaylee Zillinger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yuheng Geng
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeandre Kruger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Caylee Silvers
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hanxiang Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gustavo Ignacio Vazquez Cervantes
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Si Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hanxiao Wan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Adam Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Shi H, Liu L, Deng X, Xing X, Zhang Y, Djouda Rebecca Y, Han L. Exosomal biomarkers in the differential diagnosis of ovarian tumors: the emerging roles of CA125, HE4, and C5a. J Ovarian Res 2024; 17:4. [PMID: 38178252 PMCID: PMC10768525 DOI: 10.1186/s13048-023-01336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024] Open
Abstract
OBJECTIVE Investigating the utility of serum exosomal markers CA125, HE4, and C5a, both individually and in combination, for distinguishing between benign and malignant ovarian tumors. METHODS In this study, we selected a total of 234 patients diagnosed with ovarian tumors, including 34 with malignant tumors, 10 with borderline ovarian tumors, and 190 with benign tumors. This study conducted comparisons of exosomal levels of CA125, HE4, and C5a among distinct groups, as well as making comparisons between serum and exosomal levels of CA125 and HE4. Furthermore, the diagnostic performance was assessed through Receiver Operating Characteristic (ROC) curve analysis. The Area Under the Curve (AUC) was computed, and a comparative evaluation of sensitivity and specificity was conducted to ascertain their effectiveness in determining the nature of ovarian tumors across different markers. RESULTS Serum CA125 and HE4 levels, the ROMA index, exosomal CA125, HE4, C5a levels, and their combined applied value (OCS value) were notably elevated in the ovarian non-benign tumor group compared to the benign tumor group, with statistical significance (P < 0.05). Exosomal and serum levels of CA125 and HE4 exhibited a positive correlation, with concentrations of these markers in serum surpassing those in exosomes. The combined OCS (AUC = 0.871) for CA125, HE4, and C5a in exosomes demonstrated superior sensitivity (0.773) and specificity (0.932) compared to serum tumor markers (CA125, HE4) and the ROMA index. The tumor stage represents an autonomous risk factor influencing the prognosis of individuals with ovarian malignancies. CONCLUSION The stage of ovarian malignancy is an independent risk factor for its prognosis. The combination of exosomal CA125, HE4 and C5a has a higher clinical value for the identification of the nature of ovarian tumours.
Collapse
Affiliation(s)
- Huihui Shi
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, 450000, China
| | - Liya Liu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, 450000, China
| | - Xueli Deng
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, 450000, China
| | - Xiaoyu Xing
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, 450000, China
| | - Yan Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, 450000, China
| | - Yemeli Djouda Rebecca
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, 450000, China
| | - Liping Han
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, 450000, China.
- , 1 East Jianshe Road, Zhengzhou, 450052, China.
| |
Collapse
|