1
|
An Antigenic Thrift-Based Approach to Influenza Vaccine Design. Vaccines (Basel) 2021; 9:vaccines9060657. [PMID: 34208489 PMCID: PMC8235769 DOI: 10.3390/vaccines9060657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/19/2022] Open
Abstract
The antigenic drift theory states that influenza evolves via the gradual accumulation of mutations, decreasing a host’s immune protection against previous strains. Influenza vaccines are designed accordingly, under the premise of antigenic drift. However, a paradox exists at the centre of influenza research. If influenza evolved primarily through mutation in multiple epitopes, multiple influenza strains should co-circulate. Such a multitude of strains would render influenza vaccines quickly inefficacious. Instead, a single or limited number of strains dominate circulation each influenza season. Unless additional constraints are placed on the evolution of influenza, antigenic drift does not adequately explain these observations. Here, we explore the constraints placed on antigenic drift and a competing theory of influenza evolution – antigenic thrift. In contrast to antigenic drift, antigenic thrift states that immune selection targets epitopes of limited variability, which constrain the variability of the virus. We explain the implications of antigenic drift and antigenic thrift and explore their current and potential uses in the context of influenza vaccine design.
Collapse
|
2
|
Thompson RN, Thompson CP, Pelerman O, Gupta S, Obolski U. Increased frequency of travel in the presence of cross-immunity may act to decrease the chance of a global pandemic. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180274. [PMID: 31056047 DOI: 10.1098/rstb.2018.0274] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The high frequency of modern travel has led to concerns about a devastating pandemic since a lethal pathogen strain could spread worldwide quickly. Many historical pandemics have arisen following pathogen evolution to a more virulent form. However, some pathogen strains invoke immune responses that provide partial cross-immunity against infection with related strains. Here, we consider a mathematical model of successive outbreaks of two strains-a low virulence (LV) strain outbreak followed by a high virulence (HV) strain outbreak. Under these circumstances, we investigate the impacts of varying travel rates and cross-immunity on the probability that a major epidemic of the HV strain occurs, and the size of that outbreak. Frequent travel between subpopulations can lead to widespread immunity to the HV strain, driven by exposure to the LV strain. As a result, major epidemics of the HV strain are less likely, and can potentially be smaller, with more connected subpopulations. Cross-immunity may be a factor contributing to the absence of a global pandemic as severe as the 1918 influenza pandemic in the century since. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.
Collapse
Affiliation(s)
- R N Thompson
- 1 Mathematical Institute, University of Oxford , Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG , UK.,2 Department of Zoology, University of Oxford , South Parks Road, Oxford OX1 3PS , UK.,3 Christ Church, University of Oxford , St Aldate's, Oxford OX1 1DP , UK
| | - C P Thompson
- 2 Department of Zoology, University of Oxford , South Parks Road, Oxford OX1 3PS , UK
| | - O Pelerman
- 4 The Chaim Rosenberg School of Jewish Studies, Tel Aviv University , Tel Aviv 69978 , Israel
| | - S Gupta
- 2 Department of Zoology, University of Oxford , South Parks Road, Oxford OX1 3PS , UK
| | - U Obolski
- 2 Department of Zoology, University of Oxford , South Parks Road, Oxford OX1 3PS , UK.,5 School of Public Health , Tel Aviv University, Tel Aviv , Israel.,6 Porter School of the Environment and Earth Sciences, Tel Aviv University , Israel
| |
Collapse
|