1
|
Nakhaie M, Rukerd MRZ, Shahpar A, Pardeshenas M, Khoshnazar SM, Khazaeli M, Bashash D, Nezhad NZ, Charostad J. A Closer Look at the Avian Influenza Virus H7N9: A Calm before the Storm? J Med Virol 2024; 96:e70090. [PMID: 39601174 DOI: 10.1002/jmv.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/15/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The avian influenza A (H7N9) virus, which circulates in wild birds and poultry, has been a major concern for public health since it was first discovered in China in 2013 due to its demonstrated ability to infect humans, causing severe respiratory illness with high mortality rates. According to the World Health Organization (WHO), a total of 1568 human infections with 616 fatal cases caused by novel H7N9 viruses have been reported in China from early 2013 to January 2024. This manuscript provides a comprehensive review of the virology, evolutionary patterns, and pandemic potential of H7N9. The H7N9 virus exhibits a complex reassortment history, receiving genes from H9N2 and other avian influenza viruses. The presence of certain molecular markers, such as mutations in the hemagglutinin and polymerase basic protein 2, enhances the virus's adaptability to human hosts. The virus activates innate immune responses through pattern recognition receptors, leading to cytokine production and inflammation. Clinical manifestations range from mild to severe, with complications including pneumonia, acute respiratory distress syndrome, and multiorgan failure. Diagnosis relies on molecular assays such as reverse transcription-polymerase chain reaction. The increasing frequency of human infections, along with the virus's ability to bind to human receptors and cause severe disease, highlights its pandemic potential. Continued surveillance, vaccine development, and public health measures are crucial to limit the risk posed by H7N9. Understanding the virus's ecology, transmission dynamics, and pathogenesis is essential for developing effective prevention and control strategies.
Collapse
Affiliation(s)
- Mohsen Nakhaie
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amirhossein Shahpar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Pardeshenas
- Department of Microbiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mana Khazaeli
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Zeinali Nezhad
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Luo J, Zhang M, Ye Q, Gao F, Xu W, Li B, Wang Q, Zhao L, Tan WS. A synthetic TLR4 agonist significantly increases humoral immune responses and the protective ability of an MDCK-cell-derived inactivated H7N9 vaccine in mice. Arch Virol 2024; 169:163. [PMID: 38990396 DOI: 10.1007/s00705-024-06082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024]
Abstract
Antigenically divergent H7N9 viruses pose a potential threat to public health, with the poor immunogenicity of candidate H7N9 vaccines demonstrated in clinical trials underscoring the urgent need for more-effective H7N9 vaccines. In the present study, mice were immunized with various doses of a suspended-MDCK-cell-derived inactivated H7N9 vaccine, which was based on a low-pathogenic H7N9 virus, to assess cross-reactive immunity and cross-protection against antigenically divergent H7N9 viruses. We found that the CRX-527 adjuvant, a synthetic TLR4 agonist, significantly enhanced the humoral immune responses of the suspended-MDCK-cell-derived H7N9 vaccine, with significant antigen-sparing and immune-enhancing effects, including robust virus-specific IgG, hemagglutination-inhibiting (HI), neuraminidase-inhibiting (NI), and virus-neutralizing (VN) antibody responses, which are crucial for protection against influenza virus infection. Moreover, the CRX-527-adjuvanted H7N9 vaccine also elicited cross-protective immunity and cross-protection against a highly pathogenic H7N9 virus with a single vaccination. Notably, NI and VN antibodies might play an important role in cross-protection against lethal influenza virus infections. This study showed that a synthetic TLR4 agonist adjuvant has a potent immunopotentiating effect, which might be considered worth further development as a means of increasing vaccine effectiveness.
Collapse
Affiliation(s)
- Jian Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Institute of Biological Products, Shanghai, China
| | - Min Zhang
- Shanghai Institute of Biological Products, Shanghai, China
| | - Qian Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Feixia Gao
- Shanghai Institute of Biological Products, Shanghai, China
| | - Wenting Xu
- Shanghai Institute of Biological Products, Shanghai, China
| | - Beibei Li
- Shanghai Institute of Biological Products, Shanghai, China
| | - Qi Wang
- Shanghai Institute of Biological Products, Shanghai, China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Shichinohe S, Watanabe T. Advances in Adjuvanted Influenza Vaccines. Vaccines (Basel) 2023; 11:1391. [PMID: 37631959 PMCID: PMC10459454 DOI: 10.3390/vaccines11081391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/29/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023] Open
Abstract
The numerous influenza infections that occur every year present a major public health problem. Influenza vaccines are important for the prevention of the disease; however, their effectiveness against infection can be suboptimal. Particularly in the elderly, immune induction can be insufficient, and the vaccine efficacy against infection is usually lower than that in young adults. Vaccine efficacy can be improved by the addition of adjuvants, and an influenza vaccine with an oil-in-water adjuvant MF59, FLUAD, has been recently licensed in the United States and other countries for persons aged 65 years and older. Although the adverse effects of adjuvanted vaccines have been a concern, many adverse effects of currently approved adjuvanted influenza vaccines are mild and acceptable, given the overriding benefits of the vaccine. Since sufficient immunity can be induced with a small amount of vaccine antigen in the presence of an adjuvant, adjuvanted vaccines promote dose sparing and the prompt preparation of vaccines for pandemic influenza. Adjuvants not only enhance the immune response to antigens but can also be effective against antigenically different viruses. In this narrative review, we provide an overview of influenza vaccines, both past and present, before presenting a discussion of adjuvanted influenza vaccines and their future.
Collapse
Grants
- JP16H06429, JP16K21723, JP17H05809, JP16H06434, JP22H02521, JP22H02876 Japan Society for the Promotion of Science
- JP20jk0210021h0002, JP19fk0108113, JP223fa627002, JP22am0401030, JP23fk0108659, JP22gm1610010 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Shintaro Shichinohe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tokiko Watanabe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease and Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Liu S, Yang G, Li M, Sun F, Li Y, Wang X, Gao Y, Yang P. Transcutaneous immunization via dissolving microneedles protects mice from lethal influenza H7N9 virus challenge. Vaccine 2022; 40:6767-6775. [PMID: 36243592 DOI: 10.1016/j.vaccine.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022]
Abstract
Avian influenza H7N9 virus has first emerged in 2013 and since then has spread in China in five seasonal waves. In humans, influenza H7N9 virus infection is associated with a high fatality rate; thus, an effective vaccine for this virus is needed. In the present study, we evaluated the usefulness of dissolving microneedles (MNs) loaded with influenza H7N9 vaccine in terms of the dissolution time, insertion capacity, insertion depth, and structural integrity of H7N9 virus in vitro. Our in vitro results showed MNs dissolved within 6 mins. The depth of skin penetration was 270 µm. After coating with a matrix material solution, the H7N9 proteins were agglomerated. We detected the H7N9 delivery time and humoral immune response in vivo. In a mouse model, the antigen retention time was longer for MNs than for intramuscular (IM) injection. The humoral response showed that similar to IM administration, MN administration increased the levels of functional and systematic antibodies and protection against the live influenza A/Anhui/01/2013 virus (Ah01/H7N9). The protection level was determined by the analysis of pathological sections of infected lungs. MN and IM administration yielded results superior to those in the control group. Taken together, these findings demonstrate that the use of dissolving MNs to deliver influenza H7N9 vaccines is a promising immunization approach.
Collapse
Affiliation(s)
- Siqi Liu
- The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China; Department of Rheumatology and Clinical Immunology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB Groningen, NL, the Netherlands
| | - Guozhong Yang
- Key Laboratory of Photo Chemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Minghui Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Fang Sun
- The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China
| | - Yufeng Li
- The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China
| | - Xiliang Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yunhua Gao
- Key Laboratory of Photo Chemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Penghui Yang
- The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China.
| |
Collapse
|
5
|
Vanni T, Thomé BC, Sparrow E, Friede M, Fox CB, Beckmann AM, Huynh C, Mondini G, Silveira DH, Viscondi JYK, Braga PE, da Silva A, Salomão MDG, Piorelli RO, Santos JP, Gattás VL, Lucchesi MBB, de Oliveira MMM, Koike ME, Kallas EG, Campos LMA, Coelho EB, Siqueira MAM, Garcia CC, Miranda MD, Paiva TM, Timenetsky MDCST, Adami EA, Akamatsu MA, Ho PL, Precioso AR. Dose-sparing effect of two adjuvant formulations with a pandemic influenza A/H7N9 vaccine: A randomized, double-blind, placebo-controlled, phase 1 clinical trial. PLoS One 2022; 17:e0274943. [PMID: 36256646 PMCID: PMC9578608 DOI: 10.1371/journal.pone.0274943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
The emergence of potentially pandemic viruses has resulted in preparedness efforts to develop candidate vaccines and adjuvant formulations. We evaluated the dose-sparing effect and safety of two distinct squalene-based oil-in-water adjuvant emulsion formulations (IB160 and SE) with influenza A/H7N9 antigen. This phase I, randomized, double-blind, placebo-controlled, dose-finding trial (NCT03330899), enrolled 432 healthy volunteers aged 18 to 59. Participants were randomly allocated to 8 groups: 1A) IB160 + 15μg H7N9, 1B) IB160 + 7.5μg H7N9, 1C) IB160 + 3.75μg H7N9, 2A) SE + 15μg H7N9, 2B) SE + 7.5μg H7N9, 2C) SE + 3.75μg H7N9, 3) unadjuvanted vaccine 15μg H7N9 and 4) placebo. Immunogenicity was evaluated through haemagglutination inhibition (HI) and microneutralization (MN) tests. Safety was evaluated by monitoring local and systemic, solicited and unsolicited adverse events (AE) and reactions (AR) 7 and 28 days after each study injection, respectively, whereas serious adverse events (SAE) were monitored up to 194 days post-second dose. A greater increase in antibody geometric mean titers (GMT) was observed in groups receiving adjuvanted vaccines. Vaccinees receiving IB160-adjuvanted formulations showed the greatest response in group 1B, which induced an HI GMT increase of 4.7 times, HI titers ≥40 in 45.2% of participants (MN titers ≥40 in 80.8%). Vaccinees receiving SE-adjuvanted vaccines showed the greatest response in group 2A, with an HI GMT increase of 2.5 times, HI titers ≥40 in 22.9% of participants (MN titers ≥40 in 65.7%). Frequencies of AE and AR were similar among groups. Pain at the administration site and headache were the most frequent local and systemic solicited ARs. The vaccine candidates were safe and the adjuvanted formulations have a potential dose-sparing effect on immunogenicity against influenza A/H7N9. The magnitude of this effect could be further explored.
Collapse
Affiliation(s)
| | | | | | | | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Anna Marie Beckmann
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Chuong Huynh
- Biomedical Advanced Research and Development Authority, Washington, DC, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | - Esper G. Kallas
- Clinics Hospital of the School of Medicine of University of São Paulo, São Paulo, Brazil
| | - Lucia M. A. Campos
- Child Institute of the Clinics Hospital of the School of Medicine of University of São Paulo, São Paulo, Brazil
| | - Eduardo B. Coelho
- Clinics Hospital of the Medical School of Ribeirão Preto of the University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | - Alexander R. Precioso
- Instituto Butantan, São Paulo, Brazil
- Child Institute of the Clinics Hospital of the School of Medicine of University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
6
|
Desheva Y, Losev I, Petkova N, Kudar P, Donina S, Mamontov A, Tsai CH, Chao YC. Antigenic Characterization of Neuraminidase of Influenza A/H7N9 Viruses Isolated in Different Years. Pharmaceuticals (Basel) 2022; 15:ph15091127. [PMID: 36145348 PMCID: PMC9503534 DOI: 10.3390/ph15091127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza outbreaks caused by A/H7N9 viruses have occurred since 2013. After 2016, A/H7N9 influenza viruses underwent evolutionary changes. In this study, we examined the antigenic properties of influenza neuraminidase (NA) of A/H7N9 viruses as part of a live influenza vaccine (LAIV). It was shown that neuraminidase inhibiting (NI) antibodies obtained after A/Anhui/1/2013(H7N9)-based LAIV vaccination did not inhibit A/Hong Kong/125/2017(H7N9) NA and vice versa. The A/Hong Kong/125/2017(H7N9)-based LAIV elicited higher levels of NI antibodies compared to the A/Anhui/1/2013(H7N9)-based LAIV after two doses. Thelow degree of coincidence of the antibody response to hemagglutinin (HA) and NA after LAIV vaccination allows us to consider an enzyme-linked lectin assay (ELLA) as an additional measure for assessing the immunogenicity of influenza vaccines. In mice, N9-reactive monoclonal antibodies (mABs) for the A/environment/Shanghai/RL01/2013(H7N9) influenza virus partially protected against lung infection from the A/Guangdong/17SF003/2016 IDCDC-RG56N(H7N9) virus, thus showing the cross-protective properties of monoclonal antibodies against the drift variant.
Collapse
Affiliation(s)
- Yulia Desheva
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
- Correspondence: ; Tel.: +7-812-234-42-92
| | - Igor Losev
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Nadezhda Petkova
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Polina Kudar
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Svetlana Donina
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Andrey Mamontov
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Chih-Hsuan Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
- Department of Entomology, National Chung-Hsing University, Taichung 402, Taiwan
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
7
|
Chia MY, Lin CY, Chen PL, Lai CC, Weng TC, Sung WC, Hu AYC, Lee MS. Characterization and Immunogenicity of Influenza H7N9 Vaccine Antigens Produced Using a Serum-Free Suspension MDCK Cell-Based Platform. Viruses 2022; 14:v14091937. [PMID: 36146744 PMCID: PMC9502495 DOI: 10.3390/v14091937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Human infections with avian-origin H7N9 influenza A viruses were first reported in China, and an approximately 38% human mortality rate was described across six waves from February 2013 to September 2018. Vaccination is one of the most cost-effective ways to reduce morbidity and mortality during influenza epidemics and pandemics. Egg-based platforms for the production of influenza vaccines are labor-intensive and unable to meet the surging demand during pandemics. Therefore, cell culture-based technology is becoming the alternative strategy for producing influenza vaccines. The current influenza H7N9 vaccine virus (NIBRG-268), a reassortant virus from A/Anhui/1/2013 (H7N9) and egg-adapted A/PR/8/34 (H1N1) viruses, could grow efficiently in embryonated eggs but not mammalian cells. Moreover, a freezing-dry formulation of influenza H7N9 vaccines with long-term stability will be desirable for pandemic preparedness, as the occurrence of influenza H7N9 pandemics is not predictable. In this study, we adapted a serum-free anchorage-independent suspension Madin-Darby Canine Kidney (MDCK) cell line for producing influenza H7N9 vaccines and compared the biochemical characteristics and immunogenicity of three influenza H7N9 vaccine antigens produced using the suspension MDCK cell-based platform without freeze-drying (S-WO-H7N9), the suspension MDCK cell-based platform with freeze-drying (S-W-H7N9) or the egg-based platform with freeze-drying (E-W-H7N9). We demonstrated these three vaccine antigens have comparable biochemical characteristics. In addition, these three vaccine antigens induced robust and comparable neutralizing antibody (NT; geometric mean between 1016 and 4064) and hemagglutinin-inhibition antibody (HI; geometric mean between 640 and 1613) titers in mice. In conclusion, the serum-free suspension MDCK cell-derived freeze-dried influenza H7N9 vaccine is highly immunogenic in mice, and clinical development is warranted.
Collapse
Affiliation(s)
- Min-Yuan Chia
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chun-Yang Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Po-Ling Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chia-Chun Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Tsai-Chuan Weng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
- Correspondence: ; Tel.: +886-(37)-246-166 (ext. 35520); Fax: +886-(37)-583-009
| |
Collapse
|
8
|
Kok A, Fouchier RAM, Richard M. Cross-Reactivity Conferred by Homologous and Heterologous Prime-Boost A/H5 Influenza Vaccination Strategies in Humans: A Literature Review. Vaccines (Basel) 2021; 9:vaccines9121465. [PMID: 34960210 PMCID: PMC8708856 DOI: 10.3390/vaccines9121465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Avian influenza viruses from the A/H5 A/goose/Guangdong/1/1996 (GsGd) lineage pose a continuing threat to animal and human health. Since their emergence in 1997, these viruses have spread across multiple continents and have become enzootic in poultry. Additionally, over 800 cases of human infection with A/H5 GsGd viruses have been reported to date, which raises concerns about the potential for a new influenza virus pandemic. The continuous circulation of A/H5 GsGd viruses for over 20 years has resulted in the genetic and antigenic diversification of their hemagglutinin (HA) surface glycoprotein, which poses a serious challenge to pandemic preparedness and vaccine design. In the present article, clinical studies on A/H5 influenza vaccination strategies were reviewed to evaluate the breadth of antibody responses induced upon homologous and heterologous prime-boost vaccination strategies. Clinical data on immunological endpoints were extracted from studies and compiled into a dataset, which was used for the visualization and analysis of the height and breadth of humoral immune responses. Several aspects leading to high immunogenicity and/or cross-reactivity were identified, although the analysis was limited by the heterogeneity in study design and vaccine type used in the included studies. Consequently, crucial questions remain to be addressed in future studies on A/H5 GsGd vaccination strategies.
Collapse
|
9
|
Hu Z, Yang Y, Fang L, Zhou J, Zhang H. Insight into the dichotomous regulation of STING activation in immunotherapy. Immunopharmacol Immunotoxicol 2021; 43:126-137. [PMID: 33618600 DOI: 10.1080/08923973.2021.1890118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway (cGAS-STING) is a hub linking innate immunity and adaptive immunity against pathogen infection by inducing the production of type I interferon (IFN-I). It also plays pivotal roles in modulating tumorigenesis by ensuring the antigen presentation, T cell priming, activation, and tumor regression. Given its antitumor immune properties, cGAS-STING has attracted intense focus and several STING agonists have entered into clinical trials. However, some problems still exist when activating STING for use in oncological indications. It is remarkable that multiple downstream cytokines such as TNF-α, IL-6 may lead to inflammatory disease and even tumor metastasis in practical trials. Besides, there is a synergistic effect when STING agonists are combined with other immunotherapies. In this review, we discussed the advanced understanding between STING and anti-tumor immunity, as well as a variety of promising clinical treatment strategies.
Collapse
Affiliation(s)
- Zhaoxue Hu
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| | - Yifei Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lincheng Fang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Huibin Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
10
|
Adami EA, Chavez Rico SL, Akamatsu MA, Miyaki C, Raw I, de Oliveira D, Comone P, Oliveira RDN, Sarno de Oliveira ML, Estima Abreu PA, Takano CY, Meros M, Soares-Schanoski A, Lee Ho P. H7N9 pandemic preparedness: A large-scale production of a split inactivated vaccine. Biochem Biophys Res Commun 2021; 545:145-149. [PMID: 33550095 DOI: 10.1016/j.bbrc.2021.01.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/19/2021] [Indexed: 11/18/2022]
Abstract
In March 2013 it was reported by the World Health Organization (WHO) the first cases of human infections with avian influenza virus A (H7N9). From 2013 to December 2019, 1568 cases have been reported with 616 deaths. H7N9 infection has been associated with high morbidity and mortality rates, and vaccination is currently the most effective way to prevent infections and consequently flu-related severe illness. Developing and producing vaccines against pandemic influenza viruses is the main strategy for a response to a possible pandemic. This study aims to present the production of three industrial lots under current Good Manufacturing Practices (cGMP) of the active antigen used to produce the pandemic influenza vaccine candidate against A(H7N9). These batches were characterized and evaluated for quality standards and tested for immunogenicity in mice. The average yield was 173.50 ± 7.88 μg/mL of hemagglutinin and all the preparations met all the required specifications. The formulated H7N9 vaccine is poorly immunogenic and needs to be adjuvanted with an oil in water emulsion adjuvant (IB160) to achieve a best immune response, in a prime and in a boost scheme. These data are important for initial production planning and preparedness in the case of a H7N9 pandemic.
Collapse
MESH Headings
- Animals
- Antigens, Viral/biosynthesis
- Antigens, Viral/immunology
- Drug Compounding/methods
- Drug Compounding/statistics & numerical data
- Drug Industry/standards
- Female
- Humans
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza Vaccines/biosynthesis
- Influenza Vaccines/immunology
- Influenza Vaccines/isolation & purification
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Pandemics/prevention & control
- Vaccines, Inactivated/biosynthesis
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/isolation & purification
Collapse
Affiliation(s)
| | | | | | | | - Isaías Raw
- Biotechnology Center, Butantan Institute, 05503-900, SP, Brazil
| | | | | | | | | | | | | | | | - Alessandra Soares-Schanoski
- Bacteriology Laboratory, Butantan Institute, Brazil; Icahn School of Medicine at Mount Sinai, New York, USA.
| | | |
Collapse
|
11
|
Sparrow E, Wood JG, Chadwick C, Newall AT, Torvaldsen S, Moen A, Torelli G. Global production capacity of seasonal and pandemic influenza vaccines in 2019. Vaccine 2021; 39:512-520. [PMID: 33341308 PMCID: PMC7814984 DOI: 10.1016/j.vaccine.2020.12.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
Vaccines will be an important element in mitigating the impact of an influenza pandemic. While research towards developing universal influenza vaccines is ongoing, the current strategy for vaccine supply in a pandemic relies on seasonal influenza vaccine production to be switched over to pandemic vaccines. Understanding how much vaccine could be produced, in which regions of the world and in what timeframe is critical to informing influenza pandemic preparedness. Through the Global Action Plan for Influenza Vaccines, 2006-2016, WHO promoted an increase in vaccine production capacity and monitors the landscape through periodically surveying influenza vaccine manufacturers. This study compares global capacity for production of influenza vaccines in 2019 with estimates from previous surveys; provides an overview of countries with established production facilities; presents vaccine production by type and manufacturing process; and discusses limitations to these estimates. Results of the current survey show that estimated annual seasonal influenza vaccine production capacity changed little since 2015 increasing from 1.47 billion to 1.48 billion doses with potential maximum annual influenza pandemic vaccine production capacity increasing from 6.37 billion to 8.31 billion doses. However, this figure should be interpreted with caution as it presents a best-case scenario with several assumptions which may impact supply. Further, pandemic vaccines would not be immediately available and could take four to six months for first supplies with several more months needed to reach maximum capacity. A moderate-case scenario is also presented of 4.15 billion doses of pandemic vaccine in 12 months. It is important to note that two doses of pandemic vaccine are likely to be required to elicit an adequate immune response. Continued efforts are needed to ensure the sustainability of this production and to conduct research for vaccines that are faster to produce and more broadly protective taking into account lessons learned from COVID-19 vaccine development.
Collapse
Affiliation(s)
- Erin Sparrow
- The World Health Organization, Geneva, Switzerland; School of Public Health and Community Medicine, UNSW Sydney, NSW, Australia.
| | - James G Wood
- School of Public Health and Community Medicine, UNSW Sydney, NSW, Australia
| | - Christopher Chadwick
- The World Health Organization, Geneva, Switzerland; Institute of Global Health, Faculty of Medicine, University of Geneva, Switzerland
| | - Anthony T Newall
- School of Public Health and Community Medicine, UNSW Sydney, NSW, Australia
| | - Siranda Torvaldsen
- School of Public Health and Community Medicine, UNSW Sydney, NSW, Australia; Women and Babies Research, The University of Sydney Northern Clinical School, NSW, Australia
| | - Ann Moen
- The World Health Organization, Geneva, Switzerland
| | | |
Collapse
|
12
|
Kim JI, Park S, Bae JY, Lee S, Kim J, Kim G, Yoo K, Heo J, Kim YS, Shin JS, Park MS, Park MS. Glycosylation generates an efficacious and immunogenic vaccine against H7N9 influenza virus. PLoS Biol 2020; 18:e3001024. [PMID: 33362243 PMCID: PMC7757820 DOI: 10.1371/journal.pbio.3001024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/24/2020] [Indexed: 12/29/2022] Open
Abstract
Zoonotic avian influenza viruses pose severe health threats to humans. Of several viral subtypes reported, the low pathogenic avian influenza H7N9 virus has since February 2013 caused more than 1,500 cases of human infection with an almost 40% case-fatality rate. Vaccination of poultry appears to reduce human infections. However, the emergence of highly pathogenic strains has increased concerns about H7N9 pandemics. To develop an efficacious H7N9 human vaccine, we designed vaccine viruses by changing the patterns of N-linked glycosylation (NLG) on the viral hemagglutinin (HA) protein based on evolutionary patterns of H7 HA NLG changes. Notably, a virus in which 2 NLG modifications were added to HA showed higher growth rates in cell culture and elicited more cross-reactive antibodies than did other vaccine viruses with no change in the viral antigenicity. Developed into an inactivated vaccine formulation, the vaccine virus with 2 HA NLG additions exhibited much better protective efficacy against lethal viral challenge in mice than did a vaccine candidate with wild-type (WT) HA by reducing viral replication in the lungs. In a ferret model, the 2 NLG-added vaccine viruses also induced hemagglutination-inhibiting antibodies and significantly suppressed viral replication in the upper and lower respiratory tracts compared with the WT HA vaccines. In a mode of action study, the HA NLG modification appeared to increase HA protein contents incorporated into viral particles, which would be successfully translated to improve vaccine efficacy. These results suggest the strong potential of HA NLG modifications in designing avian influenza vaccines. This study shows that changing the pattern of N-glycosylation of the pathogenic avian influenza H7N9 virus hemagglutinin protein increases the amount of hemagglutinin incorporated into the viral membrane; the candidate vaccine virus induces neutralizing antibodies and protects animal models from lethal viral challenge.
Collapse
Affiliation(s)
- Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sehee Park
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sunmi Lee
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeonghun Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gayeong Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kirim Yoo
- Il Yang Pharmaceutical Co., Yongin, Gyeonggi-do, Republic of Korea
| | - Jun Heo
- Il Yang Pharmaceutical Co., Yongin, Gyeonggi-do, Republic of Korea
| | - Yong Seok Kim
- Il Yang Pharmaceutical Co., Yongin, Gyeonggi-do, Republic of Korea
| | - Jae Soo Shin
- Il Yang Pharmaceutical Co., Yongin, Gyeonggi-do, Republic of Korea
| | - Mee Sook Park
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
13
|
Chauhan DS, Prasad R, Srivastava R, Jaggi M, Chauhan SC, Yallapu MM. Comprehensive Review on Current Interventions, Diagnostics, and Nanotechnology Perspectives against SARS-CoV-2. Bioconjug Chem 2020; 31:2021-2045. [PMID: 32680422 PMCID: PMC7425040 DOI: 10.1021/acs.bioconjchem.0c00323] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has dramatically challenged the healthcare system of almost all countries. The authorities are struggling to minimize the mortality along with ameliorating the economic downturn. Unfortunately, until now, there has been no promising medicine or vaccine available. Herein, we deliver perspectives of nanotechnology for increasing the specificity and sensitivity of current interventional platforms toward the urgent need of quickly deployable solutions. This review summarizes the recent involvement of nanotechnology from the development of a biosensor to fabrication of a multifunctional nanohybrid system for respiratory and deadly viruses, along with the recent interventions and current understanding about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Deepak S. Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajendra Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
| |
Collapse
|
14
|
Pan J, Cui Z. Self-Assembled Nanoparticles: Exciting Platforms for Vaccination. Biotechnol J 2020; 15:e2000087. [PMID: 33411412 DOI: 10.1002/biot.202000087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/25/2020] [Indexed: 12/14/2022]
Abstract
Vaccination is successfully advanced to control several fatal diseases and improve human life expectancy. However, additional innovations are required in this field because there are no effective vaccines to prevent some infectious diseases. The shift from the attenuated or inactivated pathogens to safer but less immunogenic protein or peptide antigens has led to a search for effective antigen delivery carriers that can function as both antigen vehicles and intrinsic adjuvants. Among these carriers, self-assembled nanoparticles (SANPs) have shown great potential to be the best representative. For the nanoscale and multiple presentation of antigens, with accurate control over size, geometry, and functionality, these nanoparticles are assembled spontaneously and mimic pathogens, resulting in enhanced antigen presentation and increased cellular and humoral immunity responses. In addition, they may be applied through needle-free routes due to their adhesive ability, which gives them a great future in vaccination applications. This review provides an overview of various SANPs and their applications in prophylactic vaccines.
Collapse
Affiliation(s)
- Jingdi Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Wang S, Xie Z, Huang L, Zhou X, Luo J, Yang Y, Li C, Duan P, Xu W, Chen D, Wu B, Yang Y, Liu X, Wang Y, Yuan Z, Qu D, Chen Z, Xia S. Safety and immunogenicity of an alum-adjuvanted whole-virion H7N9 influenza vaccine: a randomized, blinded, clinical trial. Clin Microbiol Infect 2020; 27:S1198-743X(20)30441-9. [PMID: 32738479 DOI: 10.1016/j.cmi.2020.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVES A case of H7N9 influenza virus infection was first identified in China in 2013. This virus is considered to have high pandemic potential. Here we developed an H7N9 influenza vaccine containing an aluminium adjuvant and evaluated the safety and immunogenicity of the vaccine. METHODS From October 2017 through August 2018 we conducted a randomized, double-blinded, single-centre phase I clinical trial in China among 360 participants aged ≥12 years. All participants received two doses of the vaccine (7.5, 15 or 30 μg haemagglutinin antigen) or placebo at an interval of 21 days. Adverse event data were collected for 30 days after vaccination. Serum samples were collected on days 0, 21 and 42 for the haemagglutinin inhibition (HI) antibody assay. RESULTS A total of 347 participants (347/360, 96.4%) completed the study. The proportions of vaccine-related adverse events after one injection were 56.7% (34/60) in the 7.5-μg group, 86.7% (52/60) in the 15-μg group and 86.7% (52/60) in the 30-μg group. The proportions of adverse events after two injections were less than those reported after the first dose. None of the serious adverse events were related to the vaccine. After receiving two doses of the 7.5-μg vaccine, the proportion of participants achieving an HI titre of ≥40 was 98.2% (55/56, 95%CI 72.3~100.0%), with a geometric mean titre (GMT) of 192.6 (95%CI 162.9~227.8). CONCLUSIONS The alum-adjuvanted H7N9 whole-virion inactivated vaccine was safe and strongly immunogenic in a population aged ≥12 years.
Collapse
Affiliation(s)
- Shilei Wang
- Shanghai Institute of Biological Products, Shanghai, China; Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhiqiang Xie
- Henan Province Centre for Disease Control and Prevention, Centre of Vaccine Clinical Research, China
| | - Lili Huang
- Henan Province Centre for Disease Control and Prevention, Centre of Vaccine Clinical Research, China
| | - Xu Zhou
- Shanghai Institute of Biological Products, Shanghai, China
| | - Jian Luo
- Shanghai Institute of Biological Products, Shanghai, China
| | - Yuelian Yang
- Shanghai Institute of Biological Products, Shanghai, China
| | - Changgui Li
- National Institutes for Food and Drug Control, WHO Collaborating Centre for Standardization and Evaluation of Biologicals, Beijing, China
| | - Peng Duan
- Shanghai Institute of Biological Products, Shanghai, China
| | - Wenting Xu
- Shanghai Institute of Biological Products, Shanghai, China
| | - Dandan Chen
- Shanghai Institute of Biological Products, Shanghai, China
| | - Bing Wu
- Shanghai Institute of Biological Products, Shanghai, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xueying Liu
- Shanghai Institute of Biological Products, Shanghai, China
| | - Yanxia Wang
- Henan Province Centre for Disease Control and Prevention, Centre of Vaccine Clinical Research, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Di Qu
- Biosafety Level-3 Laboratory, Key Laboratory of Medical Molecular Virology MOE & MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai, China.
| | - Shengli Xia
- Henan Province Centre for Disease Control and Prevention, Centre of Vaccine Clinical Research, China.
| |
Collapse
|
16
|
Kiseleva I, Isakova-Sivak I, Stukova M, Erofeeva M, Donina S, Larionova N, Krutikova E, Bazhenova E, Stepanova E, Vasilyev K, Matyushenko V, Krylova M, Galatonova J, Ershov A, Lioznov D, Sparrow EG, Torelli G, Rudenko L. A Phase 1 Randomized Placebo-Controlled Study to Assess the Safety, Immunogenicity and Genetic Stability of a New Potential Pandemic H7N9 Live Attenuated Influenza Vaccine in Healthy Adults. Vaccines (Basel) 2020; 8:vaccines8020296. [PMID: 32532097 PMCID: PMC7350028 DOI: 10.3390/vaccines8020296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023] Open
Abstract
This study describes a double-blind randomized placebo-controlled phase I clinical trial in healthy adults of a new potential pandemic H7N9 live attenuated influenza vaccine (LAIV) based on the human influenza virus of Yangtze River Delta hemagglutinin lineage (ClinicalTrials.gov Identifier: NCT03739229). Two doses of H7N9 LAIV or placebo were administered intranasally to 30 and 10 subjects, respectively. The vaccine was well-tolerated and not associated with increased rates of adverse events or with any serious adverse events. Vaccine virus was detected in nasal swabs during the 6 days after vaccination or revaccination. A lower frequency of shedding was observed after the second vaccination. Twenty-five clinical viral isolates obtained after the first and second doses of vaccine retained the temperature-sensitive and cold-adapted phenotypic characteristics of LAIV. There was no confirmed transmission of the vaccine strain from vaccinees to placebo recipients. After the two H7N9 LAIV doses, an immune response was observed in 96.6% of subjects in at least one of the assays conducted.
Collapse
Affiliation(s)
- Irina Kiseleva
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (I.I.-S.); (S.D.); (N.L.); (E.K.); (E.B.); (E.S.); (V.M.); (L.R.)
- Correspondence: ; Tel.: +7-(812)-2346-860
| | - Irina Isakova-Sivak
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (I.I.-S.); (S.D.); (N.L.); (E.K.); (E.B.); (E.S.); (V.M.); (L.R.)
| | - Marina Stukova
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 St Petersburg, Russia; (M.S.); (M.E.); (K.V.); (D.L.)
| | - Marianna Erofeeva
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 St Petersburg, Russia; (M.S.); (M.E.); (K.V.); (D.L.)
| | - Svetlana Donina
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (I.I.-S.); (S.D.); (N.L.); (E.K.); (E.B.); (E.S.); (V.M.); (L.R.)
| | - Natalie Larionova
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (I.I.-S.); (S.D.); (N.L.); (E.K.); (E.B.); (E.S.); (V.M.); (L.R.)
| | - Elena Krutikova
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (I.I.-S.); (S.D.); (N.L.); (E.K.); (E.B.); (E.S.); (V.M.); (L.R.)
| | - Ekaterina Bazhenova
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (I.I.-S.); (S.D.); (N.L.); (E.K.); (E.B.); (E.S.); (V.M.); (L.R.)
| | - Ekaterina Stepanova
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (I.I.-S.); (S.D.); (N.L.); (E.K.); (E.B.); (E.S.); (V.M.); (L.R.)
| | - Kirill Vasilyev
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 St Petersburg, Russia; (M.S.); (M.E.); (K.V.); (D.L.)
| | - Victoria Matyushenko
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (I.I.-S.); (S.D.); (N.L.); (E.K.); (E.B.); (E.S.); (V.M.); (L.R.)
| | - Marina Krylova
- The Federal State Unitary Enterprise “Scientific and Production Association for Immunological Preparations “Microgen”, Ministry of Health of Russian Federation, 127473 Moscow, Russia; (M.K.); (J.G.); (A.E.)
| | - Julia Galatonova
- The Federal State Unitary Enterprise “Scientific and Production Association for Immunological Preparations “Microgen”, Ministry of Health of Russian Federation, 127473 Moscow, Russia; (M.K.); (J.G.); (A.E.)
| | - Aleksey Ershov
- The Federal State Unitary Enterprise “Scientific and Production Association for Immunological Preparations “Microgen”, Ministry of Health of Russian Federation, 127473 Moscow, Russia; (M.K.); (J.G.); (A.E.)
| | - Dmitry Lioznov
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 St Petersburg, Russia; (M.S.); (M.E.); (K.V.); (D.L.)
| | | | - Guido Torelli
- World Health Organization, 1211 Geneva, Switzerland; (E.G.S.); (G.T.)
| | - Larisa Rudenko
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (I.I.-S.); (S.D.); (N.L.); (E.K.); (E.B.); (E.S.); (V.M.); (L.R.)
| |
Collapse
|
17
|
Akamatsu MA, Sakihara VA, Carvalho BP, de Paiva Abrantes A, Takano MAS, Adami EA, Yonehara FS, dos Santos Carneiro P, Rico S, Schanoski A, Meros M, Simpson A, Phan T, Fox CB, Ho PL. Preparedness against pandemic influenza: Production of an oil-in-water emulsion adjuvant in Brazil. PLoS One 2020; 15:e0233632. [PMID: 32492039 PMCID: PMC7269237 DOI: 10.1371/journal.pone.0233632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing pandemic influenza vaccine manufacturing capacity is considered strategic by WHO. Adjuvant use is key in this strategy in order to spare the vaccine doses and by increasing immune protection. We describe here the production and stability studies of a squalene based oil-in-water emulsion, adjuvant IB160, and the immune response of the H7N9 vaccine combined with IB160. To qualify the production of IB160 we produced 10 consistency lots of IB160 and the average results were: pH 6.4±0.05; squalene 48.8±.0.03 mg/ml; osmolality 47.6±6.9 mmol/kg; Z-average 157±2 nm, with polydispersity index (PDI) of 0.085±0.024 and endotoxin levels <0.5 EU/mL. The emulsion particle size was stable for at least six months at 25°C and 24 months at 4–8°C. Two doses of H7N9 vaccine formulated at 7.5 μg/dose or 15 μg/dose with adjuvant IB160 showed a significant increase of hemagglutination inhibition (HAI) titers in sera of immunized BALB/c mice when compared to control sera from animals immunized with the H7N9 antigens without adjuvant. Thus the antigen-sparing capacity of IB160 can potentially increase the production of the H7N9 pandemic vaccine and represents an important achievement for preparedness against pandemic influenza and a successful North (IDRI) to South (Butantan Institute) technology transfer for the production of the adjuvant emulsion IB160.
Collapse
Affiliation(s)
- Milena Apetito Akamatsu
- Divisão BioIndustrial, Serviço de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- * E-mail: (MAA); (PLE)
| | | | | | | | | | - Eduardo Alfredo Adami
- Divisão BioIndustrial, Laboratório de Influenza, Instituto Butantan, São Paulo, Brazil
| | | | | | - Stefanni Rico
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | | - Maurício Meros
- Divisão BioIndustrial, Instituto Butantan, São Paulo, Brazil
| | - Adrian Simpson
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Tony Phan
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Paulo Lee Ho
- Divisão BioIndustrial, Serviço de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- * E-mail: (MAA); (PLE)
| |
Collapse
|
18
|
Pushko P, Tretyakova I. Influenza Virus Like Particles (VLPs): Opportunities for H7N9 Vaccine Development. Viruses 2020; 12:v12050518. [PMID: 32397182 PMCID: PMC7291233 DOI: 10.3390/v12050518] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 01/21/2023] Open
Abstract
In the midst of the ongoing COVID-19 coronavirus pandemic, influenza virus remains a major threat to public health due to its potential to cause epidemics and pandemics with significant human mortality. Cases of H7N9 human infections emerged in eastern China in 2013 and immediately raised pandemic concerns as historically, pandemics were caused by the introduction of new subtypes into immunologically naïve human populations. Highly pathogenic H7N9 cases with severe disease were reported recently, indicating the continuing public health threat and the need for a prophylactic vaccine. Here we review the development of recombinant influenza virus-like particles (VLPs) as vaccines against H7N9 virus. Several approaches to vaccine development are reviewed including the expression of VLPs in mammalian, plant and insect cell expression systems. Although considerable progress has been achieved, including demonstration of safety and immunogenicity of H7N9 VLPs in the human clinical trials, the remaining challenges need to be addressed. These challenges include improvements to the manufacturing processes, as well as enhancements to immunogenicity in order to elicit protective immunity to multiple variants and subtypes of influenza virus.
Collapse
|
19
|
Luo J, Liu XP, Xiong FF, Gao FX, Yi YL, Zhang M, Chen Z, Tan WS. Enhancing Immune Response and Heterosubtypic Protection Ability of Inactivated H7N9 Vaccine by Using STING Agonist as a Mucosal Adjuvant. Front Immunol 2019; 10:2274. [PMID: 31611875 PMCID: PMC6777483 DOI: 10.3389/fimmu.2019.02274] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Influenza vaccines for H7N9 subtype have shown low immunogenicity in human clinical trials. Using novel adjuvants might represent the optimal available option in vaccine development. In this study, we demonstrated that the using of the STING agonist cGAMP as a mucosal adjuvant is effective in enhancing humoral, cellular and mucosal immune responses of whole virus, inactivated H7N9 vaccine in mice. A single dose of immunization was able to completely protect mice against a high lethal doses of homologous virus challenge with an significant dose-sparing effect. We also found that intranasal co-administration of H7N9 vaccine with cGAMP could provide effective cross protection against H1N1, H3N2, and H9N2 influenza virus. Furthermore, cGAMP induced significantly higher nucleoprotein specific CD4+ and CD8+ T cells responses in immunized mice, as well as upregulated the IFN-γ and Granzyme B expression in the lung tissue of mice in the early stages post a heterosubtypic virus challenge. These results indicated that STING agonist cGAMP was expected to be an effective mucosal immune adjuvant for pre-pandemic vaccines such as H7N9 vaccines, and the cGAMP combined nasal inactivated influenza vaccine will also be a promising strategy for development of broad-spectrum influenza vaccines.
Collapse
Affiliation(s)
- Jian Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Institute of Biological Products, Shanghai, China
| | - Xu-Ping Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fei-Fei Xiong
- Shanghai Institute of Biological Products, Shanghai, China
| | - Fei-Xia Gao
- Shanghai Institute of Biological Products, Shanghai, China
| | - Ying-Lei Yi
- Shanghai Institute of Biological Products, Shanghai, China
| | - Min Zhang
- Shanghai Institute of Biological Products, Shanghai, China
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|