1
|
Al-Osaimi HM, Kanan M, Marghlani L, Al-Rowaili B, Albalawi R, Saad A, Alasmari S, Althobaiti K, Alhulaili Z, Alanzi A, Alqarni R, Alsofiyani R, Shrwani R. A systematic review on malaria and dengue vaccines for the effective management of these mosquito borne diseases: Improving public health. Hum Vaccin Immunother 2024; 20:2337985. [PMID: 38602074 PMCID: PMC11017952 DOI: 10.1080/21645515.2024.2337985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Insect vector-borne diseases (VBDs) pose significant global health challenges, particularly in tropical and subtropical regions. The WHO has launched the "Global Vector Control Response (GVCR) 2017-2030" to address these diseases, emphasizing a comprehensive approach to vector control. This systematic review investigates the potential of malaria and dengue vaccines in controlling mosquito-borne VBDs, aiming to alleviate disease burdens and enhance public health. Following PRISMA 2020 guidelines, the review incorporated 39 new studies out of 934 identified records. It encompasses various studies assessing malaria and dengue vaccines, emphasizing the significance of vaccination as a preventive measure. The findings indicate variations in vaccine efficacy, duration of protection, and safety considerations for each disease, influencing public health strategies. The review underscores the urgent need for vaccines to combat the increasing burden of VBDs like malaria and dengue, advocating for ongoing research and investment in vaccine development.
Collapse
Affiliation(s)
- Hind M. Al-Osaimi
- Department of Pharmacy Services Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Kanan
- Department of Clinical Pharmacy, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Lujain Marghlani
- Department of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Badria Al-Rowaili
- Pharmaceutical Services Department, Northern Area Armed Forces Hospital, King Khalid Military, Hafr Al Batin, Kingdom of Saudi Arabia
| | - Reem Albalawi
- Department of Medicine, Tabuk University, Tabuk, Kingdom of Saudi Arabia
| | - Abrar Saad
- Pharmacy Department, Royal Commission Hospital, Yanbu, Kingdom of Saudi Arabia
| | - Saba Alasmari
- Department of Clinical Pharmacy, King Khalid University, Jeddah, Kingdom of Saudi Arabia
| | - Khaled Althobaiti
- Department of Medicine, Taif University, Ta’if, Kingdom of Saudi Arabia
| | - Zainab Alhulaili
- Department of Clinical Pharmacy, Dammam Medical Complex, Dammam, Kingdom of Saudi Arabia
| | - Abeer Alanzi
- Department of Medicine, King Abdulaziz Hospital, Makkah, Kingdom of Saudi Arabia
| | - Rawan Alqarni
- Department of Medicine and Surgery, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Razan Alsofiyani
- Department of Medicine, Taif University, Ta’if, Kingdom of Saudi Arabia
| | - Reem Shrwani
- Department of Clinical Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Mandaric S, Friberg H, Saez-Llorens X, Borja-Tabora C, Biswal S, Escudero I, Faccin A, Gottardo R, Brose M, Roubinis N, Fladager D, DeAntonio R, Dimero JAL, Montenegro N, Folschweiller N, Currier JR, Sharma M, Tricou V. Long term T cell response and safety of a tetravalent dengue vaccine in healthy children. NPJ Vaccines 2024; 9:192. [PMID: 39420169 PMCID: PMC11487277 DOI: 10.1038/s41541-024-00967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
As robust cellular responses are important for protection against dengue, this phase 2 study evaluated the kinetics and phenotype of T cell responses induced by TAK-003, a live-attenuated tetravalent dengue vaccine, in 4-16-year-old living in dengue-endemic countries (NCT02948829). Two hundred participants received TAK-003 on Days 1 and 90. Interferon-gamma (IFN-γ) enzyme-linked immunospot assay [ELISPOT] and intracellular cytokine staining were used to analyze T cell response and functionality, using peptide pools representing non-structural (NS) proteins NS3 and NS5 matching DENV-1, -2, -3, and -4 and DENV-2 NS1. One month after the second TAK-003 dose (Day 120), IFN-γ ELISPOT T cell response rates against any peptide pool were 97.1% (95% CI: 93.4% to 99.1%), and similar for baseline dengue seropositive (96.0%) and seronegative (98.6%) participants. IFN-γ ELISPOT T cell response rates at Day 120 were 79.8%, 90.2%, 77.3%, and 74.0%, against DENV-1, -2, -3, and -4, respectively, and remained elevated through 3 years post-vaccination. Multifunctional CD4 and CD8 T cell responses against DENV-2 NS peptides were observed, independent of baseline serostatus: CD8 T cells typically secreted IFN-γ and TNF-α whereas CD4 T cells secreted ≥ 2 of IFN-γ, IL-2 and TNF-α cytokines. NAb titers and seropositivity rates remained substantially elevated through 3 years post-vaccination. Overall, TAK-003 was well tolerated and elicited durable T cell responses against all four DENV serotypes irrespective of baseline serostatus in children and adolescents aged 4-16 years living in dengue-endemic countries. TAK-003-elicited CD4 and CD8 T cells were multifunctional and persisted up to 3 years post-vaccination.
Collapse
Affiliation(s)
- Sanja Mandaric
- Takeda Pharmaceuticals International AG, Zurich, Switzerland.
| | - Heather Friberg
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Xavier Saez-Llorens
- Hospital del Niño Dr. José Renán Esquivel, Panama City, Panama
- Centro de Vacunación Internacional Cevaxin, Panama City, Panama
- Sistema Nacional de Investigación SENACYT, Panama City, Panama
| | | | | | | | - Alice Faccin
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | - Raphael Gottardo
- Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Manja Brose
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | - Vianney Tricou
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| |
Collapse
|
3
|
Characterization of B-cell and T-cell responses to a tetravalent dengue purified inactivated vaccine in healthy adults. NPJ Vaccines 2022; 7:132. [PMID: 36316335 PMCID: PMC9622737 DOI: 10.1038/s41541-022-00537-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/08/2022] [Indexed: 11/07/2022] Open
Abstract
The increasing global impact of dengue underscores the need for a dengue virus (DENV) vaccine. We assessed B-cell and T-cell responses following vaccination with four formulations of a tetravalent dengue purified inactivated vaccine (DPIV) in dengue-primed and dengue-naive adults from two studies (NCT01666652, NCT01702857). Frequencies of DPIV-induced memory B cells specific to each DENV serotype remained high up to 12 months post-vaccination, and were higher in the dengue-primed than dengue-naive adults. A subsequent DPIV booster dose induced strong anamnestic B-cell responses. Multifunctional CD4+ T cells (predominantly expressing IL-2) were induced by DPIV, with higher frequencies in dengue-primed adults. DPIV-induced CD4+ T cells also demonstrated in vitro proliferative capacity and antigen-specific production of GM-CSF, IFN-γ, and IL-13. CD8+ T-cell responses were undetectable in dengue-naive adults and low in dengue-primed individuals. B- and T-cell responses persisted up to 12 months post-vaccination in both dengue-primed and dengue-naive adults.
Collapse
|
4
|
Pham-Thanh L, Nguyen-Tien T, Magnusson U, Bui VN, Bui AN, Lundkvist Å, Vu DT, Tran SH, Can MX, Nguyen-Viet H, Lindahl JF. Zoonotic Flavivirus Exposure in Peri-Urban and Suburban Pig-Keeping in Hanoi, Vietnam, and the Knowledge and Preventive Practices of Pig Farmers. Trop Med Infect Dis 2022; 7:tropicalmed7050079. [PMID: 35622706 PMCID: PMC9143339 DOI: 10.3390/tropicalmed7050079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/27/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Mosquito-borne diseases (MBDs), including those caused by flaviviruses, remain human health problems for developing and urbanizing economies. This cross-sectional study examined risks of flavivirus exposure through a survey regarding knowledge and practices of pig farmers, and serological analysis of pigs in peri-urban and suburban Hanoi city. A total of 636 pig sera from 179 pig farms in 4 districts, namely, Chuong My, Dan Phuong, Ha Dong, and Bac Tu Liem, were analyzed by a competitive ELISA designed for flavivirus antibody detection. The results indicated a low level of awareness about MBDs among pig farmers, and a high seroprevalence in pigs at 88.5% (95%CI = 85.8–90.9%). Moreover, common practices of pig owners to prevent mosquitoes at home and farm did not show a significant reduction in flavivirus exposure in pigs. At animal level, significant associations between seropositive pigs and the farms with more than 60 pigs, and the district location were found. Farm-level multivariable analysis did not identify significant risk factors for flavivirus exposure. The study suggests that improving awareness of pig owners about MBDs in Hanoi city may be warranted to reduce the risk for MBD flavivirus infections in both humans and pigs.
Collapse
Affiliation(s)
- Long Pham-Thanh
- International Livestock Research Institute (ILRI), Hanoi 10000, Vietnam; (T.N.-T.); (H.N.-V.); (J.F.L.)
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden;
- Department of Animal Health, Ministry of Agriculture and Rural Development, Hanoi 10000, Vietnam
- Correspondence: ; Tel.: +84-934-109-999
| | - Thang Nguyen-Tien
- International Livestock Research Institute (ILRI), Hanoi 10000, Vietnam; (T.N.-T.); (H.N.-V.); (J.F.L.)
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden;
| | - Ulf Magnusson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75123 Uppsala, Sweden;
| | - Vuong Nghia Bui
- National Institute for Veterinary Research, Hanoi 10000, Vietnam; (V.N.B.); (A.N.B.)
| | - Anh Ngoc Bui
- National Institute for Veterinary Research, Hanoi 10000, Vietnam; (V.N.B.); (A.N.B.)
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden;
| | - Duoc Trong Vu
- National Institute for Hygiene and Epidemiology, Hanoi 10000, Vietnam; (D.T.V.); (S.H.T.)
| | - Son Hai Tran
- National Institute for Hygiene and Epidemiology, Hanoi 10000, Vietnam; (D.T.V.); (S.H.T.)
| | - Minh Xuan Can
- Hanoi Sub-Department of Livestock Production and Animal Health, Hanoi 10000, Vietnam;
| | - Hung Nguyen-Viet
- International Livestock Research Institute (ILRI), Hanoi 10000, Vietnam; (T.N.-T.); (H.N.-V.); (J.F.L.)
| | - Johanna F. Lindahl
- International Livestock Research Institute (ILRI), Hanoi 10000, Vietnam; (T.N.-T.); (H.N.-V.); (J.F.L.)
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden;
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75123 Uppsala, Sweden;
| |
Collapse
|
5
|
Mohanty L, Prabhu M, Kumar Mishra A, Purty AJ, Kanungo R, Ghosh G, Prahan Kumar R, Newton Raj A, Bhushan S, Kumar Jangir M, Gupta A, Bhakri A. Safety and immunogenicity of a single dose, live-attenuated 'tetravalent dengue vaccine' in healthy Indian adults; a randomized, double-blind, placebo controlled phase I/II trial. Vaccine X 2022; 10:100142. [PMID: 35252836 PMCID: PMC8892502 DOI: 10.1016/j.jvacx.2022.100142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/08/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Dengue Tetravalent Vaccine, Live-attenuated Recombinant of Panacea Biotec is a lyophilized vaccine based on novel formulation. Dengue Tetravalent Vaccine targets protection against dengue disease caused by all four dengue virus serotypes. Dengue Tetravalent Vaccine Phase I/II clinical trial is the first study conducted in an Indian population and proved to be safe and immunogenic.
Background Dengue fever is the most prevalent mosquito-borne viral disease in the world, with 390 million dengue infections occurring every year. There is an unmet medical need to develop a safe, effective and affordable dengue vaccine against all four Dengue serotype viruses-DENV1, DENV-2, DENV-3 and DENV-4. Panacea Biotec Ltd (PBL) has developed a cell culture-derived, live-attenuated, lyophilized Tetravalent Dengue Vaccine (TDV). Here, in phase I/II study we assessed the safety and immunogenicity of single dose ‘Dengue Tetravalent Vaccine’ in healthy Indian adults. Methods In the study, 100 healthy adult volunteers aged 18–60 years were enrolled. The participants were allocated to TDV and placebo groups in 3:1 ratio, i.e. 75 participants to TDV group and 25 participants to the placebo group. Enrolled participants were administered a single dose of 0.5 ml of the test vaccine / placebo by subcutaneous route. Primary outcome for safety included all solicited AEs up to 21 days, unsolicited AEs up to 28 days and all AEs/serious adverse events (SAEs) till day 90 post-vaccination. For immunogenicity assessment the primary outcome was seroconversion & seropositivity rate by PRNT50 to all four serotype till 90 days. Results Overall, 100 subjects were vaccinated out of which 8 subjects (5 subjects in vaccine group and 3 subjects in placebo group) dropped out from the study. The most commonly reported solicited local AE was pain and most common solicited systemic AE was headache and fever. No SAE was reported during the study. There was no statistically significant difference between TDV and placebo groups in terms of AEs. Of the 92 subjects who completed all scheduled visits in the study, 59 (81.9%) achieved seroconversion for DENV-1, 56 (77.8%) for DENV-2; 59 (81.9%) for DENV-3 and 57 (79.2%) for DENV-4 in TDV group. The seroconversion rate in the TDV group was statistically significant (p < 0.001) compared to placebo. Clinical trial registration: CTRI/2017/02/007923.
Collapse
Key Words
- ADE, Antibody Dependent Enhancement
- Antibody dependent enhancement”
- Dengue prevalence,
- Dengue vaccine development” and
- Dengue vaccine”,
- Dengue”,
- GMT, Geometric Mean Titer
- PFU, Plaque Forming Unit
- PP, Per Protocol
- PRNT, Plaque Reduction Neutralization Test
- SAE, Serious Adverse Event
- TDV, Tetravalent Dengue Vaccine
Collapse
Affiliation(s)
- Lalitendu Mohanty
- Department of Clinical Research, Panacea Biotec Limited, G-3, B-1 Extension/ Mohan Co-operative Industrial Estate, Mathura Road, New Delhi, Delhi 110044, India
| | - Madhav Prabhu
- KLES Dr Prabhakar Kore Hospital and Medical Research Centre, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Amit Kumar Mishra
- Pondicherry Institute of Medical Sciences (PIMS-A Unit of Madras Medical Mission), Kalapet, Pondicherry 605014, India
| | - Anil J Purty
- Pondicherry Institute of Medical Sciences (PIMS-A Unit of Madras Medical Mission), Kalapet, Pondicherry 605014, India
| | - Reba Kanungo
- Pondicherry Institute of Medical Sciences (PIMS-A Unit of Madras Medical Mission), Kalapet, Pondicherry 605014, India
| | - Goutam Ghosh
- GIET University, Gunupur, Gobriguda, Po-Kharling, Rayagada, Odisha-765022, India
| | - R Prahan Kumar
- Pondicherry Institute of Medical Sciences (PIMS-A Unit of Madras Medical Mission), Kalapet, Pondicherry 605014, India
| | - A Newton Raj
- Pondicherry Institute of Medical Sciences (PIMS-A Unit of Madras Medical Mission), Kalapet, Pondicherry 605014, India
| | - Sumit Bhushan
- Department of Clinical Research, Panacea Biotec Limited, G-3, B-1 Extension/ Mohan Co-operative Industrial Estate, Mathura Road, New Delhi, Delhi 110044, India
| | - Manoj Kumar Jangir
- Department of Clinical Research, Panacea Biotec Limited, G-3, B-1 Extension/ Mohan Co-operative Industrial Estate, Mathura Road, New Delhi, Delhi 110044, India
| | - Anu Gupta
- Department of Clinical Research, Panacea Biotec Limited, G-3, B-1 Extension/ Mohan Co-operative Industrial Estate, Mathura Road, New Delhi, Delhi 110044, India
| | - Anju Bhakri
- Department of Clinical Research, Panacea Biotec Limited, G-3, B-1 Extension/ Mohan Co-operative Industrial Estate, Mathura Road, New Delhi, Delhi 110044, India
| |
Collapse
|
6
|
Khobragade AW, Kadam DD. Efficacy of Tetravalent Dengue Vaccine: A Systematic Review and Meta-Analysis. Indian J Community Med 2021; 46:191-194. [PMID: 34321724 PMCID: PMC8281852 DOI: 10.4103/ijcm.ijcm_608_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/13/2021] [Indexed: 11/04/2022] Open
Abstract
Dengue is one of the neglected tropical diseases caused by flavivirus. Live-attenuated tetravalent vaccine is launched for the age group of 9–45 years. It is given in three doses schedule. Eleven studies were included in meta-analysis by following PRISMA guidelines. Healthy persons in the age group of 2–45 years were included in these studies. Statistical analysis was done by “R” software. Pooled relative risk among vaccinated versus control group was calculated using random-effect model. Pooled dengue vaccine efficacy was calculated from relative risk. Heterogeneity and publication bias were assessed using Baujat and funnel plot, respectively. Adverse effects following immunization were reviewed. Pooled vaccine efficacy is 58% (95% confidence interval 46%-67%). I2 statistics is 81.4%.
Collapse
Affiliation(s)
- Ashish Wasudeo Khobragade
- Department of Community Medicine, Shri Shankaracharya Institute of Medical Sciences, Bhilai, Chhattisgarh, India
| | - Dilip D Kadam
- Department of Community Medicine, Seth G.S. Medical College, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Yoshimura M, Shinmura Y, Shishido T, Takagi S, Kameyama K, Sonoda K, Yoksan S, Kimachi K. Persistence of neutralizing antibody and its protective efficacy induced by a live attenuated tetravalent dengue vaccine, KD-382, in cynomolgus monkeys. Vaccine 2021; 39:3169-3178. [PMID: 33941407 DOI: 10.1016/j.vaccine.2021.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
Abstract
An effective dengue vaccine should induce a long-lasting immune response against all four serotypes simultaneously with a minimum number of immunizations. Our live attenuated tetravalent dengue vaccine candidate, KD-382, was developed using a classical host range mutation strategy (no addition of artificial genetic modification). In our previous study, cynomolgus monkeys immunized with a single dose of KD-382 seroconverted to all four serotypes. However, it is important to determine if neutralizing antibodies (NAbs) induced by KD-382 can work as a long-lasting immune response to prevent dengue. In this study, a single dose of KD-382 induced a strong NAb response against all four serotypes in cynomolgus monkeys. We also confirmed that NAb titers against all four serotypes persist for at least five years, indicating its high potential as a dengue vaccine candidate. Next, we evaluated the effect of pre-existing dengue immunity on NAb responses induced by KD-382. We administered KD-382 to cynomolgus monkeys pre-administered one of the monovalent parental wild-type strains 60 days before vaccination. Regardless of the pre-immunized serotype, all the monkeys showed sufficient tetravalent NAb responses, which lasted for over two years. All the KD-382 vaccinated monkeys were then challenged with different parental wild-type viruses than that used for pre-administration; viral RNA in the serum was less than the lower limit of quantification, indicating complete protection against secondary heterologous dengue infection without any harmful disease enhancement. Consequently, KD-382 successfully induced a long-lasting and protective tetravalent NAb response in monkeys, suggesting that KD-382 is a promising vaccine candidate usable for both dengue seronegative and seropositive individuals.
Collapse
Affiliation(s)
- Masaya Yoshimura
- KM Biologics Co., Ltd., 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto 860-8568, Japan.
| | - Yasuhiko Shinmura
- KM Biologics Co., Ltd., 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto 860-8568, Japan.
| | - Tatsuya Shishido
- KM Biologics Co., Ltd., 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto 860-8568, Japan
| | - Shota Takagi
- KM Biologics Co., Ltd., 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto 860-8568, Japan
| | - Kazuhisa Kameyama
- KM Biologics Co., Ltd., 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto 860-8568, Japan
| | - Kengo Sonoda
- KM Biologics Co., Ltd., 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto 860-8568, Japan
| | - Sutee Yoksan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Kazuhiko Kimachi
- KM Biologics Co., Ltd., 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto 860-8568, Japan.
| |
Collapse
|
8
|
Park J, Archuleta S, Oh MLH, Shek LPC, Wang H, Bonaparte M, Frago C, Bouckenooghe A, Jantet-Blaudez F, Begue S, Gimenez-Fourage S, Pagnon A. Humoral and cellular immunogenicity and safety following a booster dose of a tetravalent dengue vaccine 5+ years after completion of the primary series in Singapore: 2-year follow-up of a randomized phase II, placebo-controlled trial. Hum Vaccin Immunother 2021; 17:2107-2116. [PMID: 33626291 PMCID: PMC8189141 DOI: 10.1080/21645515.2020.1861875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The tetravalent dengue vaccine (CYD-TDV) is approved for use as a 3-dose series for the prevention of dengue in seropositive individuals ≥9 years. A randomized, placebo-controlled, phase II study of a booster dose of CYD-TDV in individuals who completed the 3-dose schedule >5 years previously (NCT02824198), demonstrated that a booster restored neutralizing antibody titers to post-dose 3 levels. We present additional immunogenicity assessments up to 24 months post-booster, and B- and T-cell responses in a participant subset. Participants aged 9-45 years that had received all three doses of CYD-TDV were randomized 3:1 to receive a booster dose of CYD-TDV (n = 89) or placebo (n = 29). Neutralizing antibody levels at Months 1, 6, 12, and 24 post-booster were assessed by plaque reduction neutralization test. In a subset, B-cell responses were assessed by a fluorescent immunospot assay, and T-cells analyzed by flow cytometry at Days 0, 7, 12, Months 1 and 12. We observed an increase of antibody titers Month 1 post-booster, then a gradual decline to Month 24. In the CYD-TDV booster group, an increase in plasmablasts was seen at Day 7 declining by Day 14, an increase in memory B-cells was observed at Day 28 with no persistence at Month 12. CYD-TDV booster recalled a CD8+ T-cell response, dominated by IFN-γ secretion, which decreased 12 months post-booster. This study showed a short-term increase in antibody titers and then gradual decrease following CYD-TDV booster injection >5 years after primary immunization, and the presence of memory B-cells activated following the booster, but with low persistence.
Collapse
Affiliation(s)
- Juliana Park
- Global Clinical Sciences, Sanofi Pasteur, Singapore, Singapore
| | - Sophia Archuleta
- Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - May-Lin Helen Oh
- Department of Medicine, Changi General Hospital, Singapore, Singapore
| | - Lynette Pei-Chi Shek
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hao Wang
- Biostatistics, Sanofi, Beijing, China
| | | | - Carina Frago
- Global Clinical Sciences, Sanofi Pasteur, Singapore, Singapore
| | | | | | - Sarah Begue
- Research and External Innovation Department, Sanofi Pasteur, Marcy l'Etoile, France
| | | | - Anke Pagnon
- Research and External Innovation Department, Sanofi Pasteur, Marcy l'Etoile, France
| |
Collapse
|
9
|
Immune Response Persistence and Safety of a Booster Dose of the Tetravalent Dengue Vaccine in Adolescents and Adults Who Previously Completed the 3-dose Schedule 4-5 Years Earlier in Latin America: A Randomized Placebo-controlled Trial. Pediatr Infect Dis J 2020; 39:961-968. [PMID: 32932330 DOI: 10.1097/inf.0000000000002830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND We previously described an increased immune response 28 days after a booster dose of the live, attenuated, tetravalent dengue vaccine (CYD-TDV) in healthy adolescents and adults in Latin America (CYD64, NCT02623725). This follow-up study evaluated immune response persistence and safety of a CYD-TDV booster dose up to Month (M) 24 post-booster. METHODS This study included 250 participants who previously received 3 primary doses of CYD-TDV in the CYD13 (NCT00993447) and CYD30 (NCT01187433) studies, and who were randomized 4-5 years later to receive a CYD-TDV booster or placebo (3:1). Dengue neutralizing antibodies against the parental dengue virus strains were assessed using the plaque reduction neutralization test (PRNT50) at M6, M12, and M24 post-booster. Post-booster memory B-cell responses were assessed in a subset of participants using the FluoroSpot assay up to M12 post-booster. RESULTS In the CYD-TDV group (n = 187), dengue neutralizing antibody geometric mean titers (GMTs) declined from the peak at day 28 through to M24 for all serotypes. GMTs at M24 were similar to those at pre-booster among baseline dengue seropositives. A similar trend was observed for baseline dengue seronegatives, albeit at a lower magnitude. Previous vaccination-induced detectable B-cell memory responses in seropositives and seronegatives that decreased to pre-booster levels at M12 post-booster. The CYD-TDV booster dose was well-tolerated. CONCLUSIONS In baseline dengue seropositives, following a CYD-TDV booster dose administered 4-5 years after primary immunization, dengue neutralizing antibody GMTs and B-cell memory responses peaked in the short-term before gradually decreasing over time. A CYD-TDV booster dose could improve protection against dengue during outbreak periods.
Collapse
|
10
|
Lin L, Lyke KE, Koren M, Jarman RG, Eckels KH, Lepine E, McArthur MA, Currier JR, Friberg H, Moris P, Keiser PB, De La Barrera R, Vaughn DW, Paris RM, Thomas SJ, Schmidt AC. Safety and Immunogenicity of an AS03 B-Adjuvanted Inactivated Tetravalent Dengue Virus Vaccine Administered on Varying Schedules to Healthy U.S. Adults: A Phase 1/2 Randomized Study. Am J Trop Med Hyg 2020; 103:132-141. [PMID: 32342848 PMCID: PMC7356407 DOI: 10.4269/ajtmh.19-0738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/25/2020] [Indexed: 01/05/2023] Open
Abstract
Dengue disease and its causative agents, the dengue viruses (DENV-1-4), cause high morbidity in tropical and subtropical regions. We evaluated three dosing regimens of the investigational tetravalent AS03B-adjuvanted dengue-purified inactivated vaccine (DPIV+AS03B). In this phase 1/2, observer-blind, placebo-controlled study (NCT02421367), 140 healthy adults were randomized 1:1:2 to receive DPIV+AS03B according to the following regimens: 0-1 month (M), 0-1-6 M, or 0-3 M. Participants received DPIV+AS03B or placebo at M0, M1, M3, and M6 according to their dosing schedule. Primary objectives were 1) to evaluate the safety of DPIV+AS03B for 28 days (D) after each dose; 2) to demonstrate the added value of a booster dose (0-1-6 M versus 0-1 M) based on neutralizing antibody titers to each DENV type (DENV-1-4) at 28 D after the last dose; and, if this objective was met, 3) to demonstrate the benefit of a longer interval between the first and second doses (0-1 M versus 0-3 M). Adverse events (AEs) within 7 D after vaccination tended to be more frequent after DPIV+AS03B doses than placebo; the number of grade 3 AEs was low (≤ 4.5% after DPIV+AS03B; ≤ 2.9% after placebo), with no obvious differences across groups. Within 28 D following each dose, the frequency of unsolicited AEs after DPIV+AS03B appeared higher for three-dose (0-1-6 M) than two-dose (0-1 M and 0-3 M) regimens. No serious AEs were considered related to vaccination, and no potential immune-mediated diseases were reported during the study. All three schedules were well tolerated. Both primary immunogenicity objectives were demonstrated. The 0-3 M and 0-1-6 M regimens were more immunogenic than the 0-1 M regimen.
Collapse
Affiliation(s)
- Leyi Lin
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health (CVD), University of Maryland, Baltimore, Maryland
| | - Michael Koren
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | | | | - Monica A. McArthur
- Center for Vaccine Development and Global Health (CVD), University of Maryland, Baltimore, Maryland
| | | | - Heather Friberg
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | - Paul B. Keiser
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | | | | | | | |
Collapse
|
11
|
Maslow JN. Challenges and solutions in the development of vaccines against emerging and neglected infectious diseases. Hum Vaccin Immunother 2019; 15:2230-2234. [PMID: 31644396 PMCID: PMC6816441 DOI: 10.1080/21645515.2019.1661209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Emerging and emergent infectious diseases (EIDs) represent a significant and growing cause of morbidity and mortality with increased potential for pandemics due to globalization and international trade. Challenges remain to the approach toward vaccine development for EIDs. This Special Feature explores areas related to vaccine development and testing, including unique challenges posed in the developing world. Vaccines against multiple pathogens spanning a number of viral families are explored with respect to past activities through to future commercialization. Cost drivers balanced against clinical need are discussed and unique challenges posed by rare diseases are considered.
Collapse
Affiliation(s)
- Joel N. Maslow
- Chief Medical Officer, Gene One Life Science, Inc., Seoul, Korea,Department of Medicine, Professor of Medicine, Morristown Medical Center, Morristown, NJ, USA,CONTACT Joel N. Maslow Chief Medical Officer, Gene One Life Science, Inc., Seoul, Korea; Professor of Medicine, Morristown Medical Center, Morristown, NJ, USA
| |
Collapse
|
12
|
Abstract
Dengue is the world's most prevalent and important arboviral disease. More than 50% of the world's population lives at daily risk of infection and it is estimated more than 95 million people a year seek medical care following infection. Severe disease can manifest as plasma leakage and potential for clinically significant hemorrhage, shock, and death. Treatment is supportive and there is currently no licensed anti-dengue virus prophylactic or therapeutic compound. A single dengue vaccine, Sanofi Pasteur's Dengvaxia®, has been licensed in 20 countries but uptake has been poor. A safety signal in dengue seronegative vaccine recipients stimulated an international re-look at the vaccine performance profile, new World Health Organization recommendations for use, and controversy in the Philippines involving the government, regulatory agencies, Sanofi Pasteur, clinicians responsible for testing and administering the vaccine, and the parents of vaccinated children. In this review, we provide an overview of Dengvaxia's® development and discuss what has been learned about product performance since its licensure.
Collapse
Affiliation(s)
- Stephen J Thomas
- State University of New York, Upstate Medical University, Division of Infectious Diseases, Institute for Global Health and Translational Sciences , Syracuse , NY , USA
| | - In-Kyu Yoon
- Global Dengue & Aedes-Transmitted Diseases Consortium, International Vaccine Institute, SNU Research Park , Gwanak-gu , Republic of Korea
| |
Collapse
|