1
|
Li S, Zhang W. Mapping the functional B-cell epitopes of Shigella invasion plasmid antigen D (IpaD). Appl Environ Microbiol 2024; 90:e0098824. [PMID: 39082807 PMCID: PMC11337796 DOI: 10.1128/aem.00988-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
Shigella bacteria utilize the type III secretion system (T3SS) to invade host cells and establish local infection. Invasion plasmid antigen D (IpaD), a component of Shigella T3SS, has garnered extensive interest as a vaccine target, primarily due to its pivotal role in the Shigella invasion, immunogenic property, and a high degree of conservation across Shigella species and serotypes. Currently, we are developing an epitope- and structure-based multivalent vaccine against shigellosis and require functional epitope antigens of key Shigella virulence determinants including IpaD. However, individual IpaD B-cell epitopes, their contributions to the overall immunogenicity, and functional activities attributing to bacteria invasion have not been fully characterized. In this study, we predicted continuous B-cell epitopes in silico and fused each epitope to a carrier protein. Then, we immunized mice intramuscularly with each epitope fusion protein, examined the IpaD-specific antibody responses, and measured antibodies from each epitope fusion for the activity against Shigella invasion in vitro. Data showed that all epitope fusion proteins induced similar levels of anti-IpaD IgG antibodies in mice, and differences were noted for antibody inhibition activity against Shigella invasion. IpaD epitope 1 (SPGGNDGNSV), IpaD epitope 2 (LGGNGEVVLDNA), and IpaD epitope 5 (SPNNTNGSSTET) induced antibodies significantly better in inhibiting invasion from Shigella flexneri 2a, and epitopes 1 and 5 elicited antibodies more effectively at preventing invasion of Shigella sonnei. These results suggest that IpaD epitopes 1 and 5 can be the IpaD representative antigens for epitope-based polyvalent protein construction and protein-based cross-protective Shigella vaccine development.IMPORTANCEShigella is a leading cause of diarrhea in children younger than 5 years in developing countries (children's diarrhea) and continues to be a major threat to public health. No licensed vaccines are currently available against the heterogeneous Shigella species and serotype strains. Aiming to develop a cross-protective multivalent vaccine against shigellosis and dysentery, we applied novel multiepitope fusion antigen (MEFA) technology to construct a broadly immunogenic polyvalent protein antigen, by presenting functional epitopes of multiple Shigella virulence determinants on a backbone protein. The functional IpaD epitopes identified from this study will essentially allow us to construct an optimal polyvalent Shigella immunogen, leading to the development of a cross-protective vaccine against shigellosis (and dysentery) and the improvement of global health. In addition, identifying functional epitopes from heterogeneous virulence determinants and using them as antigenic representatives for the development of cross-protective multivalent vaccines can be applied generally in vaccine development.
Collapse
Affiliation(s)
- Siqi Li
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Benedicto-Matambo P, Avolio LN, Badji H, Batool R, Khanam F, Munga S, Tapia MD, Peñataro Yori P, Awuor AO, Ceesay BE, Cornick J, Cunliffe NA, Garcia Bardales PF, Heaney CD, Hotwani A, Ireen M, Taufiqul Islam M, Jallow O, Kaminski RW, Shapiama Lopez WV, Maiden V, Ikumapayi UN, Nyirenda R, Ochieng JB, Omore R, Paredes Olortegui M, Pavlinac PB, Pisanic N, Qadri F, Qureshi S, Rahman N, Rogawski McQuade ET, Schiaffino F, Secka O, Sonye C, Sultana S, Timite D, Traore A, Yousafzai MT, Taufiqur Rahman Bhuiyan M, Jahangir Hossain M, Jere KC, Kosek MN, Kotloff KL, Qamar FN, Sow SO, Platts-Mills JA. Exploring Natural Immune Responses to Shigella Exposure Using Multiplex Bead Assays on Dried Blood Spots in High-Burden Countries: Protocol From a Multisite Diarrhea Surveillance Study. Open Forum Infect Dis 2024; 11:S58-S64. [PMID: 38532958 PMCID: PMC10962721 DOI: 10.1093/ofid/ofad650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Background Molecular diagnostics on human fecal samples have identified a larger burden of shigellosis than previously appreciated by culture. Evidence of fold changes in immunoglobulin G (IgG) to conserved and type-specific Shigella antigens could be used to validate the molecular assignment of type-specific Shigella as the etiology of acute diarrhea and support polymerase chain reaction (PCR)-based microbiologic end points for vaccine trials. Methods We will test dried blood spots collected at enrollment and 4 weeks later using bead-based immunoassays for IgG to invasion plasmid antigen B and type-specific lipopolysaccharide O-antigen for Shigella flexneri 1b, 2a, 3a, and 6 and Shigella sonnei in Shigella-positive cases and age-, site-, and season-matched test-negative controls from all sites in the Enterics for Global Health (EFGH) Shigella surveillance study. Fold antibody responses will be compared between culture-positive, culture-negative but PCR-attributable, and PCR-positive but not attributable cases and test-negative controls. Age- and site-specific seroprevalence distributions will be identified, and the association between baseline antibodies and Shigella attribution will be estimated. Conclusions The integration of these assays into the EFGH study will help support PCR-based attribution of acute diarrhea to type-specific Shigella, describe the baseline seroprevalence of conserved and type-specific Shigella antibodies, and support correlates of protection for immunity to Shigella diarrhea. These insights can help support the development and evaluation of Shigella vaccine candidates.
Collapse
Affiliation(s)
- Prisca Benedicto-Matambo
- School of Biomedical Sciences and Health Professions, Department of Medical Laboratory Sciences, Kamuzu University of Health Sciences, Blantyre, Malawi
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Department of Clinical Infection, Microbiology and Immunology, Liverpool, UK
| | - Lindsay N Avolio
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Henry Badji
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Rabab Batool
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Farhana Khanam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Stephen Munga
- Kenya Medical Research Institute, Center for Global Health Research (KEMRI-CGHR), Kisumu, Kenya
| | - Milagritos D Tapia
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pablo Peñataro Yori
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Alex O Awuor
- Kenya Medical Research Institute, Center for Global Health Research (KEMRI-CGHR), Kisumu, Kenya
| | - Bubacarr E Ceesay
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Jennifer Cornick
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Department of Clinical Infection, Microbiology and Immunology, Liverpool, UK
| | - Nigel A Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Department of Clinical Infection, Microbiology and Immunology, Liverpool, UK
| | | | - Christopher D Heaney
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Aneeta Hotwani
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Mahzabeen Ireen
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Taufiqul Islam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Ousman Jallow
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | | | - Victor Maiden
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Usman Nurudeen Ikumapayi
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Ruth Nyirenda
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - John Benjamin Ochieng
- Kenya Medical Research Institute, Center for Global Health Research (KEMRI-CGHR), Kisumu, Kenya
| | - Richard Omore
- Kenya Medical Research Institute, Center for Global Health Research (KEMRI-CGHR), Kisumu, Kenya
| | | | - Patricia B Pavlinac
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Nora Pisanic
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Sonia Qureshi
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Nazia Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | - Francesca Schiaffino
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
- Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ousman Secka
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Catherine Sonye
- Kenya Medical Research Institute, Center for Global Health Research (KEMRI-CGHR), Kisumu, Kenya
| | - Shazia Sultana
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Drissa Timite
- Centre pour le Développement des Vaccins du Mali, Bamako, Mali
| | - Awa Traore
- Centre pour le Développement des Vaccins du Mali, Bamako, Mali
| | | | - Md Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - M Jahangir Hossain
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Khuzwayo C Jere
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Department of Clinical Infection, Microbiology and Immunology, Liverpool, UK
- School of Life Sciences & Health Professions, Department of Medical Laboratory Sciences, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Karen L Kotloff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Farah Naz Qamar
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Samba O Sow
- Centre pour le Développement des Vaccins du Mali, Bamako, Mali
| | - James A Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Skerniskyte J, Mulet C, André AC, Anderson MC, Injarabian L, Buck A, Prade VM, Sansonetti PJ, Reibel-Foisset S, Walch AK, Lebel M, Lykkesfeldt J, Marteyn BS. Ascorbate deficiency increases progression of shigellosis in guinea pigs and mice infection models. Gut Microbes 2023; 15:2271597. [PMID: 37876025 PMCID: PMC10730169 DOI: 10.1080/19490976.2023.2271597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Shigella spp. are the causative agents of bacterial dysentery and shigellosis, mainly in children living in developing countries. The study of Shigella entire life cycle in vivo and the evaluation of vaccine candidates' protective efficacy have been hampered by the lack of a suitable animal model of infection. None of the studies evaluated so far (rabbit, guinea pig, mouse) allowed the recapitulation of full shigellosis symptoms upon Shigella oral challenge. Historical reports have suggested that dysentery and scurvy are both metabolic diseases associated with ascorbate deficiency. Mammals, which are susceptible to Shigella infection (humans, non-human primates and guinea pigs) are among the few species unable to synthesize ascorbate. We optimized a low-ascorbate diet to induce moderate ascorbate deficiency, but not scurvy, in guinea pigs to investigate whether poor vitamin C status increases the progression of shigellosis. Moderate ascorbate deficiency increased shigellosis symptom severity during an extended period of time (up to 48 h) in all strains tested (Shigella sonnei, Shigella flexneri 5a, and 2a). At late time points, an important influx of neutrophils was observed both within the disrupted colonic mucosa and in the luminal compartment, although Shigella was able to disseminate deep into the organ to reach the sub-mucosal layer and the bloodstream. Moreover, we found that ascorbate deficiency also increased Shigella penetration into the colon epithelium layer in a Gulo-/- mouse infection model. The use of these new rodent models of shigellosis opens new doors for the study of both Shigella infection strategies and immune responses to Shigella infection.
Collapse
Affiliation(s)
- Jurate Skerniskyte
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, Université de Strasbourg, Strasbourg, France
| | - Céline Mulet
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Université de Paris, Paris, France
| | - Antonin C. André
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, Université de Strasbourg, Strasbourg, France
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Université de Paris, Paris, France
| | - Mark C. Anderson
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Université de Paris, Paris, France
| | - Louise Injarabian
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, Université de Strasbourg, Strasbourg, France
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Verena M. Prade
- Research Unit Analytical Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Université de Paris, Paris, France
- Collège de France, Paris, France
| | | | - Axel K. Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Michel Lebel
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec, Canada
| | - Jens Lykkesfeldt
- Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University Copenhagen, Copenhagen, Denmark
| | - Benoit S. Marteyn
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, Université de Strasbourg, Strasbourg, France
- Unité de Pathogenèse des Infections Vasculaires, Institut Pasteur, INSERM U1225, Paris, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
4
|
Pastor Y, Calvo A, Salvador-Erro J, Gamazo C. Refining Immunogenicity through Intradermal Delivery of Outer Membrane Vesicles against Shigella flexneri in Mice. Int J Mol Sci 2023; 24:16910. [PMID: 38069232 PMCID: PMC10706920 DOI: 10.3390/ijms242316910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Shigellosis remains a global health concern, especially in low- and middle-income countries. Despite improvements in sanitation, the absence of a licensed vaccine for human use has prompted global health organizations to support the development of a safe and effective multivalent vaccine that is cost-effective and accessible for limited-resource regions. Outer Membrane Vesicles (OMVs) have emerged in recent years as an alternative to live attenuated or whole-inactivated vaccines due to their immunogenicity and self-adjuvating properties. Previous works have demonstrated the safety and protective capacity of OMVs against Shigella flexneri infection in mouse models when administered through mucosal or intradermal routes. However, some immunological properties, such as the cellular response or cross-protection among different Shigella strains, remained unexplored. In this study, we demonstrate that intradermal immunization of OMVs with needle-free devices recruits a high number of immune cells in the dermis, leading to a robust cellular response marked by antigen-specific cytokine release and activation of effector CD4 T cells. Additionally, functional antibodies are generated, neutralizing various Shigella serotypes, suggesting cross-protective capacity. These findings highlight the potential of OMVs as a promising vaccine platform against shigellosis and support intradermal administration as a simple and painless vaccination strategy to address this health challenge.
Collapse
Affiliation(s)
| | | | | | - Carlos Gamazo
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (Y.P.); (A.C.); (J.S.-E.)
| |
Collapse
|
5
|
Aiman S, Ahmad A, Khan A, Ali Y, Malik A, Alkholief M, Akhtar S, Khan RS, Li C, Jalil F, Ali Y. Vaccinomics-aided next-generation novel multi-epitope-based vaccine engineering against multidrug resistant Shigella Sonnei: Immunoinformatics and chemoinformatics approaches. PLoS One 2023; 18:e0289773. [PMID: 37992050 PMCID: PMC10664945 DOI: 10.1371/journal.pone.0289773] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/25/2023] [Indexed: 11/24/2023] Open
Abstract
Shigella sonnei is a gram-negative bacterium and is the primary cause of shigellosis in advanced countries. An exceptional rise in the prevalence of the disease has been reported in Asia, the Middle East, and Latin America. To date, no preventive vaccine is available against S. sonnei infections. This pathogen has shown resistances towards both first- and second-line antibiotics. Therefore, an effective broad spectrum vaccine development against shigellosis is indispensable. In the present study, vaccinomics-aided immunoinformatics strategies were pursued to identify potential vaccine candidates from the S. sonnei whole proteome data. Pathogen essential proteins that are non-homologous to human and human gut microbiome proteome set, are feasible candidates for this purpose. Three antigenic outer membrane proteins were prioritized to predict lead epitopes based on reverse vaccinology approach. Multi-epitope-based chimeric vaccines was designed using lead B- and T-cell epitopes combined with suitable linker and adjuvant peptide sequences to enhance immune responses against the designed vaccine. The SS-MEVC construct was prioritized based on multiple physicochemical, immunological properties, and immune-receptors docking scores. Immune simulation analysis predicted strong immunogenic response capability of the designed vaccine construct. The Molecular dynamic simulations analysis ensured stable molecular interactions of lead vaccine construct with the host receptors. In silico restriction and cloning analysis predicted feasible cloning capability of the SS-MEVC construct within the E. coli expression system. The proposed vaccine construct is predicted to be more safe, effective and capable of inducing robust immune responses against S. sonnei infections and may be worthy of examination via in vitro/in vivo assays.
Collapse
Affiliation(s)
- Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Abbas Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Akhtar
- A.T. Still University of Health Sciences, Kirksville, Missouri, United States of America
| | - Raham Sher Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yasir Ali
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
6
|
Nandi I, Aroeti B. Mitogen-Activated Protein Kinases (MAPKs) and Enteric Bacterial Pathogens: A Complex Interplay. Int J Mol Sci 2023; 24:11905. [PMID: 37569283 PMCID: PMC10419152 DOI: 10.3390/ijms241511905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Diverse extracellular and intracellular cues activate mammalian mitogen-activated protein kinases (MAPKs). Canonically, the activation starts at cell surface receptors and continues via intracellular MAPK components, acting in the host cell nucleus as activators of transcriptional programs to regulate various cellular activities, including proinflammatory responses against bacterial pathogens. For instance, binding host pattern recognition receptors (PRRs) on the surface of intestinal epithelial cells to bacterial pathogen external components trigger the MAPK/NF-κB signaling cascade, eliciting cytokine production. This results in an innate immune response that can eliminate the bacterial pathogen. However, enteric bacterial pathogens evolved sophisticated mechanisms that interfere with such a response by delivering virulent proteins, termed effectors, and toxins into the host cells. These proteins act in numerous ways to inactivate or activate critical components of the MAPK signaling cascades and innate immunity. The consequence of such activities could lead to successful bacterial colonization, dissemination, and pathogenicity. This article will review enteric bacterial pathogens' strategies to modulate MAPKs and host responses. It will also discuss findings attempting to develop anti-microbial treatments by targeting MAPKs.
Collapse
Affiliation(s)
| | - Benjamin Aroeti
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190410, Israel;
| |
Collapse
|
7
|
Zakir Hossain AKM, Zahid Hasan M, Mina SA, Sultana N, Chowdhury AMMA. Occurrence of shigellosis in pediatric diarrheal patients in Chattogram, Bangladesh: A molecular based approach. PLoS One 2023; 18:e0275353. [PMID: 37319254 PMCID: PMC10270574 DOI: 10.1371/journal.pone.0275353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Shigellaa Gram-negative, non-motile bacillus, is the primary causative agent of the infectious disease shigellosis, which kills 1.1 million people worldwideevery year. The children under the age of five are primarily the victims of this disease. This study has been conducted to assess the prevalence of shigellosis through selective plating, biochemical test and conventional PCR assays, where the samples were collected from suspected diarrheoal patients. Invasive plasmid antigen H (ipaH) and O-antigenic rfc gene were used to identify Shigella spp. and S. flexneri respectively. For validation of these identification, PCR product of ipaH gene of a sample (Shigella flexneri MZS 191) has been sequenced and submitted to NCBI database (GenBank accession no- MW774908.1). Further this strain has been used as positive control. Out of 204, around 14.2% (n = 29)(P> 0.01) pediatric diarrheoal cases were screened as shigellosis. Another interesting finding was that most of shigellosis affected children were 7 months to 1 year (P> 0.01).The significance of this study lies in the analyses of the occurrenceand the molecular identification of Shigellaspp. and S. flexneri that can be utilized in improving the accurate identification and the treatment of the most severe and alarming shigellosis.
Collapse
Affiliation(s)
- A. K. M. Zakir Hossain
- Department of Genetic Engineering & Biotechnology, Laboratory of Microbial & Cancer Genomics, University of Chittagong, Bangladesh
| | - Md. Zahid Hasan
- Department of Genetic Engineering & Biotechnology, Laboratory of Microbial & Cancer Genomics, University of Chittagong, Bangladesh
| | - Sohana Akter Mina
- Department of Genetic Engineering & Biotechnology, Laboratory of Microbial & Cancer Genomics, University of Chittagong, Bangladesh
| | - Nahid Sultana
- Department of Microbiology, Chattogram Maa-O-Shishu Hospital Medical College, Chattogram, Bangladesh
| | - A. M. Masudul Azad Chowdhury
- Department of Genetic Engineering & Biotechnology, Laboratory of Microbial & Cancer Genomics, University of Chittagong, Bangladesh
| |
Collapse
|
8
|
Boero E, Vezzani G, Micoli F, Pizza M, Rossi O. Functional assays to evaluate antibody-mediated responses against Shigella: a review. Front Cell Infect Microbiol 2023; 13:1171213. [PMID: 37260708 PMCID: PMC10227456 DOI: 10.3389/fcimb.2023.1171213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Shigella is a major global pathogen and the etiological agent of shigellosis, a diarrheal disease that primarily affects low- and middle-income countries. Shigellosis is characterized by a complex, multistep pathogenesis during which bacteria use multiple invasion proteins to manipulate and invade the intestinal epithelium. Antibodies, especially against the O-antigen and some invasion proteins, play a protective role as titres against specific antigens inversely correlate with disease severity; however, the context of antibody action during pathogenesis remains to be elucidated, especially with Shigella being mostly an intracellular pathogen. In the absence of a correlate of protection, functional assays rebuilding salient moments of Shigella pathogenesis can improve our understanding of the role of protective antibodies in blocking infection and disease. In vitro assays are important tools to build correlates of protection. Only recently animal models to recapitulate human pathogenesis, often not in full, have been established. This review aims to discuss in vitro assays to evaluate the functionality of anti-Shigella antibodies in polyclonal sera in light of the multistep and multifaced Shigella infection process. Indeed, measurement of antibody level alone may limit the evaluation of full vaccine potential. Serum bactericidal assay (SBA), and other functional assays such as opsonophagocytic killing assays (OPKA), and adhesion/invasion inhibition assays (AIA), are instead physiologically relevant and may provide important information regarding the role played by these effector mechanisms in protective immunity. Ultimately, the review aims at providing scientists in the field with new points of view regarding the significance of functional assays of choice which may be more representative of immune-mediated protection mechanisms.
Collapse
Affiliation(s)
- Elena Boero
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Giacomo Vezzani
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Mariagrazia Pizza
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|
9
|
Abstract
The major function of the mammalian immune system is to prevent and control infections caused by enteropathogens that collectively have altered human destiny. In fact, as the gastrointestinal tissues are the major interface of mammals with the environment, up to 70% of the human immune system is dedicated to patrolling them The defenses are multi-tiered and include the endogenous microflora that mediate colonization resistance as well as physical barriers intended to compartmentalize infections. The gastrointestinal tract and associated lymphoid tissue are also protected by sophisticated interleaved arrays of active innate and adaptive immune defenses. Remarkably, some bacterial enteropathogens have acquired an arsenal of virulence factors with which they neutralize all these formidable barriers to infection, causing disease ranging from mild self-limiting gastroenteritis to in some cases devastating human disease.
Collapse
Affiliation(s)
- Micah J. Worley
- Department of Biology, University of Louisville, Louisville, Kentucky, USA,CONTACT Micah J. Worley Department of Biology, University of Louisville, 139 Life Sciences Bldg, Louisville, Kentucky, USA
| |
Collapse
|
10
|
Singh V, Lee G, Son H, Amani S, Baunthiyal M, Shin JH. Anti-diabetic prospects of dietary bio-actives of millets and the significance of the gut microbiota: A case of finger millet. Front Nutr 2022; 9:1056445. [PMID: 36618686 PMCID: PMC9815516 DOI: 10.3389/fnut.2022.1056445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Finger millet (Eleusine coracana) is a staple food in several parts of the world because of its high nutritional value. In addition to its high nutrient content, finger millet contains numerous bioactive compounds, including polyphenol (10.2 mg/g TAE), flavonoid (5.54 mg/g CE), phytic acid (0.48%), and dietary fiber (15-20%). Polyphenols are known for their anti-oxidant and anti-diabetic role. Phytic acid, previously considered an anti-nutritive substance, is now regarded as a nutraceutical as it reduces carbohydrate digestibility and thus controls post-prandial glucose levels and obesity. Thus, finger millet is an attractive diet for patients with diabetes. Recent findings have revealed that the anti-oxidant activity and bio-accessibility of finger millet polyphenols increased significantly (P < 0.05) in the colon, confirming the role of the gut microbiota. The prebiotic content of finger millet was also utilized by the gut microbiota, such as Faecalibacterium, Eubacterium, and Roseburia, to generate colonic short-chain fatty acids (SCFAs), and probiotic Bifidobacterium and Lactobacillus, which are known to be anti-diabetic in nature. Notably, finger millet-induced mucus-degrading Akkermansia muciniphila can also help in alleviate diabetes by releasing propionate and Amuc_1100 protein. Various millet bio-actives effectively controlled pathogenic gut microbiota, such as Shigella and Clostridium histolyticum, to lower gut inflammation and, thus, the risk of diabetes in the host. In the current review, we have meticulously examined the role of gut microbiota in the bio-accessibility of millet compounds and their impact on diabetes.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sliti Amani
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mamta Baunthiyal
- Department of Biotechnology, Govind Ballabh Pant Institute of Engineering and Technology, Ghurdauri, India,*Correspondence: Mamta Baunthiyal,
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea,Jae-Ho Shin,
| |
Collapse
|
11
|
Capitani N, Baldari CT. The Immunological Synapse: An Emerging Target for Immune Evasion by Bacterial Pathogens. Front Immunol 2022; 13:943344. [PMID: 35911720 PMCID: PMC9325968 DOI: 10.3389/fimmu.2022.943344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Similar to other pathogens, bacteria have developed during their evolution a variety of mechanisms to overcome both innate and acquired immunity, accounting for their ability to cause disease or chronic infections. The mechanisms exploited for this critical function act by targeting conserved structures or pathways that regulate the host immune response. A strategic potential target is the immunological synapse (IS), a highly specialized structure that forms at the interface between antigen presenting cells (APC) and T lymphocytes and is required for the establishment of an effective T cell response to the infectious agent and for the development of long-lasting T cell memory. While a variety of bacterial pathogens are known to impair or subvert cellular processes essential for antigen processing and presentation, on which IS assembly depends, it is only recently that the possibility that IS may be a direct target of bacterial virulence factors has been considered. Emerging evidence strongly supports this notion, highlighting IS targeting as a powerful, novel means of immune evasion by bacterial pathogens. In this review we will present a brief overview of the mechanisms used by bacteria to affect IS assembly by targeting APCs. We will then summarize what has emerged from the current handful of studies that have addressed the direct impact of bacterial virulence factors on IS assembly in T cells and, based on the strategic cellular processes targeted by these factors in other cell types, highlight potential IS-related vulnerabilities that could be exploited by these pathogens to evade T cell mediated immunity.
Collapse
Affiliation(s)
- Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
12
|
Nasser A, Mosadegh M, Azimi T, Shariati A. Molecular mechanisms of Shigella effector proteins: a common pathogen among diarrheic pediatric population. Mol Cell Pediatr 2022; 9:12. [PMID: 35718793 PMCID: PMC9207015 DOI: 10.1186/s40348-022-00145-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
Different gastrointestinal pathogens cause diarrhea which is a very common problem in children aged under 5 years. Among bacterial pathogens, Shigella is one of the main causes of diarrhea among children, and it accounts for approximately 11% of all deaths among children aged under 5 years. The case-fatality rates for Shigella among the infants and children aged 1 to 4 years are 13.9% and 9.4%, respectively. Shigella uses unique effector proteins to modulate intracellular pathways. Shigella cannot invade epithelial cells on the apical site; therefore, it needs to pass epithelium through other cells rather than the epithelial cell. After passing epithelium, macrophage swallows Shigella, and the latter should prepare itself to exhibit at least two types of responses: (I) escaping phagocyte and (II) mediating invasion of and injury to the recurrent PMN. The presence of PMN and invitation to a greater degree resulted in gut membrane injuries and greater bacterial penetration. Infiltration of Shigella to the basolateral space mediates (A) cell attachment, (B) cell entry, (C) evasion of autophagy recognition, (D) vacuole formation and and vacuole rapture, (E) intracellular life, (F) Shiga toxin, and (G) immune response. In this review, an attempt is made to explain the role of each factor in Shigella infection.
Collapse
Affiliation(s)
- Ahmad Nasser
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aref Shariati
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| |
Collapse
|
13
|
Felegary A, Nazarian S, Kordbacheh E, Fathi J, Minae ME. An approach to chimeric subunit immunogen provides efficient protection against toxicity, type III and type v secretion systems of Shigella. Int Immunopharmacol 2021; 100:108132. [PMID: 34508943 DOI: 10.1016/j.intimp.2021.108132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Shigellosis is one of the infectious diseases causing severe intestinal illness in human beings. Development of an effective vaccine against Shigella is a key to deal with this bacterium. The present study aimed at evaluation of the antibody response as well as the protection of the recombinant chimeric protein containing IpaD, IpaB, StxB, and VirG against Shigella dysentery and flexneri. METHODS Chimeric protein was expressed and purified by Ni-NTA resin. The identity of the protein was determined by Western blot analysis. Mouse groups were immunized with the recombinant protein and the humoral immune response was measured by Enzyme-Linked Immunosorbent Assay (ELISA). Additionally, neutralization of the bacterial toxin by antibody was assessed by MTT assay. Animal challenge against S.dysentery and S. flexneri was evaluated, as well. RESULTS Protein expression and purification were confirmed by SDS-PAGE and western blotting. Analysis of the immune responses demonstrated that the antibody responses were higher in the sera of the subcutaneously immunized mice compared to those immunized intraperitoneally. In vitro neutralization analysis indicated that the 1:10000 dilution of the sera had a high ability to neutralize 0.25 ng/µl (CD50) of the toxin on the Vero cell line. Furthermore, the results of the animal challenge showed that the immunized mice were completely protected against 50 LD50 of the bacterial toxin. Immunization also protected 80% of the mice from 10 LD50 by S. flexneri and S.dysentery. In addition, passive immunization conferred 60% protection in the mice against S. flexneri and S.dysentery. Organ burden studies also revealed a significant reduction in infection among the immunized mice. CONCLUSION This study revealed that the chimeric protein produced inE. colicould be a promising chimeric immunogen candidate against Shigella.
Collapse
Affiliation(s)
- Alireza Felegary
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Shahram Nazarian
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran.
| | - Emad Kordbacheh
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Javad Fathi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Ebrahim Minae
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| |
Collapse
|
14
|
Zhao C, Mo L, Li J, Deng Q. Oxidized Milk Induces Spatial Learning and Memory Impairment by Altering Gut Microbiota in Offspring Mice during Pregnancy and Lactation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9934-9946. [PMID: 34427092 DOI: 10.1021/acs.jafc.1c02716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Early adverse diet exposures are known to be associated with increased risk of learning and memory injury in offspring, yet whether oxidized milk is involved in such an effect has been largely unknown. Here, we focused on oxidized milk intake in mice during pregnancy and lactation to measure the changes in the learning and memory ability in offspring and also probed into the relevant association with gut microbiota. Milk was oxidized with H2O2-Cu or HClO, resulting in different degrees of oxidative damage. KM female mice were fed H2O2-Cu, HClO, or normal control diets immediately after caging until their offspring were 3-weeks old. Behavioral tests were then performed to test the learning and memory ability, and 16S rRNA sequencing was completed with harvested fecal contents. As analyzed, fecal microflora in mice with oxidized milk was affected, mainly reflected in decreased mucin-degrading bacteria, Akkermansia and Lactobacillus, and in reversely increased pro-inflammatory bacteria Shigella, pathobiont Mucispirillum, nervous associated bacteria Ruminococcus, Escherichia, and Desulfovibrio. In the meantime, the inflammation developed in mice was aggravated accompanied by increased expression of relevant genes, while the genes and proteins associated with the learning and memory ability were down-regulated. Further behavioral tests proved impairment of the learning and memory ability in offspring. In general, milk of oxidative damage is a risk factor of the impaired transgenerational ability in learning and memory, which is associated with gut microbiota and intestinal mucosa conditions. This finding may help support the potential of early adverse diet as a harmful factor in learning and memory.
Collapse
Affiliation(s)
- Chaochao Zhao
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Ling Mo
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jingjing Li
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Qiuling Deng
- Department of nutrition and food hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| |
Collapse
|
15
|
Peer V, Schwartz N, Green MS. Sex differences in shigellosis incidence rates: analysis of national data from nine countries using meta-analytic method. Eur J Public Health 2021; 30:974-981. [PMID: 32535632 DOI: 10.1093/eurpub/ckaa087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Sex differences in the incidence of infectious diseases can provide insight to the biological mechanism of infection, disease susceptibility, severity and vaccine development. The consistency of age-specific sex differences in the incidence rates (IRs) of shigellosis is unclear. METHODS National data on cases of shigellosis by sex, age group and calendar year were obtained from nine countries, for a period of 6-25 years. The male to female incidence rate ratios (RR) were calculated by country, years and age group. For each age group, meta-analytic methods were used for computing pooled incidence RRs by country and years. Meta-regression was performed to estimate the contribution of age, country and time period to the differences in the male : female RRs. RESULTS In the age groups <1, 1-4, 5-9 and 10-14, there were excess IRs in males. The pooled incidence RRs (with 95% CI) were 1.21 (1.14-1.28), 1.17 (1.12-1.22), 1.04 (1.00-1.09) and 1.09 (1.01-1.18), respectively. In young adults, there was excess IR in females with RR = 0.80 (0.72-0.9). In middle aged and older adults, there was a slight excess in males with RR = 1.01 (0.89-1.15) and RR = 1.18 (1.09-1.28), respectively. In the meta-regression, age was the only variable that significantly contributed to the variation in the RRs. CONCLUSIONS The higher IRs in male infants and young children does not appear to be related to behavioral factors and genetic and hormonal factors could be important. In the older age groups, the higher rates in adult females may be due to behavioral factors.
Collapse
Affiliation(s)
- Victoria Peer
- School of Public Health, University of Haifa, Haifa, Israel
| | - Naama Schwartz
- School of Public Health, University of Haifa, Haifa, Israel
| | | |
Collapse
|
16
|
Bazhenova A, Gao F, Bolgiano B, Harding SE. Glycoconjugate vaccines against Salmonella enterica serovars and Shigella species: existing and emerging methods for their analysis. Biophys Rev 2021; 13:221-246. [PMID: 33868505 PMCID: PMC8035613 DOI: 10.1007/s12551-021-00791-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
The global spread of enteric disease, the increasingly limited options for antimicrobial treatment and the need for effective eradication programs have resulted in an increased demand for glycoconjugate enteric vaccines, made with carbohydrate-based membrane components of the pathogen, and their precise characterisation. A set of physico-chemical and immunological tests are employed for complete vaccine characterisation and to ensure their consistency, potency, safety and stability, following the relevant World Health Organization and Pharmacopoeia guidelines. Variable requirements for analytical methods are linked to conjugate structure, carrier protein nature and size and O-acetyl content of polysaccharide. We investigated a key stability-indicating method which measures the percent free saccharide of Salmonella enterica subspecies enterica serovar Typhi capsular polysaccharide, by detergent precipitation, depolymerisation and HPAEC-PAD quantitation. Together with modern computational approaches, a more precise design of glycoconjugates is possible, allowing for improvements in solubility, structural conformation and stability, and immunogenicity of antigens, which may be applicable to a broad spectrum of vaccines. More validation experiments are required to establish the most effective and suitable methods for glycoconjugate analysis to bring uniformity to the existing protocols, although the need for product-specific approaches will apply, especially for the more complex vaccines. An overview of current and emerging analytical approaches for the characterisation of vaccines against Salmonella Typhi and Shigella species is described in this paper. This study should aid the development and licensing of new glycoconjugate vaccines aimed at the prevention of enteric diseases.
Collapse
Affiliation(s)
- Aleksandra Bazhenova
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Fang Gao
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Barbara Bolgiano
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Stephen E. Harding
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
- Museum of Cultural History, University of Oslo, Postboks 6762 St. Olavs plass, 0130 Oslo, Norway
| |
Collapse
|
17
|
The Intriguing Interaction of Escherichia coli with the Host Environment and Innovative Strategies To Interfere with Colonization: a Summary of the 2019 E. coli and the Mucosal Immune System Meeting. Appl Environ Microbiol 2020; 86:AEM.02085-20. [PMID: 33008822 DOI: 10.1128/aem.02085-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The third E. coli and the Mucosal Immune System (ECMIS) meeting was held at Ghent University in Belgium from 2 to 5 June 2019. It brought together an international group of scientists interested in mechanisms of colonization, host response, and vaccine development. ECMIS distinguishes itself from related meetings on these enteropathogens by providing a greater emphasis on animal health and disease and covering a broad range of pathotypes, including enterohemorrhagic, enteropathogenic, enterotoxigenic, enteroaggregative, and extraintestinal pathogenic Escherichia coli As it is well established that the genus Shigella represents a subspecies of E. coli, these organisms along with related enteroinvasive E. coli are also included. In addition, Tannerella forsythia, a periodontal pathogen, was presented as an example of a pathogen which uses its surface glycans for mucosal interaction. This review summarizes several highlights from the 2019 meeting and major advances to our understanding of the biology of these pathogens and their impact on the host.
Collapse
|
18
|
Samassa F, Ferrari ML, Husson J, Mikhailova A, Porat Z, Sidaner F, Brunner K, Teo TH, Frigimelica E, Tinevez JY, Sansonetti PJ, Thoulouze MI, Phalipon A. Shigella impairs human T lymphocyte responsiveness by hijacking actin cytoskeleton dynamics and T cell receptor vesicular trafficking. Cell Microbiol 2020; 22:e13166. [PMID: 31957253 PMCID: PMC7187243 DOI: 10.1111/cmi.13166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Strategies employed by pathogenic enteric bacteria, such as Shigella, to subvert the host adaptive immunity are not well defined. Impairment of T lymphocyte chemotaxis by blockage of polarised edge formation has been reported upon Shigella infection. However, the functional impact of Shigella on T lymphocytes remains to be determined. Here, we show that Shigella modulates CD4+ T cell F‐actin dynamics and increases cell cortical stiffness. The scanning ability of T lymphocytes when encountering antigen‐presenting cells (APC) is subsequently impaired resulting in decreased cell–cell contacts (or conjugates) between the two cell types, as compared with non‐infected T cells. In addition, the few conjugates established between the invaded T cells and APCs display no polarised delivery and accumulation of the T cell receptor to the contact zone characterising canonical immunological synapses. This is most likely due to the targeting of intracellular vesicular trafficking by the bacterial type III secretion system (T3SS) effectors IpaJ and VirA. The collective impact of these cellular reshapings by Shigella eventually results in T cell activation dampening. Altogether, these results highlight the combined action of T3SS effectors leading to T cell defects upon Shigella infection.
Collapse
Affiliation(s)
- Fatoumata Samassa
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France
| | - Mariana L Ferrari
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France
| | - Julien Husson
- Laboratoire d'Hydrodynamique (LadHyX), Ecole polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France
| | | | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facility, Weizmann Institute of Sciences, Rehovot, Israel
| | | | - Katja Brunner
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France
| | - Teck-Hui Teo
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France
| | | | | | - Philippe J Sansonetti
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France.,Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | | | - Armelle Phalipon
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France
| |
Collapse
|
19
|
Affiliation(s)
- Dani Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|