1
|
Hanboonkunupakarn B, Mukaka M, Jittamala P, Poovorawan K, Pongsuwan P, Stockdale L, Provstgaard-Morys S, Chotivanich K, Tarning J, Hoglund RM, Chimjinda N, Ewer K, Ramos-Lopez F, Day NPJ, Dondorp AM, Hill AV, White NJ, von Seidlein L, Pukrittayakamee S. A randomised trial of malaria vaccine R21/Matrix-M™ with and without antimalarial drugs in Thai adults. NPJ Vaccines 2024; 9:124. [PMID: 38971837 PMCID: PMC11227592 DOI: 10.1038/s41541-024-00920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
In preparation for mass vaccinations with R21/Matrix-M™ combined with mass administrations of dihydroartemisinin, piperaquine, and a single low dose primaquine we assessed the tolerability, safety, and potential interactions of this combination affecting immunogenicity or pharmacokinetics. 120 healthy Thai volunteers were randomised to receive either antimalarials combined with vaccinations (n = 50), vaccinations alone (n = 50), or antimalarials only (n = 20). Three rounds of vaccines and antimalarials were administered one month apart. The vaccine was well tolerated alone and in combination with the antimalarials. None of the participants failed completion of the 3-dose vaccine course. There was no significant difference in the vaccine immunogenicity or in the pharmacokinetics of piperaquine given individually or in combination. This study supports proceeding to a large trial of mass vaccinations with R21/Matrix-M™ combined with mass antimalarial administration in Bangladesh.
Collapse
Affiliation(s)
- Borimas Hanboonkunupakarn
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Podjanee Jittamala
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kittiyod Poovorawan
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pongphaya Pongsuwan
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lisa Stockdale
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | | | - Kesinee Chotivanich
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Richard M Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Natenapa Chimjinda
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Katie Ewer
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
- GSK, GSK Vaccines Institute for Global Health, Siena, Italy
| | - Fernando Ramos-Lopez
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Adrian V Hill
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | - Sasithon Pukrittayakamee
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- The Royal Society of Thailand, Dusit, Bangkok, Thailand
| |
Collapse
|
2
|
Onyango OH, Mwenda CM, Gitau G, Muoma J, Okoth P. In-silico analysis of potent Mosquirix vaccine adjuvant leads. J Genet Eng Biotechnol 2023; 21:155. [PMID: 38032502 PMCID: PMC10689608 DOI: 10.1186/s43141-023-00590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND World Health Organization recommend the use of malaria vaccine, Mosquirix, as a malaria prevention strategy. However, Mosquirix has failed to reduce the global burden of malaria because of its inefficacy. The Mosquirix vaccine's modest effectiveness against malaria, 36% among kids aged 5 to 17 months who need at least four doses, fails to aid malaria eradication. Therefore, highly effective and efficacious malaria vaccines are required. The well-characterized P. falciparum circumsporozoite surface protein can be used to discover adjuvants that can increase the efficacy of Mosquirix. Therefore, the study sought to undertake an in-silico discovery of Plasmodium falciparum circumsporozoite surface protein inhibitors with pharmacological properties on Mosquirix using hierarchical virtual screening and molecular dynamics simulation. RESULTS Monoclonal antibody L9, an anti-Plasmodium falciparum circumsporozoite surface protein molecule, was used to identify Plasmodium falciparum circumsporozoite surface protein inhibitors with pharmacological properties on Mosquirix during a virtual screening process in ZINCPHARMER that yielded 23 hits. After drug-likeness and absorption, distribution, metabolism, excretion, and toxicity property analysis in the SwissADME web server, only 9 of the 23 hits satisfied the requirements. The 9 compounds were docked with Plasmodium falciparum circumsporozoite surface protein using the PyRx software to understand their interactions. ZINC25374360 (-8.1 kcal/mol), ZINC40144754 (-8.3 kcal/mol), and ZINC71996727 (-8.9 kcal/mol) bound strongly to Plasmodium falciparum circumsporozoite surface protein with binding affinities of less than -8.0 kcal/mol. The stability of these molecularly docked Plasmodium falciparum circumsporozoite surface protein-inhibitor complexes were assessed through molecular dynamics simulation using GROMACS 2022. ZINC25374360 and ZINC71996727 formed stable complexes with Plasmodium falciparum circumsporozoite surface protein. They were subjected to in vitro validation for their inhibitory potential. The IC50 values ranging between 250 and 350 ng/ml suggest inhibition of parasite development. CONCLUSION Therefore, the two Plasmodium falciparum circumsporozoite surface protein inhibitors can be used as vaccine adjuvants to increase the efficacy of the existing Mosquirix vaccine. Nevertheless, additional in vivo tests, structural optimization studies, and homogenization analysis are essential to determine the anti-plasmodial action of these adjuvants in humans.
Collapse
Affiliation(s)
- Okello Harrison Onyango
- Department of Biological Sciences (Molecular Biology, Computational Biology, and Bioinformatics Section), School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. BOX 190-50100, Kakamega, Kenya.
| | - Cynthia Mugo Mwenda
- Department of Biological Sciences, School of Pure and Applied Sciences, Meru University of Science and Technology, P.O. BOX 972-60200, Meru, Kenya
| | - Grace Gitau
- Department of Biochemistry and Biotechnology, School of Biological and Life Sciences, The Technical University of Kenya, P.O. BOX 52428-00200, Nairobi, Kenya
| | - John Muoma
- Department of Biological Sciences (Molecular Biology, Computational Biology, and Bioinformatics Section), School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. BOX 190-50100, Kakamega, Kenya
| | - Patrick Okoth
- Department of Biological Sciences (Molecular Biology, Computational Biology, and Bioinformatics Section), School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. BOX 190-50100, Kakamega, Kenya
| |
Collapse
|
3
|
Budroni S, Buricchi F, Cavallone A, Bourguignon P, Caubet M, Dewar V, D'Oro U, Finco O, Garçon N, El Idrissi M, Janssens M, Leroux-Roels G, Marchant A, Schwarz T, Van Damme P, Volpini G, van der Most R, Didierlaurent AM, Burny W. Antibody avidity, persistence, and response to antigen recall: comparison of vaccine adjuvants. NPJ Vaccines 2021; 6:78. [PMID: 34021167 PMCID: PMC8140094 DOI: 10.1038/s41541-021-00337-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Differences in innate immune ‘imprinting’ between vaccine adjuvants may mediate dissimilar effects on the quantity/quality of persisting adaptive responses. We compared antibody avidity maturation, antibody/memory B cell/CD4+ T cell response durability, and recall responses to non-adjuvanted fractional-dose antigen administered 1-year post-immunization (Day [D]360), between hepatitis B vaccines containing Adjuvant System (AS)01B, AS01E, AS03, AS04, or Alum (NCT00805389). Both the antibody and B cell levels ranked similarly (AS01B/E/AS03 > AS04 > Alum) at peak response, at D360, and following their increases post-antigen recall (D390). Proportions of high-avidity antibodies increased post-dose 2 across all groups and persisted at D360, but avidity maturation appeared to be more strongly promoted by AS vs. Alum. Post-antigen recall, frequencies of subjects with high-avidity antibodies increased only markedly in the AS groups. Among the AS, total antibody responses were lowest for AS04. However, proportions of high-avidity antibodies were similar between groups, suggesting that MPL in AS04 contributes to avidity maturation. Specific combinations of immunoenhancers in the AS, regardless of their individual nature, increase antibody persistence and avidity maturation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, Brussels, Belgium
| | - Tino Schwarz
- Institute of Laboratory Medicine and Vaccination Center, Klinikum Wuerzburg Mitte, Standort Juliusspital, Academic Teaching Hospital of the University of Wuerzburg, Wuerzburg, Germany
| | - Pierre Van Damme
- Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
4
|
Marques-da-Silva C, Peissig K, Kurup SP. Pre-Erythrocytic Vaccines against Malaria. Vaccines (Basel) 2020; 8:vaccines8030400. [PMID: 32708179 PMCID: PMC7565498 DOI: 10.3390/vaccines8030400] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Malaria, caused by the protozoan Plasmodium, is a devastating disease with over 200 million new cases reported globally every year. Although immunization is arguably the best strategy to eliminate malaria, despite decades of research in this area we do not have an effective, clinically approved antimalarial vaccine. The current impetus in the field is to develop vaccines directed at the pre-erythrocytic developmental stages of Plasmodium, utilizing novel vaccination platforms. We here review the most promising pre-erythrocytic stage antimalarial vaccine candidates.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Kristen Peissig
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Samarchith P. Kurup
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
5
|
Sanchez L, Vidal M, Jairoce C, Aguilar R, Ubillos I, Cuamba I, Nhabomba AJ, Williams NA, Díez-Padrisa N, Cavanagh D, Angov E, Coppel RL, Gaur D, Beeson JG, Dutta S, Aide P, Campo JJ, Moncunill G, Dobaño C. Antibody responses to the RTS,S/AS01 E vaccine and Plasmodium falciparum antigens after a booster dose within the phase 3 trial in Mozambique. NPJ Vaccines 2020; 5:46. [PMID: 32550014 PMCID: PMC7272643 DOI: 10.1038/s41541-020-0192-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/07/2020] [Indexed: 01/08/2023] Open
Abstract
The RTS,S/AS01E vaccine has shown consistent but partial vaccine efficacy in a pediatric phase 3 clinical trial using a 3-dose immunization schedule. A fourth-dose 18 months after the primary vaccination was shown to restore the waning efficacy. However, only total IgG against the immunodominant malaria vaccine epitope has been analyzed following the booster. To better characterize the magnitude, nature, and longevity of the immune response to the booster, we measured levels of total IgM, IgG, and IgG1-4 subclasses against three constructs of the circumsporozoite protein (CSP) and the hepatitis B surface antigen (HBsAg, also present in RTS,S) by quantitative suspension array technology in 50 subjects in the phase 3 trial in Manhiça, Mozambique. To explore the impact of vaccination on naturally acquired immune responses, we measured antibodies to P. falciparum antigens not included in RTS,S. We found increased IgG, IgG1, IgG3 and IgG4, but not IgG2 nor IgM, levels against vaccine antigens 1 month after the fourth dose. Overall, antibody responses to the booster dose were lower than the initial peak response to primary immunization and children had higher IgG and IgG1 levels than infants. Higher anti-Rh5 IgG and IgG1-4 levels were detected after the booster dose, suggesting that RTS,S partial protection could increase some blood stage antibody responses. Our work shows that the response to the RTS,S/AS01E booster dose is different from the primary vaccine immune response and highlights the dynamic changes in subclass antibody patterns upon the vaccine booster and with acquisition of adaptive immunity to malaria.
Collapse
Affiliation(s)
- Lina Sanchez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain.,UnivLyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Marta Vidal
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Chenjerai Jairoce
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Itziar Ubillos
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Inocencia Cuamba
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Nana Aba Williams
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Núria Díez-Padrisa
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain
| | - David Cavanagh
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, UK
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD USA
| | - Ross L Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC Australia
| | - Deepak Gaur
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | - Sheetij Dutta
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD USA
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Joseph J Campo
- UnivLyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| |
Collapse
|