1
|
Yao M, Cheng Z, Li X, Li Y, Ye W, Zhang H, Liu H, Zhang L, Lei Y, Zhang F, Lv X. N6-methyladenosine modification positively regulate Japanese encephalitis virus replication. Virol J 2024; 21:23. [PMID: 38243270 PMCID: PMC10799421 DOI: 10.1186/s12985-023-02275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
N6-methyladenosine (m6A) is present in diverse viral RNA and plays important regulatory roles in virus replication and host antiviral innate immunity. However, the role of m6A in regulating JEV replication has not been investigated. Here, we show that the JEV genome contains m6A modification upon infection of mouse neuroblast cells (neuro2a). JEV infection results in a decrease in the expression of m6A writer METTL3 in mouse brain tissue. METTL3 knockdown by siRNA leads to a substantial decrease in JEV replication and the production of progeny viruses at 48 hpi. Mechanically, JEV triggered a considerable increase in the innate immune response of METTL3 knockdown neuro2a cells compared to the control cells. Our study has revealed the distinctive m6A signatures of both the virus and host in neuro2a cells infected with JEV, illustrating the positive role of m6A modification in JEV infection. Our study further enhances understanding of the role of m6A modification in Flaviviridae viruses.
Collapse
Affiliation(s)
- Min Yao
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhirong Cheng
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
- College of Life Science, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Xueyun Li
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
- College of Basic Medicine, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yuexiang Li
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Wei Ye
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - He Liu
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China.
| | - Xin Lv
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
2
|
Yang Q, Ding Y, Yao W, Chen S, Jiang Y, Yang L, Bao G, Yang K, Fan S, Du Q, Wang Q, Wang G. Pathogenicity and Interspecies Transmission of Cluster 3 Tembusu Virus Strain TMUV HQ-22 Isolated from Geese. Viruses 2023; 15:2449. [PMID: 38140690 PMCID: PMC10747935 DOI: 10.3390/v15122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Since 2010, the Tembusu virus (TMUV) has been highly prevalent in China, causing significant economic losses to the poultry industry. In 2022, a suspected outbreak of TMUV occurred at a goose farm located in Anhui Province. A strain of TMUV, TMUV HQ-22, was isolated from the infected geese. Phylogenetic analysis using the E gene of the HQ-22 strain demonstrated its affiliation with cluster 3, a less commonly reported cluster in comparison to the main circulating cluster, cluster 2. Through a comparison of the envelope (E) protein of HQ-22 with other typical TMUV strains, a mutation at the 157th amino acid position was identified, wherein valine (V) in cluster 3 changed to alanine (A), a characteristic that is unique to cluster 2. These findings highlight the diversity and complexity of the TMUV strains circulating in China. In our experimental analysis, an injection of TMUV HQ-22 into the muscles of 3-day-old goslings resulted in severe neurological symptoms and a mortality rate of 60%. Similarly, the intracranial or intranasal infection of 3-week-old ICR mice with TMUV HQ-22 led to severe neurological symptoms and respective mortality rates of 100% or 10%. In summary, our study isolated a TMUV strain, TMUV HQ-22, from geese that belongs to cluster 3 and exhibits significant pathogenicity in both goslings and ICR mice. These results emphasize the genetic diversity of the TMUV circulating in China and expand the host range beyond mosquitoes to include ducks, chickens, geese, and even mice. It is crucial to not underestimate the risk of TMUV infection in mammals, warranting our utmost attention.
Collapse
Affiliation(s)
- Qing Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Yingying Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Weiping Yao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Shuyue Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Yaqian Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Linping Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Guangbin Bao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Kang Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Shinuo Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Qingqing Du
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
| | - Qing Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.Y.); (Y.D.); (W.Y.); (S.C.); (Y.J.); (L.Y.); (G.B.); (K.Y.); (S.F.); (Q.D.)
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, China
| |
Collapse
|
3
|
Munt JE, Henein S, Adams C, Young E, Hou YJ, Conrad H, Zhu D, Dong S, Kose N, Yount B, Meganck RM, Tse LPV, Kuan G, Balmaseda A, Ricciardi MJ, Watkins DI, Crowe JE, Harris E, DeSilva AM, Baric RS. Homotypic antibodies target novel E glycoprotein domains after natural DENV 3 infection/vaccination. Cell Host Microbe 2023; 31:1850-1865.e5. [PMID: 37909048 PMCID: PMC11221912 DOI: 10.1016/j.chom.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
The envelope (E) glycoprotein is the primary target of type-specific (TS) neutralizing antibodies (nAbs) after infection with any of the four distinct dengue virus serotypes (DENV1-4). nAbs can be elicited to distinct structural E domains (EDs) I, II, or III. However, the relative contribution of these domain-specific antibodies is unclear. To identify the primary DENV3 nAb targets in sera after natural infection or vaccination, chimeric DENV1 recombinant encoding DENV3 EDI, EDII, or EDIII were generated. DENV3 EDII is the principal target of TS polyclonal nAb responses and encodes two or more neutralizing epitopes. In contrast, some were individuals vaccinated with a DENV3 monovalent vaccine-elicited serum TS nAbs targeting each ED in a subject-dependent fashion, with an emphasis on EDI and EDIII. Vaccine responses were also sensitive to DENV3 genotypic variation. This DENV1/3 panel allows the measurement of serum ED TS nAbs, revealing differences in TS nAb immunity after natural infection or vaccination.
Collapse
Affiliation(s)
- Jennifer E Munt
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Sandra Henein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Cameron Adams
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ellen Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Deanna Zhu
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Nashville, TN, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Long Ping V Tse
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Guillermina Kuan
- Health Center Socrates Flores Vivas, Ministry of Health, Managua, Nicaragua; Sustainable Sciences Institute, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua; National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | | | - David I Watkins
- University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Aravinda M DeSilva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Sui L, Zhao Y, Wang W, Chi H, Tian T, Wu P, Zhang J, Zhao Y, Wei ZK, Hou Z, Zhou G, Wang G, Wang Z, Liu Q. Flavivirus prM interacts with MDA5 and MAVS to inhibit RLR antiviral signaling. Cell Biosci 2023; 13:9. [PMID: 36639652 PMCID: PMC9837762 DOI: 10.1186/s13578-023-00957-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Vector-borne flaviviruses, including tick-borne encephalitis virus (TBEV), Zika virus (ZIKV), West Nile virus (WNV), yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), pose a growing threat to public health worldwide, and have evolved complex mechanisms to overcome host antiviral innate immunity. However, the underlying mechanisms of flavivirus structural proteins to evade host immune response remain elusive. RESULTS We showed that TBEV structural protein, pre-membrane (prM) protein, could inhibit type I interferon (IFN-I) production. Mechanically, TBEV prM interacted with both MDA5 and MAVS and interfered with the formation of MDA5-MAVS complex, thereby impeding the nuclear translocation and dimerization of IRF3 to inhibit RLR antiviral signaling. ZIKV and WNV prM was also demonstrated to interact with both MDA5 and MAVS, while dengue virus serotype 2 (DENV2) and YFV prM associated only with MDA5 or MAVS to suppress IFN-I production. In contrast, JEV prM could not suppress IFN-I production. Overexpression of TBEV and ZIKV prM significantly promoted the replication of TBEV and Sendai virus. CONCLUSION Our findings reveal the immune evasion mechanisms of flavivirus prM, which may contribute to understanding flavivirus pathogenicity, therapeutic intervention and vaccine development.
Collapse
Affiliation(s)
- Liyan Sui
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yinghua Zhao
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Wenfang Wang
- grid.64924.3d0000 0004 1760 5735College of Basic Medical Science, Jilin University, Changchun, China
| | - Hongmiao Chi
- grid.64924.3d0000 0004 1760 5735College of Basic Medical Science, Jilin University, Changchun, China
| | - Tian Tian
- grid.64924.3d0000 0004 1760 5735College of Basic Medical Science, Jilin University, Changchun, China
| | - Ping Wu
- grid.412246.70000 0004 1789 9091College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jinlong Zhang
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yicheng Zhao
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zheng-Kai Wei
- grid.443369.f0000 0001 2331 8060School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhijun Hou
- grid.412246.70000 0004 1789 9091College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Guoqiang Zhou
- grid.482450.f0000 0004 8514 6702The Biological safety level-3 Laboratory, Changchun Institute of Biological Products Co., Ltd, Changchun, China
| | - Guoqing Wang
- grid.64924.3d0000 0004 1760 5735College of Basic Medical Science, Jilin University, Changchun, China
| | - Zedong Wang
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Quan Liu
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China ,grid.443369.f0000 0001 2331 8060School of Life Sciences and Engineering, Foshan University, Foshan, China
| |
Collapse
|
5
|
Munir R, Rafique S, Ali A, Amin I, Ahmed S, Vajeeha A, Shahid M, Samiullah TR, Idrees M, Tao YJ, Khan MU. Molecular characterization of recombinant premembrane protein of dengue virus serotype‐2 for development of diagnostic assay. J Basic Microbiol 2022; 63:489-498. [PMID: 36356225 DOI: 10.1002/jobm.202200469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 11/12/2022]
Abstract
Dengue is an acute arboviral infection common in tropical and subtropical countries. Dengue has been highlighted as a public health concern in the last five decades, affecting almost 50% of the population in developing nations. Dengue infection results in a complex symptomatic disease that ranges from headache, fever, and skin rash to extreme hemorrhage fever and liver dysfunction. The diagnosis of the disease is essential for effective treatment. The early onset of the infection can be detected through viral structural peptides that act as markers for detection, including Pre-Membrane (Pre-M) protein. In the currently proposed research, the structural gene obtained from local isolates was targeted for studies. For this purpose, recombinant structural protein Pre-M was amplified, cloned, and expressed in the bacterial expression system. The expression of the structural protein (Pre-M) was scrutinized by Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and validated by western blot and dot blot, and afterwards, the antigen was purified. The purified Pre-M protein carries the potential for the development of in-house diagnostic assay as well as for vaccine production. This study aimed to develop a highly specific, sensitive, and cost-effective in-house enzyme-linked immunoassay (ELISA) for the detection of antibodies of Pakistani most prevalent dengue virus serotype 2 (DENV-2). The success of this research would also pave the way toward developing novel vaccines for the future prevention of dengue infection.
Collapse
Affiliation(s)
- Rakhtasha Munir
- Centre of Applied Molecular Biology (CAMB) University of the Punjab Lahore Pakistan
| | - Shazia Rafique
- Centre of Excellence in Molecular Biology (CEMB) University of the Punjab Lahore Pakistan
| | - Amjad Ali
- Department of Biotechnology and Genetic Engineering Hazara University Mansehra Pakistan
| | - Iram Amin
- Centre of Applied Molecular Biology (CAMB) University of the Punjab Lahore Pakistan
- Centre of Excellence in Molecular Biology (CEMB) University of the Punjab Lahore Pakistan
| | - Sameen Ahmed
- Centre of Excellence in Molecular Biology (CEMB) University of the Punjab Lahore Pakistan
| | - Ayesha Vajeeha
- Centre of Excellence in Molecular Biology (CEMB) University of the Punjab Lahore Pakistan
| | - Muhammad Shahid
- Centre of Excellence in Molecular Biology (CEMB) University of the Punjab Lahore Pakistan
| | - Tahir R. Samiullah
- Centre of Excellence in Molecular Biology (CEMB) University of the Punjab Lahore Pakistan
| | - Muhammad Idrees
- Centre of Excellence in Molecular Biology (CEMB) University of the Punjab Lahore Pakistan
- Centre of Biotechnology & Microbiology University of Peshawar Peshawar Pakistan
| | - Yizhi J. Tao
- Deparment of Biosciences Rice University Houston Texas USA
| | - Muhammad U. Khan
- University Institute of Medical lab Technology, Faculty of Allied Health Sciences University of Lahore Lahore Pakistan
| |
Collapse
|
6
|
De S, Aamna B, Sahu R, Parida S, Behera SK, Dan AK. Seeking heterocyclic scaffolds as antivirals against dengue virus. Eur J Med Chem 2022; 240:114576. [PMID: 35816877 PMCID: PMC9250831 DOI: 10.1016/j.ejmech.2022.114576] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/20/2022]
Abstract
Dengue is one of the most typical viral infection categorized in the Neglected Tropical Diseases (NTDs). It is transmitted via the female Aedes aegypti mosquito to humans and majorly puts risk to the lives of more than half of the world. Recent advancements in medicinal chemistry have led to the design and development of numerous potential heterocyclic scaffolds as antiviral drug candidates for the inhibition of the dengue virus (DENV). Thus, in this review, we have discussed the significance of inhibitory and antiviral activities of nitrogen, oxygen, and mixed (nitrogen-sulfur and nitrogen-oxygen) heterocyclic scaffolds that are published in the last seven years (2016–2022). Furthermore, we have also discussed the probable mechanisms of action and the diverse structure-activity relationships (SARs) of the heterocyclic scaffolds. In addition, this review has elaborately outlined the mechanism of viral infection and the life cycle of DENV in the host cells. The wide set of heterocycles and their SARs will aid in the development of pharmaceuticals that will allow the researchers to synthesize the promising anti-dengue drug candidate in the future.
Collapse
|