1
|
Goloudina A, Le Chevalier F, Authié P, Charneau P, Majlessi L. Shared neoantigens for cancer immunotherapy. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200978. [PMID: 40256120 PMCID: PMC12008704 DOI: 10.1016/j.omton.2025.200978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Exploration of neoantigens holds the potential to be productive in immuno-oncotherapy. Among tumor-specific antigens, neoantigens result from genetic instability that gives rise to non-synonymous somatic mutations, highly specific to tumor cells. In addition to point mutations, gene rearrangements, indels leading to frameshifts, chromosomal translocations or inversions that may lead to fusion proteins, alternative mRNA splicing, and integration of genetic material of oncogenic viruses into the host genome provide consistent sources of neoantigens that are absent in healthy tissues. Out of these alterations, 2%-3% may generate T cell neoepitopes, possibly detectable by TCRs. Neoantigens are absent in healthy tissues and are thus at low risk of triggering autoimmunity. In addition, the host lymphocytes have not been rendered tolerant toward them and it is possible to induce immune responses against them. Here, we overview the two categories of neoantigens, i.e., private and shared, and their use in immuno-oncotherapy in selected pre-clinical and clinical studies. The vast majority of commonly occurring tumor-specific mutations are cancer causing and are permanently expressed by all malignant tumor cells, preventing the latter from escaping vaccine-induced anti-neoantigen immunity. The use of public neoantigens combined with efficient vaccine platforms can provide non-personalized "off-the-shelf" therapeutic vaccine candidates for broad-spectrum immunotherapy purposes.
Collapse
Affiliation(s)
- Anastasia Goloudina
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 rue du Dr. Roux, 75015 Paris, France
| | - Fabien Le Chevalier
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 rue du Dr. Roux, 75015 Paris, France
| | - Pierre Authié
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 rue du Dr. Roux, 75015 Paris, France
| | - Pierre Charneau
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 rue du Dr. Roux, 75015 Paris, France
| | - Laleh Majlessi
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, 28 rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
2
|
Guo X, Bai J, Wang X, Guo S, Shang Z, Shao Z. Evoking the Cancer-immunity cycle by targeting the tumor-specific antigens in Cancer immunotherapy. Int Immunopharmacol 2025; 154:114576. [PMID: 40168803 DOI: 10.1016/j.intimp.2025.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Cancer-related deaths continue to rise, largely due to the suboptimal efficacy of current treatments. Fortunately, immunotherapy has emerged as a promising alternative, offering new hope for cancer patients. Among various immunotherapy approaches, targeting tumor-specific antigens (TSAs) has gained particular attention due to its demonstrated success in clinical settings. Despite these advancements, there are still gaps in our understanding of TSAs. Therefore, this review explores the life cycle of TSAs in cancer, the methods used to identify them, and recent advances in TSAs-targeted cancer therapies. Enhancing medical professionals' understanding of TSAs will help facilitate the development of more effective TSAs-based cancer treatments.
Collapse
Affiliation(s)
- Xiaomeng Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shutian Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Naffaa MM, Al-Ewaidat OA, Gogia S, Begiashvili V. Neoantigen-based immunotherapy: advancing precision medicine in cancer and glioblastoma treatment through discovery and innovation. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002313. [PMID: 40309350 PMCID: PMC12040680 DOI: 10.37349/etat.2025.1002313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Neoantigen-based immunotherapy has emerged as a transformative approach in cancer treatment, offering precision medicine strategies that target tumor-specific antigens derived from genetic, transcriptomic, and proteomic alterations unique to cancer cells. These neoantigens serve as highly specific targets for personalized therapies, promising more effective and tailored treatments. The aim of this article is to explore the advances in neoantigen-based therapies, highlighting successful treatments such as vaccines, tumor-infiltrating lymphocyte (TIL) therapy, T-cell receptor-engineered T cells therapy (TCR-T), and chimeric antigen receptor T cells therapy (CAR-T), particularly in cancer types like glioblastoma (GBM). Advances in technologies such as next-generation sequencing, RNA-based platforms, and CRISPR gene editing have accelerated the identification and validation of neoantigens, moving them closer to clinical application. Despite promising results, challenges such as tumor heterogeneity, immune evasion, and resistance mechanisms persist. The integration of AI-driven tools and multi-omic data has refined neoantigen discovery, while combination therapies are being developed to address issues like immune suppression and scalability. Additionally, the article discusses the ongoing development of personalized immunotherapies targeting tumor mutations, emphasizing the need for continued collaboration between computational and experimental approaches. Ultimately, the integration of cutting-edge technologies in neoantigen research holds the potential to revolutionize cancer care, offering hope for more effective and targeted treatments.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ola A Al-Ewaidat
- Department of Internal Medicine, Ascension Saint Francis Hospital, Evanston, IL 60202, USA
| | - Sopiko Gogia
- Department of Internal Medicine, Ascension Saint Francis Hospital, Evanston, IL 60202, USA
| | - Valiko Begiashvili
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
| |
Collapse
|
4
|
RUZANOVA VERA, PROSKURINA ANASTASIA, RITTER GENRIKH, DOLGOVA EVGENIYA, OSHIKHMINA SOFYA, KIRIKOVICH SVETLANA, LEVITES EVGENIY, EFREMOV YAROSLAV, TARANOV OLEG, OSTANIN ALEXANDR, CHERNYKH ELENA, KOLCHANOV NIKOLAY, BOGACHEV SERGEY. The synergistic antitumor effect of Karanahan technology and in situ vaccination using anti-OX40 antibodies. Oncol Res 2025; 33:1229-1248. [PMID: 40296901 PMCID: PMC12034020 DOI: 10.32604/or.2025.059411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/24/2025] [Indexed: 04/30/2025] Open
Abstract
Objectives Currently, there exist two approaches to the treatment of malignant neoplasms: the Karanahan technology and in situ vaccination, which are based on chronometric delivery of therapeutic agents to the tumor depending on the characteristics of tumor cells, as well as the immune status. The main purpose of this study was to experimentally prove the feasibility of combining the Karanahan technology and in situ vaccination with αOX40 antibodies into a single therapeutic platform to achieve a potent additive antitumor therapeutic effect. Methods BALB/c mice grafted with B-cellular lymphoma A20 were treated using the Karanahan technology consisting of intraperitoneal cyclophosphamide administrations and intratumoral DNA injections according to an individually determined therapeutic regimen, together with in situ vaccination with αOX40. A pathomorphological analysis of the organs of experimental animals that died during the initial attempt to combine the two technologies was carried out. An analysis of blood cell populations was performed to determine the safe time for antibody administration: the number of immune cells capable of activating systemic inflammation (CD11b+Ly-6C+, CD11b+Ly-6G+, CD3-NKp46+CD11b+), the presence of Fc receptor and OX40 on the surface of these cells, and the number of neutrophils activated to NETosis were analyzed. Based on the analysis results, the antitumor efficacy of various modes of combining the Karanahan technology and in situ vaccination was studied. Results When αOX40 was administered 5 h after each treatment using the Karanahan technology, mass death of mice caused by systemic inflammation and multiple organ failure was observed. The state of blood cells after the treatment using the Karanahan technology at the time points corresponding to antibody injections was analyzed to elucidate the reasons for this effect. It was found that at some time points, there occurs activation of the immune system and a powerful release (up to 16%) of monocytes and granulocytes carrying Fc receptor and OX40 on their surface into blood; when interacting with αOX40, they can activate the lytic potential of these cells. Activation of neutrophils to NETosis was also observed. Based on these findings, a study was carried out in different time regimes to combine the Karanahan technology and αOX40 injections. When αOX40 was injected into the points of minimal release of myeloid cells into the blood, increased survival rate and the greatest antitumor efficacy were observed: 37% of animals survived without relapses on day 100 after experiment initiation. Conclusions: The results obtained indicate that it is possible to combine the Karanahan technology and in situ vaccination with αOX40, with obligatory constant monitoring of the number of myeloid cells in peripheral blood to determine the safe time for antibody injection.
Collapse
Affiliation(s)
- VERA RUZANOVA
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - ANASTASIA PROSKURINA
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - GENRIKH RITTER
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - EVGENIYA DOLGOVA
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - SOFYA OSHIKHMINA
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk National Research State University, Novosibirsk, 630090, Russia
| | - SVETLANA KIRIKOVICH
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - EVGENIY LEVITES
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - YAROSLAV EFREMOV
- Novosibirsk National Research State University, Novosibirsk, 630090, Russia
- Center for Shared Use of Microscopic Analysis of Biological Objects SB RAS, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - OLEG TARANOV
- Department of Microscopic Research, State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559, Russia
| | - ALEXANDR OSTANIN
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia
| | - ELENA CHERNYKH
- Laboratory of Cellular Immunotherapy, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia
| | - NIKOLAY KOLCHANOV
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - SERGEY BOGACHEV
- Laboratory of Induced Cellular Processes, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| |
Collapse
|
5
|
Galili U. Self-Tumor Antigens in Solid Tumors Turned into Vaccines by α-gal Micelle Immunotherapy. Pharmaceutics 2024; 16:1263. [PMID: 39458595 PMCID: PMC11510312 DOI: 10.3390/pharmaceutics16101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
A major reason for the failure of the immune system to detect tumor antigens (TAs) is the insufficient uptake, processing, and presentation of TAs by antigen-presenting cells (APCs). The immunogenicity of TAs in the individual patient can be markedly increased by the in situ targeting of tumor cells for robust uptake by APCs, without the need to identify and characterize the TAs. This is feasible by the intra-tumoral injection of α-gal micelles comprised of glycolipids presenting the carbohydrate-antigen "α-gal epitope" (Galα1-3Galβ1-4GlcNAc-R). Humans produce a natural antibody called "anti-Gal" (constituting ~1% of immunoglobulins), which binds to α-gal epitopes. Tumor-injected α-gal micelles spontaneously insert into tumor cell membranes, so that multiple α-gal epitopes are presented on tumor cells. Anti-Gal binding to these epitopes activates the complement system, resulting in the killing of tumor cells, and the recruitment of multiple APCs (dendritic cells and macrophages) into treated tumors by the chemotactic complement cleavage peptides C5a and C3a. In this process of converting the treated tumor into a personalized TA vaccine, the recruited APC phagocytose anti-Gal opsonized tumor cells and cell membranes, process the internalized TAs and transport them to regional lymph-nodes. TA peptides presented on APCs activate TA-specific T cells to proliferate and destroy the metastatic tumor cells presenting the TAs. Studies in anti-Gal-producing mice demonstrated the induction of effective protection against distant metastases of the highly tumorigenic B16 melanoma following injection of natural and synthetic α-gal micelles into primary tumors. This treatment was further found to synergize with checkpoint inhibitor therapy by the anti-PD1 antibody. Phase-1 clinical trials indicated that α-gal micelle immunotherapy is safe and can induce the infiltration of CD4+ and CD8+ T cells into untreated distant metastases. It is suggested that, in addition to converting treated metastases into an autologous TA vaccine, this treatment should be considered as a neoadjuvant therapy, administering α-gal micelles into primary tumors immediately following their detection. Such an immunotherapy will convert tumors into a personalized anti-TA vaccine for the period prior to their resection.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Huang P, Wen F, Tuerhong N, Yang Y, Li Q. Neoantigens in cancer immunotherapy: focusing on alternative splicing. Front Immunol 2024; 15:1437774. [PMID: 39055714 PMCID: PMC11269099 DOI: 10.3389/fimmu.2024.1437774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Alternative splicing (AS) functions as a crucial program in transcriptional modulation, leading to proteomic diversity and functional alterations of proteins. These splicing actions induce various neoantigens that hold prognostic significance and contribute to various aspects of cancer progression, including immune responses against cancer. The advent of immunotherapy has remarkably revolutionized tumor therapy. In this regard, AS-derived neoantigens are potent targets for cancer vaccines and chimeric antigen receptor (CAR) T cell therapies. In this review, we outline that AS-derived neoantigens serve as promising immunotherapeutic targets and guide immunotherapy strategies. This evidence contributes to a deeper comprehension of the complexity of proteomic diversity and provides novel perspectives and techniques for precision medicine in immunotherapy. Moreover, we underscore the obstacles that are awaited to be addressed for this novel approach to become clinically applicable.
Collapse
Affiliation(s)
- Peng Huang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Wen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nuerye Tuerhong
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|