1
|
Su R, Wang Y, Cui P, Tian G, Qin Y. Isolation of OSCAs in wheat and over-expression of TaOSCA14D increased salt stress tolerance. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154449. [PMID: 39946937 DOI: 10.1016/j.jplph.2025.154449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025]
Abstract
Salt stress is a major environmental factor that limits plant growth and productivity. In the early stage of salt stress, the intracellular Ca2+ concentration elevates, thereby triggering osmotic stress tolerance signaling pathway. OSCAs encode hyperosmotic gated calcium channels and function as osmotic sensors in Arabidopsis. But the functions of OSCAs in wheat responding to salt stress have not been elucidated. In this study, we identified 42 TaOSCAs and examined their expression pattern in 12 tissues and under salt stress. Further, the salt inducible TaOSCA14D was selected for functional study in response to salt stress. TaOSCA14D was induced by NaCl, PEG, exogenous ABA treatment. Over-expression of TaOSCA14D in Arabidopsis and wheat increased salt stress tolerance. Salt stress related marker genes SnRK2s, ABFs, RD29B were higher expressed in TaOSCA14D transgenic plants than in the wild type under NaCl treatment. Furthermore, the soluble sugar and proline content were higher in transgenic plants than in wild-type ones. Over-expression of TaOSCA14D promoted flowering, decreased spike length and the grain number of per spike. All these results shed some light on the function of OSCAs in tolerance to salt stress and its roles in agronomic trait in wheat.
Collapse
Affiliation(s)
- Ruiping Su
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong Province, China
| | - Yuning Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong Province, China
| | - Ping Cui
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong Province, China
| | - Geng Tian
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong Province, China
| | - Yuxiang Qin
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong Province, China.
| |
Collapse
|
2
|
Luo C, Akhtar M, Min W, Bai X, Ma T, Liu C. Domain of unknown function (DUF) proteins in plants: function and perspective. PROTOPLASMA 2024; 261:397-410. [PMID: 38158398 DOI: 10.1007/s00709-023-01917-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Domains of unknown function (DUFs), which are deposited in the protein family database (Pfam), are protein domains with conserved amino acid sequences and uncharacterized functions. Proteins with the same DUF were classified as DUF families. Although DUF families are generally not essential for the survival of plants, they play roles in plant development and adaptation. Characterizing the functions of DUFs is important for deciphering biological puzzles. DUFs were generally studied through forward and reverse genetics. Some novelty approaches, especially the determination of crystal structures and interaction partners of the DUFs, should attract more attention. This review described the identification of DUF genes by genome-wide and transcriptome-wide analyses, summarized the function of DUF-containing proteins, and addressed the prospects for future studies in DUFs in plants.
Collapse
Affiliation(s)
- Chengke Luo
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Maryam Akhtar
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Weifang Min
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Xiaorong Bai
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Tianli Ma
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Caixia Liu
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
3
|
Shah OU, Khan LU, Basharat S, Zhou L, Ikram M, Peng J, Khan WU, Liu P, Waseem M. Genome-Wide Investigation of Class III Peroxidase Genes in Brassica napus Reveals Their Responsiveness to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:942. [PMID: 38611473 PMCID: PMC11013820 DOI: 10.3390/plants13070942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 04/14/2024]
Abstract
Brassica napus (B. napus) is susceptible to multiple abiotic stresses that can affect plant growth and development, ultimately reducing crop yields. In the past, many genes that provide tolerance to abiotic stresses have been identified and characterized. Peroxidase (POD) proteins, members of the oxidoreductase enzyme family, play a critical role in protecting plants against abiotic stresses. This study demonstrated a comprehensive investigation of the POD gene family in B. napus. As a result, a total of 109 POD genes were identified across the 19 chromosomes and classified into five distinct subgroups. Further, 44 duplicate events were identified; of these, two gene pairs were tandem and 42 were segmental. Synteny analysis revealed that segmental duplication was more prominent than tandem duplication among POD genes. Expression pattern analysis based on the RNA-seq data of B. napus indicated that BnPOD genes were expressed differently in various tissues; most of them were expressed in roots rather than in other tissues. To validate these findings, we performed RT-qPCR analysis on ten genes; these genes showed various expression levels under abiotic stresses. Our findings not only furnish valuable insights into the evolutionary dynamics of the BnPOD gene family but also serve as a foundation for subsequent investigations into the functional roles of POD genes in B. napus.
Collapse
Affiliation(s)
- Obaid Ullah Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Latif Ullah Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Sana Basharat
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Lingling Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Muhammad Ikram
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Jiantao Peng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Wasi Ullah Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Pingwu Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Muhammad Waseem
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| |
Collapse
|
4
|
Zaynab M, Sharif Y, Xu Z, Fiaz S, Al-Yahyai R, Yadikar HA, Al Kashgry NAT, Qari SH, Sadder M, Li S. Genome-Wide Analysis and Expression Profiling of DUF668 Genes in Glycine max under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2923. [PMID: 37631135 PMCID: PMC10459691 DOI: 10.3390/plants12162923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
The DUF668 gene performs a critical role in mitigating the impact of abiotic stress factors. In this study, we identified 30 DUF668 genes in a soybean genome, distributed across fifteen chromosomes. The phylogenetic analysis classified the DUF668 genes into three groups (group I, group II, and group III). Interestingly, gene structure analysis illustrated that several GmDUF668 genes were without introns. Furthermore, the subcellular localization results suggested that GmDUF668 proteins were present in the nucleus, mitochondria, cytoplasm, and plasma membrane. GmDUF668 promoters were analyzed in silico to gain insight into the presence of regulatory sequences for TFs binding. The expression profiling illustrated that GmDUF668 genes showed expression in leaves, roots, nodules, and flowers. To investigate their response to salt stress, we utilized the RNA sequencing data of GmDUF668 genes. The results unveiled that GmDUF668-8, GmDUF668-20, and GmDUF668-30 genes were upregulated against salt stress treatment. We further validated these findings using qRT-PCR analysis. These findings provide a scientific basis to explore the functions of GmDUF668 genes against different stress conditions.
Collapse
Affiliation(s)
- Madiha Zaynab
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaoshi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur 22620, Pakistan
| | - Rashid Al-Yahyai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod, P.O. Box 34, Muscat 123, Oman
| | - Hamad. A. Yadikar
- Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Najla Amin T. Al Kashgry
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Monther Sadder
- School of Agriculture, University of Jordan, Amman 11942, Jordan
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Yang S, Zhu C, Chen J, Zhao J, Hu Z, Liu S, Zhou Y. Identification and Expression Profile Analysis of the OSCA Gene Family Related to Abiotic and Biotic Stress Response in Cucumber. BIOLOGY 2022; 11:biology11081134. [PMID: 36009761 PMCID: PMC9404750 DOI: 10.3390/biology11081134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Hyperosmolality-gated calcium-permeable channels (OSCAs) are calcium nonselective cation channel proteins involved in multiple biological processes. In this work, the members of the OSCA family in cucumber were systematically analyzed, including their sequence characteristics, phylogenetic relationships, conserved motifs, gene structures, promoter regions, and tissue expression patterns. In addition, the effects of different osmotic-related abiotic stresses [salt (NaCl), drought (PEG), and abscisic acid (ABA)] and three biotic stresses [powdery mildew (PM), downy mildew (DM), and root-knot nematode (RKN)] on OSCA family genes were also determined. The results indicated that cucumber OSCA genes play important roles in response to osmotic-related abiotic stresses and pathogen invasion. Overall, this study lays a foundation for research on the biological function and evolutionary process of OSCA family genes in cucumber. Abstract Calcium ions are important second messengers, playing an important role in the signal transduction pathways. Hyperosmolality gated calcium-permeable channels (OSCA) gene family members play critical modulating roles in response to osmotic-related abiotic stress as well as other abiotic and biotic stresses, which has been reported in many plant species such as Arabidopsis, rice, maize, and wheat. However, there has been no report about the identification and expression profile of the OSCA genes in cucumber. In this study, a total of nine OSCA genes were identified, which are unevenly distributed on the six chromosomes of cucumber. Phylogenetic analysis revealed that the OSCAs of cucumber, Arabidopsis, rice and maize were clustered into four clades. The motif arrangement of CsOSCAs was strongly conserved, and the CsOSCA genes in each group had similar genetic structure. A total of 11 and 10 types of cis-elements related to hormone and stress, respectively, were identified in the promoter regions of CsOSCA genes. Gene expression analysis indicated that the CsOSCA genes have different expression patterns in various tissues, and some of them were regulated by three osmotic-related abiotic stresses (salt, drought and ABA) and three biotic stresses (powdery mildew, downy mildew, and root-knot nematode). As the first genome-wide identification and characterization of the OSCA gene family in cucumber, this study lays a foundation for research on the biological function and evolutionary process of this gene family, which is of great significance for exploiting stress resistant cucumber varieties.
Collapse
Affiliation(s)
- Shuting Yang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
| | - Chuxia Zhu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
| | - Jingju Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
| | - Jindong Zhao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
| | - Zhaoyang Hu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
| | - Shiqiang Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
- Correspondence: (S.L.); (Y.Z.)
| | - Yong Zhou
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: (S.L.); (Y.Z.)
| |
Collapse
|
6
|
Zaynab M, Peng J, Sharif Y, Albaqami M, Al-Yahyai R, Fatima M, Nadeem MA, Khan KA, Alotaibi SS, Alaraidh IA, Shaikhaldein HO, Li S. Genome-Wide Identification and Expression Profiling of DUF221 Gene Family Provides New Insights Into Abiotic Stress Responses in Potato. FRONTIERS IN PLANT SCIENCE 2022; 12:804600. [PMID: 35126430 PMCID: PMC8811145 DOI: 10.3389/fpls.2021.804600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The domain of the unknown function 221 proteins regulate several processes in plants, including development, growth, hormone transduction mechanism, and abiotic stress response. Therefore, a comprehensive analysis of the potato genome was conducted to identify the deafness-dystonia peptide (DDP) proteins' role in potatoes. In the present study, we performed a genome-wide analysis of the potato domain of the unknown function 221 (DUF221) genes, including phylogenetic inferences, chromosomal locations, gene duplications, gene structures, and expression analysis. In our results, we identified 10 DDP genes in the potato genome. The phylogenetic analysis results indicated that StDDPs genes were distributed in all four clades, and clade IV was the largest clade. The gene duplication under selection pressure analysis indicated various positive and purifying selections in StDDP genes. The putative stu-miRNAs from different families targeting StDDPs were also predicted in the present study. Promoter regions of StDDP genes contain different cis-acting components involved in multiple stress responses, such as phytohormones and abiotic stress-responsive factors. The analysis of the tissue-specific expression profiling indicated the StDDPs gene expression in stem, root, and leaf tissues. We subsequently observed that StDDP4, StDDP5, and StDDP8 showed higher expressions in roots, stems, and leaves. StDDP5 exhibited high expression against heat stress response, and StDDP7 showed high transcript abundance against salt stress in potatoes. Under abscisic acid (ABA) and indole acetic acid (IAA) treatments, seven StDDP genes' expressions indicated that ABA and IAA performed important roles in immunity response. The expression profiling and real-time qPCR of stems, roots, and leaves revealed StDDPs' significant role in growth and development. These expression results of DDPs are primary functional analysis and present basic information for other economically important crops.
Collapse
Affiliation(s)
- Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiaofeng Peng
- Instrument Analysis Center, Shenzhen University, Shenzhen, China
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rashid Al-Yahyai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahpara Fatima
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ibrahim A. Alaraidh
- Botany & Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Hassan O. Shaikhaldein
- Botany & Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|