1
|
Pramanik A, Datta S. Structural and functional insights of itaconyl-CoA hydratase from Pseudomonas aeruginosa highlight a novel N-terminal hotdog fold. FEBS Lett 2024; 598:1387-1401. [PMID: 38575551 DOI: 10.1002/1873-3468.14867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Itaconyl-CoA hydratase in Pseudomonas aeruginosa (PaIch) converts itaconyl-CoA to (S)-citramalyl-CoA upon addition of a water molecule, a part of an itaconate catabolic pathway in virulent organisms required for their survival in humans host cells. Crystal structure analysis of PaIch showed that a unique N-terminal hotdog fold containing a 4-residue short helical segment α3-, named as an "eaten sausage", followed by a flexible loop region slipped away from the conserved β-sheet scaffold, whereas the C-terminal hotdog fold is similar to all MaoC. A conserved hydratase motif with catalytic residues provides mechanistic insights into catalysis, and existence of a longer substrate binding tunnel may suggest the binding of longer CoA derivatives.
Collapse
Affiliation(s)
- Atanu Pramanik
- Department of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Saumen Datta
- Department of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Zhao M, Li Y, Wang F, Ren Y, Wei D. A CRISPRi mediated self-inducible system for dynamic regulation of TCA cycle and improvement of itaconic acid production in Escherichia coli. Synth Syst Biotechnol 2022; 7:982-988. [PMID: 35782485 PMCID: PMC9213231 DOI: 10.1016/j.synbio.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Itaconic acid (ITA), an effective alternative fossil fuel, derives from the bypass pathway of the tricarboxylic acid (TCA) cycle. Therefore, the imbalance of metabolic flux between TCA cycle and ITA biosynthetic pathway seriously limits the production of ITA. The optimization of flux distribution between biomass and production has the potential to the productivity of ITA. Based on the previously constructed strain Escherichia coli MG1655 Δ1-SAS-3 (ITA titer: 1.87 g/L), a CRISPRi-mediated self-inducible system (CiMS), which contained a responsive module based on the ITA biosensor YpItcR/P ccl and a regulative CRISPRi-mediated interferential module, was developed to regulate the flux of the TCA cycle and to enhance the capacity of the strain to produce ITA. First, a higher ITA-yielding strain, Δ4-P rmd -SAS-3 (ITA titer: 3.20 g/L), derived from Δ1-SAS-3, was constructed by replacing the promoter P J23100 , for the expression of ITA synthesis genes, with P rmd and knocking out the three bypass genes poxB, pflB, and ldhA. Subsequently, the CiMS was used to inhibit the expression of key genes icd, pykA, and sucCD to dynamically balance the metabolic flux between TCA cycle and ITA biosynthetic pathway during the ITA production stage. The constructed strain Δ4-P rmd -SAS-3 under the dynamic regulation of the CiMS, showed a 23% increase in the ITA titer, which reached 3.93 g/L. This study indicated that CiMS was a practical strategy to dynamically and precisely regulated the metabolic flux in microbial cell factories.
Collapse
Affiliation(s)
- Ming Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Yuting Li
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Fengqing Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuhong Ren
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Aso Y, Nomura Y, Sano M, Sato R, Tanaka T, Ohara H, Matsumoto K, Wada K. Caprylic acid enhances hydroxyhexylitaconic acid production in Aspergillus niger S17-5. J Appl Microbiol 2020; 130:1972-1980. [PMID: 33064909 DOI: 10.1111/jam.14900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022]
Abstract
AIM Aspergillus niger S17-5 produces two alkylitaconic acids, 9-hydroxyhexylitaconic acid (9-HHIA) and 10-hydroxyhexylitaconic acid (10-HHIA), which have cytotoxic and polymer building block properties. In this study, we characterized the production of 9-HHIA and 10-HHIA by addition of their expected precursor, caprylic acid, to a culture of A. niger S17-5, and demonstrated batch fermentation of 9-HHIA and 10-HHIA in a jar fermenter with DO-stat. METHODS AND RESULTS Production titres of 9-HHIA and 10-HHIA from 3% glucose in a flask after 25 days cultivation were 0·35 and 1·01 g l-1 respectively. Addition of 0·22 g l-1 of caprylic acid to a suspension of resting cells of A. niger S17-5 led to 32% enhancement of total 9-HHIA and 10-HHIA production compared to no addition. No enhancement of the production of 9-HHIA or 10-HHIA by the addition of oxaloacetic acid was observed. Addition of caprylic acid to the culture at mid-growth phase was more suitable for 9-HHIA and 10-HHIA production due to less cell growth inhibition by caprylic acid. DO-stat batch fermentation with 3% glucose and 14·4 g l-1 of caprylic acid in a 1·5 l jar fermenter resulted in the production titres of 9-HHIA and 10-HHIA being 0·48 and 1·54 g l-1 respectively after 10 days of cultivation. CONCLUSIONS Addition of caprylic acid to the culture of A. niger S17-5 enhances 9-HHIA and 10-HHIA production. SIGNIFICANCE AND IMPACT OF THE STUDY These results suggest that 9-HHIA and 10-HHIA are synthesized with octanoyl-CoA derived from caprylic acid, and that the supply of octanoyl-CoA is a rate-limiting step in 9-HHIA and 10-HHIA production. To the best of our knowledge, this is the first report regarding the fermentation of naturally occurring itaconic acid derivatives in a jar fermenter.
Collapse
Affiliation(s)
- Y Aso
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto, Japan
| | - Y Nomura
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto, Japan
| | - M Sano
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto, Japan
| | - R Sato
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto, Japan
| | - T Tanaka
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto, Japan
| | - H Ohara
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto, Japan
| | - K Matsumoto
- Corporate Research & Business Division, Kaneka Corporation, Osaka, Japan
| | - K Wada
- Corporate Research & Business Division, Kaneka Corporation, Osaka, Japan
| |
Collapse
|
4
|
Teleky BE, Vodnar DC. Biomass-Derived Production of Itaconic Acid as a Building Block in Specialty Polymers. Polymers (Basel) 2019; 11:E1035. [PMID: 31212656 PMCID: PMC6630286 DOI: 10.3390/polym11061035] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
Biomass, the only source of renewable organic carbon on Earth, offers an efficient substrate for bio-based organic acid production as an alternative to the leading petrochemical industry based on non-renewable resources. Itaconic acid (IA) is one of the most important organic acids that can be obtained from lignocellulose biomass. IA, a 5-C dicarboxylic acid, is a promising platform chemical with extensive applications; therefore, it is included in the top 12 building block chemicals by the US Department of Energy. Biotechnologically, IA production can take place through fermentation with fungi like Aspergillus terreus and Ustilago maydis strains or with metabolically engineered bacteria like Escherichia coli and Corynebacterium glutamicum. Bio-based IA represents a feasible substitute for petrochemically produced acrylic acid, paints, varnishes, biodegradable polymers, and other different organic compounds. IA and its derivatives, due to their trifunctional structure, support the synthesis of a wide range of innovative polymers through crosslinking, with applications in special hydrogels for water decontamination, targeted drug delivery (especially in cancer treatment), smart nanohydrogels in food applications, coatings, and elastomers. The present review summarizes the latest research regarding major IA production pathways, metabolic engineering procedures, and the synthesis and applications of novel polymeric materials.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
5
|
Noh MH, Lim HG, Park S, Seo SW, Jung GY. Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli. Metab Eng 2017; 43:1-8. [DOI: 10.1016/j.ymben.2017.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/01/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022]
|
6
|
Young T, Kesarcodi-Watson A, Alfaro AC, Merien F, Nguyen TV, Mae H, Le DV, Villas-Bôas S. Differential expression of novel metabolic and immunological biomarkers in oysters challenged with a virulent strain of OsHV-1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:229-245. [PMID: 28373065 DOI: 10.1016/j.dci.2017.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
Early lifestages of the Pacific oyster (Crassostrea gigas) are highly susceptible to infection by OsHV-1 μVar, but little information exists regarding metabolic or pathophysiological responses of larval hosts. Using a metabolomics approach, we identified a range of metabolic and immunological responses in oyster larvae exposed to OsHV-1 μVar; some of which have not previously been reported in molluscs. Multivariate analyses of entire metabolite profiles were able to separate infected from non-infected larvae. Correlation analysis revealed the presence of major perturbations in the underlying biochemical networks and secondary pathway analysis of functionally-related metabolites identified a number of prospective pathways differentially regulated in virus-exposed larvae. These results provide new insights into the pathogenic mechanisms of OsHV-1 infection in oyster larvae, which may be applied to develop disease mitigation strategies and/or as new phenotypic information for selective breeding programmes aiming to enhance viral resistance.
Collapse
Affiliation(s)
- Tim Young
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; Metabolomics Laboratory, School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | | | - Andrea C Alfaro
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| | - Fabrice Merien
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Thao V Nguyen
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Hannah Mae
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Dung V Le
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Silas Villas-Bôas
- Metabolomics Laboratory, School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|