1
|
Wu Y, Yang J, Zhang H, Cheng J, Lei P, Huang J. LncRNA H19 Influences Cellular Activities via the miR-454-3p/BHLHE40 Axis in Anaplastic Thyroid Carcinoma. Horm Metab Res 2024; 56:392-399. [PMID: 38052232 DOI: 10.1055/a-2196-3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Anaplastic thyroid carcinoma (ATC) is an aggressive malignancy threatening patients' life quality. Our previous study has demonstrated that inhibition of long non-coding RNA H19 (lncRNA h19; H19) blocks ATC growth and metastasis. The current study aimed to further explore the potential mechanism of H19 in ATC. Expression of H19, miR-454-3p, and BHLHE40 mRNA was measured using RT-qPCR in tissue samples and cell lines. The dual-luciferase reporter assay and Pearson correlation analysis were used to explore the interaction among H19, miR-454-3p, and BHLHE40. The biological process of proliferation, migration, and invasion was determined using loss- or gain-function CCK-8 and Transwell assays. Western blot assay was used to evaluate the changes in protein levels. H19 was elevated in ATC tissues and cell lines. Based on online prediction database results, miR-454-3p might be a target of H19, and BHLHE40 might be a direct target of miR-454-3p. miR-454-3p expression was decreased in ATC and had a negative interaction with H19. BHLHE40 mRNA expression was increased and has a negative correlation with miR-454-3p and a positive correlation with H19. Downregulation of miR-454-3p and upregulation of BHLHE40 could reverse the decreased cellular activities caused by si-H19. Moreover, the silence of H19 modulates BHLHE40 to affect the PI3K/AKT protein levels and apoptotic-related protein levels. The current study provided a potential detailed mechanism of H19 in ATC, and lncRNA H19-miR-454-3p-BHLHE40 interaction may be a new experimental basis for prognosis and targeted therapy for ATC patients.
Collapse
Affiliation(s)
- Yang Wu
- Department of General Surgery (Thyroid Gland/Blood Vessel), The First People's Hospital of Neijiang, Neijiang, China
| | - Jihua Yang
- Department of Ultrasound, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Honglai Zhang
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, China
| | - Jingjing Cheng
- Department of Oncology Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peijie Lei
- Department of Oncology Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianyuan Huang
- Department of General Surgery (Thyroid Gland/Blood Vessel), The First People's Hospital of Neijiang, Neijiang, China
| |
Collapse
|
2
|
DeSouza NR, Jarboe T, Carnazza M, Quaranto D, Islam HK, Tiwari RK, Geliebter J. Long Non-Coding RNAs as Determinants of Thyroid Cancer Phenotypes: Investigating Differential Gene Expression Patterns and Novel Biomarker Discovery. BIOLOGY 2024; 13:304. [PMID: 38785786 PMCID: PMC11118935 DOI: 10.3390/biology13050304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Thyroid Cancer (TC) is the most common endocrine malignancy, with increasing incidence globally. Papillary thyroid cancer (PTC), a differentiated form of TC, accounts for approximately 90% of TC and occurs predominantly in women of childbearing age. Although responsive to current treatments, recurrence of PTC by middle age is common and is much more refractive to treatment. Undifferentiated TC, particularly anaplastic thyroid cancer (ATC), is the most aggressive TC subtype, characterized by it being resistant and unresponsive to all therapeutic and surgical interventions. Further, ATC is one of the most aggressive and lethal malignancies across all cancer types. Despite the differences in therapeutic needs in differentiated vs. undifferentiated TC subtypes, there is a critical unmet need for the identification of molecular biomarkers that can aid in early diagnosis, prognosis, and actionable therapeutic targets for intervention. Advances in the field of cancer genomics have enabled for the elucidation of differential gene expression patterns between tumors and healthy tissue. A novel category of molecules, known as non-coding RNAs, can themselves be differentially expressed, and extensively contribute to the up- and downregulation of protein coding genes, serving as master orchestrators of regulated and dysregulated gene expression patterns. These non-coding RNAs have been identified for their roles in driving carcinogenic patterns at various stages of tumor development and have become attractive targets for study. The identification of specific genes that are differentially expressed can give insight into mechanisms that drive carcinogenic patterns, filling the gaps of deciphering molecular and cellular processes that modulate TC subtypes, outside of well-known driver mutations.
Collapse
Affiliation(s)
- Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Michelle Carnazza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Humayun K. Islam
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
3
|
Luvhengo TE, Bombil I, Mokhtari A, Moeng MS, Demetriou D, Sanders C, Dlamini Z. Multi-Omics and Management of Follicular Carcinoma of the Thyroid. Biomedicines 2023; 11:biomedicines11041217. [PMID: 37189835 DOI: 10.3390/biomedicines11041217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Follicular thyroid carcinoma (FTC) is the second most common cancer of the thyroid gland, accounting for up to 20% of all primary malignant tumors in iodine-replete areas. The diagnostic work-up, staging, risk stratification, management, and follow-up strategies in patients who have FTC are modeled after those of papillary thyroid carcinoma (PTC), even though FTC is more aggressive. FTC has a greater propensity for haematogenous metastasis than PTC. Furthermore, FTC is a phenotypically and genotypically heterogeneous disease. The diagnosis and identification of markers of an aggressive FTC depend on the expertise and thoroughness of pathologists during histopathological analysis. An untreated or metastatic FTC is likely to de-differentiate and become poorly differentiated or undifferentiated and resistant to standard treatment. While thyroid lobectomy is adequate for the treatment of selected patients who have low-risk FTC, it is not advisable for patients whose tumor is larger than 4 cm in diameter or has extensive extra-thyroidal extension. Lobectomy is also not adequate for tumors that have aggressive mutations. Although the prognosis for over 80% of PTC and FTC is good, nearly 20% of the tumors behave aggressively. The introduction of radiomics, pathomics, genomics, transcriptomics, metabolomics, and liquid biopsy have led to improvements in the understanding of tumorigenesis, progression, treatment response, and prognostication of thyroid cancer. The article reviews the challenges that are encountered during the diagnostic work-up, staging, risk stratification, management, and follow-up of patients who have FTC. How the application of multi-omics can strengthen decision-making during the management of follicular carcinoma is also discussed.
Collapse
Affiliation(s)
- Thifhelimbilu Emmanuel Luvhengo
- Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa
| | - Ifongo Bombil
- Department of Surgery, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg 1864, South Africa
| | - Arian Mokhtari
- Department of Surgery, Dr. George Mukhari Academic Hospital, Sefako Makgatho Health Sciences University, Ga-Rankuwa 0208, South Africa
| | - Maeyane Stephens Moeng
- Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa
| | - Demetra Demetriou
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Claire Sanders
- Department of Surgery, Helen Joseph Hospital, University of the Witwatersrand, Auckland Park, Johannesburg 2006, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
4
|
Fang X, Chen X, Gao J, Tong L. Identification of non-coding RNA related prognosis biomarkers based on ceRNA network in thyroid cancer. Front Genet 2023; 14:1157438. [PMID: 37153003 PMCID: PMC10158935 DOI: 10.3389/fgene.2023.1157438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction: Thyroid cancer (THCA) has become a serious malignant tumor worldwide. Identification of non-coding RNA related regulators is very necessary to improve the knowledge of THCA treatment. The aim of this study was to identify novel therapeutic targets and prognosis biomarkers for predicting pathological characteristics and subsequently treating THCA. Methods: We investigated the alterations of miRNAs, mRNAs and lncRNAs in THCA. Functional enrichment and clustering analysis were conducted for these aberrantly expressed RNAs. Multiple interaction networks among miRNAs, mRNAs and lncRNAs were constructed and the functional modules associated with THCA patients' prognosis were identified. Furthermore, we evaluated the prognostic roles of the important miRNAs, mRNAs and lncRNAs in THCA and investigated the regulatory potential of non-coding RNAs on immune cell infiltration. Results: We firstly identified that miR-4709-3p and miR-146b-3p could significantly classify patients into high/low risk groups, which may be potential prognosis biomarkers of THCA. Secondly, we constructed a THCA-related miRNA-mRNA network, which displayed small world network topological characters. Two THCA-related functional modules were identified from the miRNA-mRNA network by MCODE. Results showed that two modules could implicate in known cancer pathways, such as apoptosis and focal adhesion. Thirdly, a THCA-related miRNA-lncRNA network was constructed. A subnetwork of miRNA-lncRNA network showed strong prognosis effect in THCA. Fourthly, we constructed a THCA-related mRNA-lncRNA network and detected several typical lncRNA-miRNA-mRNA crosstalk, such as AC068138, BCL2, miR-21 and miR-146b, which had good prognosis effect in THCA. Immune infiltration results showed that lncRNAs LA16c-329F2, RP11-395N3, RP11-423H2, RP11-399B17 and RP11-1036E20 were high related to neutrophil and dendritic cell infiltration. Discussion: Non-coding RNA-mediated gene regulatory network has the strong regulatory potential in pathological processes of THCA. All these results could help us uncover the non-coding RNA-mediated regulatory mechanism in THCA.
Collapse
Affiliation(s)
- Xin Fang
- Department of General Surgery II, Daqing Oilfield General Hospital, Daqing, China
- Department of Rehabilitation, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Xiliang Chen
- Department of Rehabilitation, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Jingquan Gao
- Department of Nursing Sciences, Faculty of Medicine and Health, Lishui University, Lishui, China
- *Correspondence: Jingquan Gao, ; Liquan Tong,
| | - Liquan Tong
- Department of General Surgery, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
- *Correspondence: Jingquan Gao, ; Liquan Tong,
| |
Collapse
|
5
|
Dai Y, Chen W, Huang J, Zheng L, Lin Q, Cui T, Huang C. Multiomics Integrative Analysis Identifying EPC1 as a Prognostic Biomarker in Head and Neck Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1074412. [PMID: 36158885 PMCID: PMC9507713 DOI: 10.1155/2022/1074412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/10/2022] [Indexed: 12/09/2022]
Abstract
Background Biomarker research in head and neck squamous cell carcinoma (HNSCC) is constantly revealing promising findings. An enhancer of polycomb homolog 1 (EPC1) was found to play a procancer role in nasopharyngeal carcinoma (NPC), but its role in HNSCC with strong heterogeneity is still unclear. Herein, we investigated the prognostic significance and related mechanisms of EPC1 in HNSCC. Methods The Kaplan-Meier plotter was used to evaluate the prognostic significance of EPC1. Based on a range of published public databases, the multiomics expression of EPC1 in HNSCC was explored to investigate the mechanisms affecting prognosis. Results According to the clinical data, high EPC1 expression in HNSCC was a predictor of patient prognosis (hazard ratio (HR) = 0.64; 95% confidence interval (CI) 0.49-0.83; P < 0.01). EPC1 expression varied among clinical subtypes and was related to key factors, such as TP53 and human papillomavirus (HPV) (P < 0.05). At the genetic level, EPC1 expression level may be associated with protein phosphorylation, cell adhesion, cancer-related pathways, etc. For the noncoding region, a competing endogenous RNA network was constructed, and 6 microRNAs and 12 long noncoding RNAs were identified. At the protein level, a protein-protein interaction (PPI) network related to EPC1 expression was constructed and found to be involved in HPV infection, endocrine resistance, and multiple cancer pathways. At the immune level, EPC1 expression was correlated with a variety of immune cells and immune molecules, which together constituted the immune microenvironments of tumors. Conclusion High EPC1 expression may predict a better prognosis in HNSCC, as it is more frequently found in HNSCC with HPV infection. EPC1 may participate in the genomics, transcriptomics, proteomics, and immunomics of HNSCC, and the results can provide a reference for the development of targeted drugs and evaluation of patient prognosis.
Collapse
Affiliation(s)
- Yongmei Dai
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fujian 350001, China
| | - Wenhan Chen
- The Second Clinical Medical College of Fujian Medical University, Fujian 362000, China
- Department of Clinical Medicine, Fujian Medical University, Fujian 350122, China
| | - Junpeng Huang
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fujian 350001, China
| | - Lijing Zheng
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fujian 350001, China
| | - Qing Lin
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fujian 350001, China
| | - Tongjian Cui
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fujian 350001, China
| | - Chen Huang
- Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fujian 350001, China
| |
Collapse
|
6
|
Wang H, Lian X, Gao W, Gu J, Shi H, Ma Y, Li Y, Fan Y, Wang Q, Wang L. Long noncoding RNA H19 suppresses cardiac hypertrophy through the MicroRNA-145-3p/SMAD4 axis. Bioengineered 2022; 13:3826-3839. [PMID: 35139769 PMCID: PMC8973863 DOI: 10.1080/21655979.2021.2017564] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023] Open
Abstract
Sustained cardiac hypertrophy (CH) contributes to many heart diseases. Long noncoding RNAs (lncRNAs) collectively play critical roles in cardiovascular diseases (CVDs). However, the roles of lncRNA H19 in CH are still unclear. A CH model was constructed utilizing isoproterenol (ISO). We demonstrated H19 could participate in regulating ISO-induced CH development both in vivo and in vitro. The online databases DIANA and TargetScan were used to predict the targets of H19 and MicroRNA-145-3p (miR-145-3p), respectively. Luciferase reporter assay was used to verify the downstream targets. The results showed that H19 was decreased under ISO stimulation. The H19 overexpression resulted in significant decrease in mouse heart size and weight, left ventricular systolic dysfunction, left ventricular posterior wall thickness and cardiac hypertrophic growth, while promoted the increase of left ventricular ejection fraction and left ventricle fraction shortening. H19 also inhibited protein expression levels of CH markers, such as atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and MYH7. Luciferase assays results showed that miR-145-3p was a target of H19 and SMAD4 was a target of miR-145-3p. We found that H19 regulated SMAD4 by sponging miR-145-3p. Knockout of miR-145-3p or overexpression of SMAD4 facilitated H19-induced decreases in ANP, BNP, and MYH7. Collectively, our findings have indicated that the H19/miR-145-3p/SMAD4 axis should be a negative regulator involved in CH progression.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoqing Lian
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gao
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Gu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haojie Shi
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Ma
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yafei Li
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Fan
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiming Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liansheng Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Zhang L, Ren R, Yang X, Ge Y, Zhang X, Yuan H. Oncogenic role of early growth response-1 in liver cancer through the regulation of the microRNA-675/sestrin 3 and the Wnt/β-catenin signaling pathway. Bioengineered 2021; 12:5305-5322. [PMID: 34409922 PMCID: PMC8806569 DOI: 10.1080/21655979.2021.1964889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Early growth response-1 (EGR1) is a multi-domain protein and an immediate early transcription factor that is induced during liver injury and controls the expression of a variety of genes implicated in metabolism, cell proliferation, and tumorigenesis. Liver cancer (LC) is a highly malignant disease with high mortality worldwide. This study focused on the function of EGR1 in LC development and the mechanism of action. Two LC-related datasets GSE101728 and GSE138178 downloaded from the Gene Expression Omnibus (GEO) database were used for identification of key genes involved in cancer progression. A microarray analysis was conducted to identify differentially expressed microRNAs (miRNAs) after EGR1 knockdown. The target gene of miR-675 was identified by integrated analysis. EGR1 and miR-675 were highly expressed, whereas sestrin 3 (SESN3) was poorly expressed in LC tissues and cells. High EGR1 expression was associated with poor liver function and disease severity in patients with LC. Knockdown of EGR1 weakened proliferation and invasiveness of LC cells. EGR1 bound to the miR-675 promoter and increased its transcription, and miR-675 bound to SESN3 mRNA to induce its downregulation. miR-675 upregulation promoted the malignance of LC cells, but further upregulation of SESN3 reduced invasiveness of cells. SESN3 was enriched in the Wnt/β-catenin signaling. EGR1 and miR-675 activated the Wnt/β-catenin through downregulating SESN3. This study demonstrated that EGR1 promotes the malignant behaviors of LC cells through mediating the miRNA-675/SESN3/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ran Ren
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xue Yang
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yiman Ge
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiajun Zhang
- Department of Clinical Laboratory, Danyang People's Hospital, Zhenjiang, Jiangsu, China
| | - Hongping Yuan
- Department of Clinical Laboratory, Danyang People's Hospital, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Bai XF, Niu RZ, Liu J, Pan XD, Wang F, Yang W, Wang LQ, Sun LZ. Roles of noncoding RNAs in the initiation and progression of myocardial ischemia-reperfusion injury. Epigenomics 2021; 13:715-743. [PMID: 33858189 DOI: 10.2217/epi-2020-0359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The morbidity and mortality of myocardial ischemia-reperfusion injury (MIRI) have increased in modern society. Noncoding RNAs (ncRNAs), including lncRNAs, circRNAs, piRNAs and miRNAs, have been reported in a variety of studies to be involved in pathological initiation and developments of MIRI. Hence this review focuses on the current research regarding these ncRNAs in MIRI. We comprehensively introduce the important features of lncRNAs, circRNAs, piRNA and miRNAs and then summarize the published studies of ncRNAs in MIRI. A clarification of lncRNA-miRNA-mRNA, lncRNA-transcription factor-mRNA and circRNA-miRNA-mRNA axes in MIRI follows, to further elucidate the crucial roles of ncRNAs in MIRI. Bioinformatics analysis has revealed the biological correlation of mRNAs with MIRI. We provide a comprehensive perspective for the roles of these ncRNAs and their related networks in MIRI, providing a theoretical basis for preclinical and clinical studies on ncRNA-based gene therapy for MIRI treatment.
Collapse
Affiliation(s)
- Xiang-Feng Bai
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.,Department of Cardiovascular Surgery, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Rui-Ze Niu
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Jia Liu
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Xu-Dong Pan
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Feng Wang
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Wei Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Lu-Qiao Wang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Li-Zhong Sun
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
9
|
Zhao H, De Souza C, Kumar VE, Nambiar R, Hao D, Zhu X, Luo Y, Liu S, Zhang L, Zhu J. Long non-coding RNA signatures as predictors of prognosis in thyroid cancer: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:359. [PMID: 33708986 PMCID: PMC7944284 DOI: 10.21037/atm-20-8191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/26/2021] [Indexed: 02/05/2023]
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy, with high incidence rates in recent decades. Most TC cases have good prognoses, but a high risk of recurrence and metastases poses challenges, especially for patients with high-risk factors. Currently used prognostic markers for TC involve a combination of genetic factors and overexpressed proteins. Long non-coding RNAs (lncRNAs) regulate several integral biologic processes by playing key roles in the transcription of several downstream targets maintaining cellular behavior. Prior studies have revealed that lncRNAs promote tumor cell proliferation, invasion, metastasis, and angiogenesis, making them important targets for therapeutic intervention in cancer. While the exact molecular mechanisms underlying the role of lncRNAs in modulating TC progression and recurrence is still unclear, it is important to note that some lncRNAs are upregulated in certain cancers, while others are downregulated. In the present study, we review several key lncRNAs, their association with cancer progression, and the important roles they may play as tumor suppressors or tumor promoters in tumorigenesis. We discuss the potential mechanisms of lncRNA-mediated pathogenesis that can be targeted for the treatment of TC, the existing and potential benefits of using lncRNAs as diagnostic and prognostic measures for cancer detection, and tumor burden in patients.
Collapse
Affiliation(s)
- Hongyuan Zhao
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento, CA, USA
- Institute for Regenerative Medicine and Stem Cell Research, Stanford University, Stanford, CA, USA
| | - Vigneshwari Easwar Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento, CA, USA
| | - Roshni Nambiar
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento, CA, USA
| | - Dake Hao
- Department of Surgery, School of Medicine, University of California, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Xiaofeng Zhu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Luo
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shengshan Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lingyun Zhang
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiang Zhu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Tabatabaeian H, Peiling Yang S, Tay Y. Non-Coding RNAs: Uncharted Mediators of Thyroid Cancer Pathogenesis. Cancers (Basel) 2020; 12:E3264. [PMID: 33158279 PMCID: PMC7694276 DOI: 10.3390/cancers12113264] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Thyroid cancer is the most prevalent malignancy of the endocrine system and the ninth most common cancer globally. Despite the advances in the management of thyroid cancer, there are critical issues with the diagnosis and treatment of thyroid cancer that result in the poor overall survival of undifferentiated and metastatic thyroid cancer patients. Recent studies have revealed the role of different non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) that are dysregulated during thyroid cancer development or the acquisition of resistance to therapeutics, and may play key roles in treatment failure and poor prognosis of the thyroid cancer patients. Here, we systematically review the emerging roles and molecular mechanisms of ncRNAs that regulate thyroid tumorigenesis and drug response. We then propose the potential clinical implications of ncRNAs as novel diagnostic and prognostic biomarkers for thyroid cancer.
Collapse
Affiliation(s)
- Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | - Samantha Peiling Yang
- Endocrinology Division, Department of Medicine, National University Hospital, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
11
|
Zhang P, Lu B, Xu F, Wang C, Zhang R, Liu Y, Wei C, Mei L. Analysis of Long Noncoding RNAs in Choroid Neovascularization. Curr Eye Res 2020; 45:1403-1414. [PMID: 32316788 DOI: 10.1080/02713683.2020.1748659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: Choroidal neovascularization (CNV) is the major pathological features of wet age-related macular degeneration (AMD). Long noncoding RNAs play great roles in numerous biological processes. The purpose of the study was to investigate the expression profile and possible functions of the lncRNAs in CNV. Methods: In this study, the mice CNV model were conducted by laser photocoagulation. The expression profiles of lncRNAs were accessed by microarray analysis. Selected altered lncRNAs of mice CNV and wet AMD patients were validated by RT-PCR. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and lncRNA-mRNA coexpression network were conducted to reveal the biological functions. Results: The results revealed that 128 lncRNAs were significantly altered in RPE-choroid-sclera complexes of CNV mice (P < .05, fold change > 2.0). GO analysis revealed that the altered target genes of the selected lncRNAs most enriched in angiogenesis. KEGG pathway analysis demonstrated that altered target genes of lncRNAs most enriched in focal adhesion signaling pathway. H19 was significantly increased in the aqueous humor of wet AMD patients. Moreover, Inhibition of lncRNA H19 could suppresses M2 macrophage gene expression of laser-induced CNV mice. Conclusions: Our study identified differential expressions of lncRNAs in CNV, and lncRNA H19 might be novel potential target for the prevention and treatment of CNV.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College) , Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College , Wuhu, China
| | - Bing Lu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine , Shanghai, China
| | - Fengyuan Xu
- Department of Ophthalmology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College) , Wuhu, China
| | - Chen Wang
- Department of Ophthalmology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College) , Wuhu, China
| | - Rongrong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College) , Wuhu, China
| | - Yinping Liu
- Department of Ophthalmology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College) , Wuhu, China
| | - Chenghua Wei
- Department of Ophthalmology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College) , Wuhu, China
| | - Lixin Mei
- Department of Ophthalmology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College) , Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College , Wuhu, China
| |
Collapse
|