1
|
Xu H, Qu X, Wang X. CircPCNXL2 promotes preeclampsia progression by suppressing trophoblast cell proliferation and invasion via miR-487a-3p/interferon regulatory factor 2 axis. J Hypertens 2024:00004872-990000000-00575. [PMID: 39466687 DOI: 10.1097/hjh.0000000000003887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/19/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Preeclampsia (PE) has culminated in maternal and perinatal sickness and death across the world, affecting approximately 4.6% of pregnancies. Circular RNAs (circRNAs) have been linked to the biology of numerous pathologies, including PE. Here, we investigated the functional role of circPCNXL2 in the progression of PE. METHODS We employed the GEO database to get the expression profile of circPCNXL2 in patients with PE. This was followed by the detection of the expression of circPCNXL2 and miR-326 by qRT-PCR. The role of circPCNXL2 on trophoblast cell proliferation, migration, and invasion was confirmed with cell viability assays, the transwell assay, and the colony formation assay. Further, we employed dual luciferase, FISH, RNA pull-down assay and Western blot analysis to determine the interaction between the expression of circPCNXL2, miR-487a-3p, and IRF2. RESULT Findings from this study revealed that proliferation and migration of trophoblast cells were significantly increased in the HTR-8/SVneo cells after silencing circPCNXL2. Additionally, knockdown of circPCNXL2 remarkably increased miR-487a-3p expression, while IRF2 expression was remarkably reduced (P < 0.05), indicating the presence of complementary binding sequence on miR-487a-3p with which they sequester circPCNXL2. Rescue experiments revealed that interaction occurs between circPCNXL2, miR-487a-3p, and the IRF2 protein, indicating that circPCNXL2 expression elicits suppression of migration and proliferation of trophoblast cells via the miR-487a-3p/IRF2 pathway. CONCLUSIONS We demonstrated that circPCNXL2 upregulation promotes pre-eclampsia by inhibiting proliferation and migration of trophoblast cells via the miR-487a-3p/IRF2 pathway or axis.
Collapse
Affiliation(s)
- Hua Xu
- Department of Obstetrics and Gynecology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | | | | |
Collapse
|
2
|
Biswal P, Mallick B. miR-185-5p rewires cisplatin resistance by restoring miR-203a-3p expression via downregulation of SOX9. DNA Repair (Amst) 2024; 142:103750. [PMID: 39173500 DOI: 10.1016/j.dnarep.2024.103750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Chemotherapeutic drug resistance is a challenge for the effective treatment of OSCC. There are a couple of studies on the involvement of microRNAs (miRNAs) in chemoresistance of oral squamous cell carcinoma (OSCC), but the exact molecular events in many cases are not clearly understood. In this work, we intend to track down key miRNA(s) and unveil their regulatory molecular mechanisms in imparting chemoresistance in this lethal cancer. We analyzed gene and miRNA array profiles of drug-resistant OSCC cells, predicted miRNA targets, performed enrichment analysis, and validated our findings in cisplatin-sensitive and cisplatin-resistant SCC9 and H357 OSCC cells. We evaluated the anticancer and chemosensitivity roles of selected miRNA by adopting several molecular assays like qRT-PCR, MTT assay, wound healing assay, fluorescence imaging by DCFHDA, AO/EB staining, DAPI, and γ-H2AX accumulation assay. We also validated the miRNA-target binding by qRT-PCR and luciferase reporter assay. Among the enriched miRNAs, we found miR-185-5p downregulated in cisplatin-resistant OSCC cells as a signature miRNA modulating chemoresistance. The upregulation of miR-185-5p by mimic transfection restores cisplatin sensitivity by decreasing cell viability in a dose-dependent manner and increasing ROS-induced DNA damage and apoptosis. miR-185-5p overexpression increases miR-203a-3p expression through negative regulation of SOX9. siRNA-mediated silencing of the SOX9 also shows similar results. Mechanistically, miR-185-5p dependent miR-203a-3p expression decreases cisplatin efflux and cisplatin-induced DNA damage repair by regulating ABCC1, ABCB1, RRM2, and RAN. This study will pave the way for employing this miR-185-5p as a combination therapeutic strategy to combat cisplatin resistance in oral cancer.
Collapse
Affiliation(s)
- Priyajit Biswal
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
| |
Collapse
|
3
|
Qin C, Zhang J, Ma L. EMCMDA: predicting miRNA-disease associations via efficient matrix completion. Sci Rep 2024; 14:12761. [PMID: 38834687 DOI: 10.1038/s41598-024-63582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Abundant researches have consistently illustrated the crucial role of microRNAs (miRNAs) in a wide array of essential biological processes. Furthermore, miRNAs have been validated as promising therapeutic targets for addressing complex diseases. Given the costly and time-consuming nature of traditional biological experimental validation methods, it is imperative to develop computational methods. In the work, we developed a novel approach named efficient matrix completion (EMCMDA) for predicting miRNA-disease associations. First, we calculated the similarities across multiple sources for miRNA/disease pairs and combined this information to create a holistic miRNA/disease similarity measure. Second, we utilized this biological information to create a heterogeneous network and established a target matrix derived from this network. Lastly, we framed the miRNA-disease association prediction issue as a low-rank matrix-complete issue that was addressed via minimizing matrix truncated schatten p-norm. Notably, we improved the conventional singular value contraction algorithm through using a weighted singular value contraction technique. This technique dynamically adjusts the degree of contraction based on the significance of each singular value, ensuring that the physical meaning of these singular values is fully considered. We evaluated the performance of EMCMDA by applying two distinct cross-validation experiments on two diverse databases, and the outcomes were statistically significant. In addition, we executed comprehensive case studies on two prevalent human diseases, namely lung cancer and breast cancer. Following prediction and multiple validations, it was evident that EMCMDA proficiently forecasts previously undisclosed disease-related miRNAs. These results underscore the robustness and efficacy of EMCMDA in miRNA-disease association prediction.
Collapse
Affiliation(s)
- Chao Qin
- School of Information Science and Engineering, Qilu Normal University, Jinan, 250200, China.
| | - Jiancheng Zhang
- School of Information Science and Engineering, Qilu Normal University, Jinan, 250200, China
| | - Lingyu Ma
- School of Control Science and Engineering, Harbin Institute of Technology, Weihai, 250200, China
| |
Collapse
|
4
|
Sa P, Singh P, Panda S, Swain RK, Dash R, Sahoo SK. Reversal of cisplatin resistance in oral squamous cell carcinoma by piperlongumine loaded smart nanoparticles through inhibition of Hippo-YAP signaling pathway. Transl Res 2024; 268:63-78. [PMID: 38499286 DOI: 10.1016/j.trsl.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Cisplatin alone or in combination with 5FU and docetaxel is the preferred chemotherapy regimen for advanced-stage OSCC patients. However, its use has been linked to recurrence and metastasis due to the development of drug resistance. Therefore, sensitization of cancer cells to conventional chemotherapeutics can be an effective strategy to overcome drug resistance. Piperlongumine (PL), an alkaloid, have shown anticancer properties and sensitizes numerous neoplasms, but its effect on OSCC has not been explored. However, low aqueous solubility and poor pharmacokinetics limit its clinical application. Therefore, to improve its therapeutic efficacy, we developed piperlongumine-loaded PLGA-based smart nanoparticles (smart PL-NPs) that can rapidly release PL in an acidic environment of cancer cells and provide optimum drug concentrations to overcome chemoresistance. Our results revealed that smart PL-NPs has high cellular uptake in acidic environment, facilitating the intracellular delivery of PL and sensitizing cancer cells to cisplatin, resulting in synergistic anticancer activity in vitro by increasing DNA damage, apoptosis, and inhibiting drug efflux. Further, we have mechanistically explored the Hippo-YAP signaling pathway, which is the critical mediator of chemoresistance, and investigated the chemosensitizing effect of PL in OSCC. We observed that PL alone and in combination with cisplatin significantly inhibits the activation of YAP and its downstream target genes and proteins. In addition, the combination of cisplatin with smart PL-NPs significantly inhibited tumor growth in two preclinical models (patient-derived cell based nude mice and zebrafish xenograft). Taken together, our findings suggest that smart PL-NPs with cisplatin will be a novel formulation to reverse cisplatin resistance in patients with advanced OSCC.
Collapse
Affiliation(s)
- Pratikshya Sa
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121 001, India
| | - Priya Singh
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121 001, India
| | - Sudhakar Panda
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India
| | - Rajeeb K Swain
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India
| | - Rupesh Dash
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India
| | - Sanjeeb Kumar Sahoo
- Institute of Life Sciences, Nalco square, Chandrasekharpur, Bhubaneswar, Odisha 751 023, India.
| |
Collapse
|
5
|
Yin Y, Yang Y, Zhang Y, Shang Y, Li Q, Yuan J. MiR-132-3p suppresses peritoneal fibrosis induced by peritoneal dialysis via targeting TGF-β1/Smad2/3 signaling pathway. PLoS One 2024; 19:e0301540. [PMID: 38603722 PMCID: PMC11008817 DOI: 10.1371/journal.pone.0301540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Peritoneal fibrosis (PF) is the main complication of peritoneal dialysis (PD) and the most common cause of cessation from PD. There is still no effective therapeutic approach to reserve PF. We aimed to investigate the role of miR-132-3p and underlying potential mechanisms in PF. METHODS A total of 18 Sprague-Dawley (SD) rats were divided randomly into three groups (n = 6): (i)Control group (ii)PF group (iii)PF+Losartan group; Rats in the PF group and PF+Losartan group received daily intraperitoneal injections of 3 mg/kg chlorhexidine for 14 days, and rats in the PF+Losartan group simultaneously received daily intraperitoneal injections of 2 mg/kg losartan for 14 days. The control group was injected with saline in the same volume. Met-5A cells were treated for 24h with TGF-β1 dissolved in recombinant buffered saline at a concentration of 10 ng/ml, meanwhile, PBS solution as a negative control. The human peritoneal solution was collected for the detection of miR-132-3p. RESULTS In vivo, SD rats were infused with chlorhexidine to establish PF model, and we found that miR-132-3p significantly decreased and the expressions of transforming growth factor-β1 (TGF-β1), and Smad2/3 were up-regulated in PF. In vitro, miR-132-3p mimics suppressed TGF-β1/Smad2/3 activity, whereas miR-132-3p inhibition activated the pathway. In human peritoneal solution, we found that the expression of miR-132-3p decreased in a time-dependent model and its effect became more pronounced with longer PD duration. CONCLUSION MiR-132-3p ameliorated PF by suppressing TGF-β1/Smad2/3 activity, suggesting that miR-132-3p represented a potential therapeutic approach for PF.
Collapse
Affiliation(s)
- Yangyang Yin
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yuqi Yang
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yongqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yu Shang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qian Li
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Jing Yuan
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Lan X, Wei D, Fang L, Wu X, Wu B. Tumor-Associated Macrophage-Derived TGF-β1 Activates GLI2 via the Smad2/3 Signaling Pathway to Affect Cisplatin Resistance in Lung Adenocarcinoma. Technol Cancer Res Treat 2024; 23:15330338241274337. [PMID: 39166273 PMCID: PMC11339934 DOI: 10.1177/15330338241274337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Transforming growth factor-β1 (TGF-β1) is an immunosuppressive cytokine that is highly expressed in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD). TGF-β1 plays important roles in regulating tumor metastasis and chemotherapy resistance. However, the specific molecular mechanisms by which TGF-β1 regulates cisplatin resistance in the TAM of LUAD remain unclear. MATERIALS AND METHODS THP-1 induced macrophages were co-cultured with A549 and H1975 cells, and subsequently transfected with silencing TGF-β1 (siTGF-β1), GLI2 (siGLI2), a GLI2 overexpression plasmid, and their negative controls. Cellular activity was measured by CCK-8 and colony formation assays. Cell apoptosis was evaluated by flow cytometry and TUNEL staining. Transwell assays were performed to assess cell migration and invasion capabilities. The levels of Smad2/3, GLI2, cyclin D, and cyclin E expression were evaluated by qPCR, western blotting, and immunofluorescence methods. TGF-β1 levels were determined by ELISA. RESULTS Macrophages suppressed the apoptosis and promoted the migration and invasion of LUAD cells. TAM siTGF-β1 downregulated the Smad2/3 signaling pathways and GLI2 expression, deceased cell proliferation, and promoted apoptosis. SiGLI2 increased apoptosis and decreased the proliferation of LUAD cell lines. GLI2 decreased cisplatin resistance in LUAD cells. CONCLUSION High expression of TGF-β1 in the TAM positively activates GLI2 expression via the Smad2/3 pathway, which subsequently regulates cyclin D and cyclin E expression, and promotes the cisplatin resistance of LUAD.
Collapse
Affiliation(s)
- Xiaoling Lan
- Medical School, Jinan University, Guangzhou, China
- Department of Oncology and Chemotherapy, Afiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Dalong Wei
- Department of Burns, Plastic Surgery and Wound Repair, Afiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Lini Fang
- Department of Endocrinology, Afiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiangsheng Wu
- Graduate School, Youjiang Medical University for Nationalities, Baise, China
| | - Biaoliang Wu
- Medical School, Jinan University, Guangzhou, China
- Department of Endocrinology, Afiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
7
|
Kalmatte A, Rekha PD, Ratnacaram CK. Emerging cell cycle related non-coding RNA biomarkers from saliva and blood for oral squamous cell carcinoma. Mol Biol Rep 2023; 50:9479-9496. [PMID: 37717257 DOI: 10.1007/s11033-023-08791-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
The unnotified or undifferentiable early stages of oral squamous cell carcinoma (OSCC) progression are the prime reasons for late-stage detection and poor survival outcomes of oral cancer. This review summarizes the prior research and recent advancements on the influence of dysregulated non-coding RNA (ncRNA) on cell cycle and their employability as diagnostic and prognostic biomarkers of oral cancer. The literature search was performed using the following keywords: 'serum/saliva non-coding RNAs' and 'serum/saliva non-coding RNAs and cell cycle', 'serum/saliva dysregulated ncRNAs and cell cycle', 'Cdk/CKI and ncRNAs', 'tissue ncRNAs' concerning 'oral cancer''. The compiled data focuses mainly on the diagnostic and prognostic significance of MicroRNAs (miRNAs), Circular RNAs (circRNAs), and Long noncoding RNAs (lncRNAs) on oral cancer and all other cancers as well as subject-relevant articles published in languages other than English are beyond the scope of this review and excluded from the study. Moreover, articles focusing on DNA, protein, and metabolite markers are eliminated from the study. While there exist various potential biomolecules such as DNA, RNA, proteins, metabolites, and specific antigens representing predictive biomarkers in body fluids for oral cancer, this review completely focuses on non-coding RNAs restricted to saliva and blood, picking out a few of the reliable ones amongst the recent investigations based on the sophisticated techniques, cohort, and sensitivity as well as specificity, i.e., salivary miR-1307-5p, miR-3928, hsa_circ_0001874 and ENST00000412740, NR_131012, ENST00000588803, NR_038323, miR-21 in circulation. Thus, further studies are required to clinically confirm the usage of these non-invasive biomarkers in oral cancer.
Collapse
Affiliation(s)
- Asrarunissa Kalmatte
- Srinivas College Of Physiotherapy, City Campus, Pandeshwar, Mangaluru, Karnataka, 575001, India
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Punchappady Devasya Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Chandrahas Koumar Ratnacaram
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, 575018, India.
| |
Collapse
|
8
|
Eslami M, Khazeni S, Khanaghah XM, Asadi MH, Ansari MA, Garjan JH, Lotfalizadeh MH, Bayat M, Taghizadieh M, Taghavi SP, Hamblin MR, Nahand JS. MiRNA-related metastasis in oral cancer: moving and shaking. Cancer Cell Int 2023; 23:182. [PMID: 37635248 PMCID: PMC10463971 DOI: 10.1186/s12935-023-03022-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
Across the world, oral cancer is a prevalent tumor. Over the years, both its mortality and incidence have grown. Oral cancer metastasis is a complex process involving cell invasion, migration, proliferation, and egress from cancer tissue either by lymphatic vessels or blood vessels. MicroRNAs (miRNAs) are essential short non-coding RNAs, which can act either as tumor suppressors or as oncogenes to control cancer development. Cancer metastasis is a multi-step process, in which miRNAs can inhibit or stimulate metastasis at all stages, including epithelial-mesenchymal transition, migration, invasion, and colonization, by targeting critical genes in these pathways. On the other hand, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), two different types of non-coding RNAs, can regulate cancer metastasis by affecting gene expression through cross-talk with miRNAs. We reviewed the scientific literature (Google Scholar, Scopus, and PubMed) for the period 2000-2023 to find reports concerning miRNAs and lncRNA/circRNA-miRNA-mRNA networks, which control the spread of oral cancer cells by affecting invasion, migration, and metastasis. According to these reports, miRNAs are involved in the regulation of metastasis pathways either by directly or indirectly targeting genes associated with metastasis. Moreover, circRNAs and lncRNAs can induce or suppress oral cancer metastasis by acting as competing endogenous RNAs to inhibit the effect of miRNA suppression on specific mRNAs. Overall, non-coding RNAs (especially miRNAs) could help to create innovative therapeutic methods for the control of oral cancer metastases.
Collapse
Affiliation(s)
- Meghdad Eslami
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Khazeni
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Xaniar Mohammadi Khanaghah
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Asadi
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Amin Ansari
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Hayati Garjan
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Tolue Ghasaban F, Maharati A, Zangouei AS, Zangooie A, Moghbeli M. MicroRNAs as the pivotal regulators of cisplatin resistance in head and neck cancers. Cancer Cell Int 2023; 23:170. [PMID: 37587481 PMCID: PMC10428558 DOI: 10.1186/s12935-023-03010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Although, there is a high rate of good prognosis in early stage head and neck tumors, about half of these tumors are detected in advanced stages with poor prognosis. A combination of chemotherapy, radiotherapy, and surgery is the treatment option in head and neck cancer (HNC) patients. Although, cisplatin (CDDP) as the first-line drug has a significant role in the treatment of HNC patients, CDDP resistance can be observed in a large number of these patients. Therefore, identification of the molecular mechanisms involved in CDDP resistance can help to reduce the side effects and also provides a better therapeutic management. MicroRNAs (miRNAs) as the post-transcriptional regulators play an important role in drug resistance. Therefore, in the present review we investigated the role of miRNAs in CDDP response of head and neck tumors. It has been reported that the miRNAs exerted their roles in CDDP response by regulation of signaling pathways such as WNT, NOTCH, PI3K/AKT, TGF-β, and NF-kB as well as apoptosis, autophagy, and EMT process. The present review paves the way to suggest a non-invasive miRNA based panel marker for the prediction of CDDP response among HNC patients. Therefore, such diagnostic miRNA based panel marker reduces the CDDP side effects and improves the clinical outcomes of these patients following an efficient therapeutic management.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Student research committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Dey S, Biswas B, Manoj Appadan A, Shah J, Pal JK, Basu S, Sur S. Non-Coding RNAs in Oral Cancer: Emerging Roles and Clinical Applications. Cancers (Basel) 2023; 15:3752. [PMID: 37568568 PMCID: PMC10417002 DOI: 10.3390/cancers15153752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Oral cancer (OC) is among the most prevalent cancers in the world. Certain geographical areas are disproportionately affected by OC cases due to the regional differences in dietary habits, tobacco and alcohol consumption. However, conventional therapeutic methods do not yield satisfying treatment outcomes. Thus, there is an urgent need to understand the disease process and to develop diagnostic and therapeutic strategies for OC. In this review, we discuss the role of various types of ncRNAs in OC, and their promising clinical implications as prognostic or diagnostic markers and therapeutic targets. MicroRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA), PIWI-interacting RNA (piRNA), and small nucleolar RNA (snoRNA) are the major ncRNA types whose involvement in OC are emerging. Dysregulated expression of ncRNAs, particularly miRNAs, lncRNAs, and circRNAs, are linked with the initiation, progression, as well as therapy resistance of OC via modulation in a series of cellular pathways through epigenetic, transcriptional, post-transcriptional, and translational modifications. Differential expressions of miRNAs and lncRNAs in blood, saliva or extracellular vesicles have indicated potential diagnostic and prognostic importance. In this review, we have summarized all the promising aspects of ncRNAs in the management of OC.
Collapse
Affiliation(s)
| | | | | | | | | | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| | - Subhayan Sur
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| |
Collapse
|
11
|
Abbasi-Kolli M, Shahbazi S, Geranpayeh L. Down-regulation of RB1 and miR-132 in ductal carcinoma of the breast. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2023; 14:1-10. [PMID: 37214588 PMCID: PMC10195390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/07/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION miR-132-3p acts in normal breast development and its downregulation has been documented in breast cancer. One of the targets of miR-132-3p is RB1 which is also inactivated in breast cancer. The interactions between RB1 and miR-132 have been reported in several pathological conditions. We aimed to investigate the correlation between expression levels of miR-132 and RB1 in ductal carcinoma of the breast. METHODS The study was carried out on tissues obtained from female patients with primary breast cancer. Tumor samples were classified using clinical and pathological data. Following RNA extraction and cDNA synthesis, relative gene expressions in tumors were compared to non-cancerous adjacent tissues. The link between RB1 and miR-132 was assessed by the correlation coefficient test. RESULTS Our findings revealed a significant decrease in miR-132 and RB1 expressions with a ratio of 0.165 and 0.365, respectively. Tumor grade showed an association with miRNA-132 levels. The expression of miR-132 in grade I tumors was almost equal to that of normal adjacent tissues, but was intensely decreased in grades II and III. The correlation analysis showed a small linear association between RB1 and miR-132 levels. CONCLUSION The reduction of miR-132 and RB1 expression confirmed the tumor-suppressive role of both genes in breast cancer. Considering that RB1 is one of the miR-132 targets, further studies are required to discover any miRNA-mediated upregulation role for miR-132. Our finding discovered a small linear association between miR-132 and RB1, which can be concluded towards their independent function in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Shirin Shahbazi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Loabat Geranpayeh
- Department of Surgery, Sina Hospital, Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
12
|
Naghizadeh MM, Bakhshandeh B, Noorbakhsh F, Yaghmaie M, Masoudi-Nejad A. Rewiring of miRNA-mRNA bipartite co-expression network as a novel way to understand the prostate cancer related players. Syst Biol Reprod Med 2023:1-12. [PMID: 37018429 DOI: 10.1080/19396368.2023.2187268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The differential expression and direct targeting of mRNA by miRNA are two main logics of the traditional approach to constructing the miRNA-mRNA network. This approach, could be led to the loss of considerable information and some challenges of direct targeting. To avoid these problems, we analyzed the rewiring network and constructed two miRNA-mRNA expression bipartite networks for both normal and primary prostate cancer tissue obtained from PRAD-TCGA. We then calculated beta-coefficient of the regression-model when miR was dependent and mRNA independent for each miR and mRNA and separately in both networks. We defined the rewired edges as a significant change in the regression coefficient between normal and cancer states. The rewired nodes through multinomial distribution were defined and network from rewired edges and nodes was analyzed and enriched. Of the 306 rewired edges, 112(37%) were new, 123(40%) were lost, 44(14%) were strengthened, and 27(9%) weakened connections were discovered. The highest centrality of 106 rewired mRNAs belonged to PGM5, BOD1L1, C1S, SEPG, TMEFF2, and CSNK2A1. The highest centrality of 68 rewired miRs belonged to miR-181d, miR-4677, miR-4662a, miR-9.3, and miR-1301. SMAD and beta-catenin binding were enriched as molecular functions. The regulation was a frequently repeated concept in the biological process. Our rewiring analysis highlighted the impact of β-catenin and SMAD signaling as also some transcript factors like TGFB1I1 in prostate cancer progression. Altogether, we developed a miRNA-mRNA co-expression bipartite network to identify the hidden aspects of the prostate cancer mechanism, which traditional analysis -like differential expression- was not detect it.
Collapse
Affiliation(s)
- Mohammad Mehdi Naghizadeh
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Yaghmaie
- Hematology, Oncology and Stem Cell Transplantation Research Center, Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Hu X, Li J, Zhang Y, Xiong M, Zhang H, Yuan Y. A helical oncolytic polypeptide with potent membranolytic activity for cancer therapy. Biomater Sci 2023; 11:1451-1458. [PMID: 36602031 DOI: 10.1039/d2bm01892f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oncolytic peptides (OLPs) with membranolytic activity show great potential to combat multidrug-resistant cancer cells. Herein, we report a cationic helical oncolytic polypeptide (OLPP) with potent membranolytic activity for cancer therapy. The OLPP was synthesized by ring-opening polymerization of N-carboxyanhydrides (NCAs) and thiol-ene reaction. The OLPP was resistant to protease, showed high cytotoxicity to a series of cancer cells and caused cancer cell necrosis by quickly lysing cancer cell membrane independent of classic death-related intracellular pathways. Intra-tumoral injection of the OLPP effectively suppressed tumor growth in mice through the direct oncolytic effect. The OLPP represents a potential oncolytic chemotherapeutics for cancer therapy.
Collapse
Affiliation(s)
- Xue Hu
- School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Jie Li
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China.
| | - Yuhao Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China.
| | - Menghua Xiong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China. .,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Houbing Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China. .,Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Youyong Yuan
- School of Medicine, South China University of Technology, Guangzhou 510006, China. .,School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China.
| |
Collapse
|
14
|
Chen Y, Wu L, Bao M. MiR-485-5p Suppress the Malignant Characteristics of the Lung Adenocarcinoma via Targeting NADPH Quinone Oxidoreductase-1 to Inhibit the PI3K/Akt. Mol Biotechnol 2022; 65:794-806. [PMID: 36219369 DOI: 10.1007/s12033-022-00577-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/22/2022] [Indexed: 10/17/2022]
Abstract
Lung adenocarcinoma (LUAD), a prevalent form of non-small cell lung cancer (NSCLC), has a high incidence and mortality rate. However, its molecular regulatory mechanisms have yet to be fully understood. The purpose of this study was to look into how NADPH quinone oxidoreductase-1 (NQO1) and it miR-485-5p and affected LUAD cells. The levels of miR-485-5p and NQO1 expression in LUAD cells and tissues were determined by means of quantitative reverse transcription polymerase chain reaction. The viability, proliferation, migration, and apoptosis of LUAD cells were assessed using cell counting Kit-8, 5-bromo-2'-deoxyuridine, transwell, and caspase-3 assays, respectively. Western blot experiments were used to examine the relative protein expression of matrix metallopeptidase 2 and matrix metallopeptidase 9, as well as the phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) in LUAD cells. Luciferase and RNA pull-down experiments were also conducted for the verification of miR-485-5p's underlying relationship with NQO1. In our study, we found that LUAD cells and tissues had miR-485-5p downregulation and NQO1 upregulation. The experimental outcomes indicated that miR-485-5p overexpression in LUAD cells reduced their malignant behaviors, suppressed PI3K and Akt phosphorylation, and facilitated apoptosis. The results also revealed that NQO1 was a direct miR-485-5p target, and that NQO1 could reverse miR-485-5p's inhibitory effect on the malignant phenotype of LUAD cells. Furthermore, it was also observed that through targeting NQO1, miR-485-5p could suppress LUAD cell migration and proliferation, further blocking the phosphorylation of PI3K and Akt and inducing apoptosis among LUAD cells. In conclusion, the miR-485-5/NQO1 axis regulates LUAD progression through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yupeng Chen
- Thoracic Surgery, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China
| | - Lin Wu
- Department of Oncology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, 430014, Hubei, China
| | - Min Bao
- Department of Respiratory Medicine, Wuhan Third Hospital, No. 241 Pengliuyang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
15
|
Lugones Y, Loren P, Salazar LA. Cisplatin Resistance: Genetic and Epigenetic Factors Involved. Biomolecules 2022; 12:biom12101365. [PMID: 36291573 PMCID: PMC9599500 DOI: 10.3390/biom12101365] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Cisplatin (CDDP) is the drug of choice against different types of cancer. However, tumor cells can acquire resistance to the damage caused by cisplatin, generating genetic and epigenetic changes that lead to the generation of resistance and the activation of intrinsic resistance mechanisms in cancer cells. Among them, we can find mutations, alternative splicing, epigenetic-driven expression changes, and even post-translational modifications of proteins. However, the molecular mechanisms by which CDDP resistance develops are not clear but are believed to be multi-factorial. This article highlights a description of cisplatin, which includes action mechanism, resistance, and epigenetic factors involved in cisplatin resistance.
Collapse
Affiliation(s)
- Yuliannis Lugones
- Doctoral Programme in Sciences with Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence: ; Tel.: +56-452-596-724
| |
Collapse
|
16
|
Maslankova J, Vecurkovska I, Rabajdova M, Katuchova J, Kicka M, Gayova M, Katuch V. Regulation of transforming growth factor-β signaling as a therapeutic approach to treating colorectal cancer. World J Gastroenterol 2022. [PMID: 36156927 DOI: 10.3748/wjg.v28.i33.4744.pmid:36156927;pmcid:pmc9476856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
According to data from 2020, Slovakia has long been among the top five countries with the highest incidence rate of colorectal cancer (CRC) worldwide, and the rate is continuing to rise every year. In approximately 80% of CRC cases, allelic loss (loss of heterozygosity, LOH) occurs in the long arm of chromosome 18q. The most important genes that can be silenced by 18q LOH or mutations are small mothers against decapentaplegic homolog (SMAD) 2 and SMAD4, which are intracellular mediators of transforming growth factor (TGF)-β superfamily signals. TGF-β plays an important role in the pro-oncogenic processes, including such properties as invasion, epithelial-mesenchymal transition (commonly known as EMT), promotion of angiogenesis, and immunomodulatory effects. Several recent studies have reported that activation of TGF-β signaling is related to drug resistance in CRC. Because the mechanisms of drug resistance are different between patients in different stages of CRC, personalized treatment is more effective. Therefore, knowledge of the activation and inhibition of factors that affect the TGF-β signaling pathway is very important.
Collapse
Affiliation(s)
- Jana Maslankova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Ivana Vecurkovska
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Jana Katuchova
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia.
| | - Milos Kicka
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Michala Gayova
- Department of Burns and Reconstructive Surgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| | - Vladimir Katuch
- Department of Neurosurgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| |
Collapse
|
17
|
Maslankova J, Vecurkovska I, Rabajdova M, Katuchova J, Kicka M, Gayova M, Katuch V. Regulation of transforming growth factor-β signaling as a therapeutic approach to treating colorectal cancer. World J Gastroenterol 2022; 28:4744-4761. [PMID: 36156927 PMCID: PMC9476856 DOI: 10.3748/wjg.v28.i33.4744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
According to data from 2020, Slovakia has long been among the top five countries with the highest incidence rate of colorectal cancer (CRC) worldwide, and the rate is continuing to rise every year. In approximately 80% of CRC cases, allelic loss (loss of heterozygosity, LOH) occurs in the long arm of chromosome 18q. The most important genes that can be silenced by 18q LOH or mutations are small mothers against decapentaplegic homolog (SMAD) 2 and SMAD4, which are intracellular mediators of transforming growth factor (TGF)-β superfamily signals. TGF-β plays an important role in the pro-oncogenic processes, including such properties as invasion, epithelial-mesenchymal transition (commonly known as EMT), promotion of angiogenesis, and immunomodulatory effects. Several recent studies have reported that activation of TGF-β signaling is related to drug resistance in CRC. Because the mechanisms of drug resistance are different between patients in different stages of CRC, personalized treatment is more effective. Therefore, knowledge of the activation and inhibition of factors that affect the TGF-β signaling pathway is very important.
Collapse
Affiliation(s)
- Jana Maslankova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Ivana Vecurkovska
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Jana Katuchova
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Milos Kicka
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Michala Gayova
- Department of Burns and Reconstructive Surgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| | - Vladimir Katuch
- Department of Neurosurgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| |
Collapse
|
18
|
Xing L, Feng Z, Nie H, Liu M, Liu Y, Zhang X, Zhou H. Research progress and clinical application prospects of miRNAs in oral cancer. Mol Biol Rep 2022; 49:10653-10665. [PMID: 35725854 DOI: 10.1007/s11033-022-07604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/13/2022] [Indexed: 12/09/2022]
Abstract
Oral cancer is one of the most common malignant tumors worldwide, and it is also one of the most important and difficult clinical problems to be solved. Due to the regional differences in diet culture, some areas have taken the 'hardest hit' of oral cancer cases. However, the existing clinical treatment methods (surgery as the main treatment method, radiotherapy and chemotherapy as the auxiliary ones) do not have satisfactory treatment effects; therefore, new diagnosis and treatment methods need to be developed and utilized. Micro RNAs (miRNAs), as a class of substances that play an important regulatory role in the development of tumors, have an important value in the diagnosis and treatment of various tumors. At the same time, many miRNAs have obvious expression differences in oral cancer tissues compared to normal tissues. Therefore, they may have diagnostic and therapeutic effects on oral cancer. In this review, we evaluate the miRNAs that play a regulatory role in the development of oral cancer and those that are expected to be applied in the diagnosis and treatment of oral cancer. At the same time, we summarize the important challenges that need to be addressed, aiming to provide evidence and suggestions for the application of miRNAs in the diagnosis and treatment of oral cancer.
Collapse
Affiliation(s)
- Long Xing
- Northwest Minzu University, Lanzhou, China
| | | | | | | | - Yali Liu
- Northwest Minzu University, Lanzhou, China
| | | | | |
Collapse
|
19
|
Yang C, Mai Z, Liu C, Yin S, Cai Y, Xia C. Natural Products in Preventing Tumor Drug Resistance and Related Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113513. [PMID: 35684449 PMCID: PMC9181879 DOI: 10.3390/molecules27113513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022]
Abstract
Drug resistance is still an obstacle in cancer therapy, leading to the failure of tumor treatment. The emergence of tumor drug resistance has always been a main concern of oncologists. Therefore, overcoming tumor drug resistance and looking for new strategies for tumor treatment is a major focus in the field of tumor research. Natural products serve as effective substances against drug resistance because of their diverse chemical structures and pharmacological effects. We reviewed the signaling pathways involved in the development of tumor drug resistance, including Epidermal growth factor receptor (EGFR), Renin-angiotensin system (Ras), Phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), Wnt, Notch, Transforming growth factor-beta (TGF-β), and their specific signaling pathway inhibitors derived from natural products. This can provide new ideas for the prevention of drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Chuansheng Yang
- Department of Head-Neck and Breast Surgery, Yuebei People’s Hospital of Shantou University, Shaoguan 512027, China;
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- Correspondence: (Y.C.); (C.X.)
| | - Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (Y.C.); (C.X.)
| |
Collapse
|
20
|
Liu C, Xu R. Dexmedetomidine protects H9C2 rat cardiomyocytes against hypoxia/reoxygenation injury by regulating the long non-coding RNA colon cancer-associated transcript 1/microRNA-8063/Wnt/β-catenin axis. Bioengineered 2022; 13:13300-13311. [PMID: 35635079 PMCID: PMC9275899 DOI: 10.1080/21655979.2022.2080420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dexmedetomidine (Dex) protects the heart from ischemia/reperfusion (I/R) injury. The differential expression of long non-coding RNAs (lncRNAs) is associated with myocardial injury, but whether the lncRNA colon cancer-associated transcript 1 (CCAT1) is associated with Dex-mediated myocardial protection remains unclear. In this study, a hypoxia/reoxygenation (H/R) H9C2 model was established to simulate the in vitro characteristics of I/R. CCAT1 and microRNA (miR)-8063 expression levels in H/R H9C2 cells pretreated with Dex were determined via quantitative reverse transcription-polymerase chain reaction. The survival and apoptotic rates of H9C2 cells were determined via cell counting kit-8 and flow cytometry assays. Wnt3a, Wnt5a, and β-catenin protein levels were measured via western blotting. Luciferase and RNA immunoprecipitation assays were used to explore the binding relationship between miR-8063 and CCAT1. Dex pretreatment increased H/R H9C2 cell viability and CCAT1 expression, while decreasing the cell apoptosis and Wnt3a, Wnt5a, and β-catenin protein levels. Knockdown of CCAT1 abolished the protective effects of Dex on H/R H9C2 cells, and the downregulation of miR-8063 expression eliminated the effect of CCAT1 knockdown. These results revealed that CCAT1, a sponge for miR-8063, is involved in Dex-mediated H9C2 cell H/R injury by negatively targeting miR-8063 and inactivating the Wnt/β-catenin pathway. Dex protects H9C2 cells from H/R impairment by regulating the lncRNA CCAT1/miR-8063/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Chundong Liu
- Department of Anesthesiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Rui Xu
- Department of Anesthesiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| |
Collapse
|
21
|
Mahabady MK, Mirzaei S, Saebfar H, Gholami MH, Zabolian A, Hushmandi K, Hashemi F, Tajik F, Hashemi M, Kumar AP, Aref AR, Zarrabi A, Khan H, Hamblin MR, Nuri Ertas Y, Samarghandian S. Noncoding RNAs and their therapeutics in paclitaxel chemotherapy: Mechanisms of initiation, progression, and drug sensitivity. J Cell Physiol 2022; 237:2309-2344. [PMID: 35437787 DOI: 10.1002/jcp.30751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
The identification of agents that can reverse drug resistance in cancer chemotherapy, and enhance the overall efficacy is of great interest. Paclitaxel (PTX) belongs to taxane family that exerts an antitumor effect by stabilizing microtubules and inhibiting cell cycle progression. However, PTX resistance often develops in tumors due to the overexpression of drug transporters and tumor-promoting pathways. Noncoding RNAs (ncRNAs) are modulators of many processes in cancer cells, such as apoptosis, migration, differentiation, and angiogenesis. In the present study, we summarize the effects of ncRNAs on PTX chemotherapy. MicroRNAs (miRNAs) can have opposite effects on PTX resistance (stimulation or inhibition) via influencing YES1, SK2, MRP1, and STAT3. Moreover, miRNAs modulate the growth and migration rates of tumor cells in regulating PTX efficacy. PIWI-interacting RNAs, small interfering RNAs, and short-hairpin RNAs are other members of ncRNAs regulating PTX sensitivity of cancer cells. Long noncoding RNAs (LncRNAs) are similar to miRNAs and can modulate PTX resistance/sensitivity by their influence on miRNAs and drug efflux transport. The cytotoxicity of PTX against tumor cells can also be affected by circular RNAs (circRNAs) and limitation is that oncogenic circRNAs have been emphasized and experiments should also focus on onco-suppressor circRNAs.
Collapse
Affiliation(s)
- Mahmood K Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hamidreza Saebfar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad H Gholami
- Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Amirhossein Zabolian
- Resident of Orthopedics, Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alan P Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amir R Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Xsphera Biosciences Inc, Boston, Massachusetts, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
22
|
Tomesz A, Szabo L, Molnar R, Deutsch A, Darago R, Raposa BL, Ghodratollah N, Varjas T, Nemeth B, Orsos Z, Pozsgai E, Szentpeteri JL, Budan F, Kiss I. Changes in miR-124-1, miR-212, miR-132, miR-134, and miR-155 Expression Patterns after 7,12-Dimethylbenz(a)anthracene Treatment in CBA/Ca Mice. Cells 2022; 11:cells11061020. [PMID: 35326471 PMCID: PMC8947631 DOI: 10.3390/cells11061020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Specific gene and miRNA expression patterns are potential early biomarkers of harmful environmental carcinogen exposures. The aim of our research was to develop an assay panel by using several miRNAs for the rapid screening of potential carcinogens. The expression changes of miR-124-1, miR-212, miR-132, miR-134, and miR-155 were examined in the spleen, liver, and kidneys of CBA/Ca mice, following the 20 mg/bwkg intraperitoneal 7,12-dimethylbenz(a)anthracene (DMBA) treatment. After 24 h RNA was isolated, the miRNA expressions were analyzed by a real-time polymerase chain reaction and compared to a non-treated control. DMBA induced significant changes in the expression of miR-134, miR-132, and miR-124-1 in all examined organs in female mice. Thus, miR-134, miR-132, and miR-124-1 were found to be suitable biomarkers for the rapid screening of potential chemical carcinogens and presumably to monitor the protective effects of chemopreventive agents.
Collapse
Affiliation(s)
- Andras Tomesz
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
- Correspondence: (A.T.); (J.L.S.); (F.B.); Tel.: +36-207-772-812 (J.L.S. & F.B.)
| | - Laszlo Szabo
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Richard Molnar
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Arpad Deutsch
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
| | - Richard Darago
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
| | - Bence L. Raposa
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
| | - Nowrasteh Ghodratollah
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Balazs Nemeth
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Zsuzsanna Orsos
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Eva Pozsgai
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Jozsef L. Szentpeteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (A.T.); (J.L.S.); (F.B.); Tel.: +36-207-772-812 (J.L.S. & F.B.)
| | - Ferenc Budan
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (A.T.); (J.L.S.); (F.B.); Tel.: +36-207-772-812 (J.L.S. & F.B.)
| | - Istvan Kiss
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| |
Collapse
|
23
|
Zhang Y, Yu Y, Cao X, Chen P. Role of lncRNA FAM83H antisense RNA1 (FAM83H-AS1) in the progression of non-small cell lung cancer by regulating the miR-545-3p/heparan sulfate 6-O-sulfotransferase (HS6ST2) axis. Bioengineered 2022; 13:6476-6489. [PMID: 35260044 PMCID: PMC8973780 DOI: 10.1080/21655979.2022.2031668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial regulators of cancer pathogenesis and are potentially useful diagnostic and prognostic biomarker tools. FAM83H antisense RNA1 (FAM83H-AS1) has been reported to be a vital regulator of different cancers; however, little attention has been paid to its significance in lung cancer. Non-tumorigenic lung cell line BEAS-2B and adenocarcinoma lung cancer cell lines NCI-H1299 and HCC827 were used in the present study. In addition, RNA immunoprecipitation, Western blotting, quantitative reverse transcription-PCR (qRT-PCR), and luciferase reporter assays were used to dissect the role of FAM83H-AS1 in lung cancer progression. The results revealed that FAM83H-AS1 is highly expressed in lung cancer tissues, and its knockdown inhibits lung cancer cell invasion and proliferation reducing tumor growth in vivo. Besides, we found that FAM83H-AS1 targets miR-545-3p, and a negative correlation exists between their expression in lung cancer tissues. Simultaneously, miR-545-3p negatively regulates heparan sulfate 6-O-sulfotransferase (HS6ST2). Moreover, inhibition of miR-545-3p promoted HS6ST2 protein expression and lung cancer cell invasion. FAM83H-AS1 favors non-small cell lung cancer by targeting the miR-545-3p/HS6ST2 axis, supporting the possibility of developing FAM83H-AS1 as a target for NSCLC intervention.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Mammography Surgery, The First Affiliated Hospital of HeBei North University, Zhangjiakou, Hebei, China
| | - Yue Yu
- The First Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xuchen Cao
- The First Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Peng Chen
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
24
|
Sun C, Shi C, Duan X, Zhang Y, Wang B. Exosomal microRNA-618 derived from mesenchymal stem cells attenuate the progression of hepatic fibrosis by targeting Smad4. Bioengineered 2022; 13:5915-5927. [PMID: 35199612 PMCID: PMC8973762 DOI: 10.1080/21655979.2021.2023799] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatic fibrosis (HF) is a pathological phenomenon that occurs during the process of long-term damage and repair in the liver. This condition will lead to the development of cirrhosis and even liver cancer if untreated. Previous evidence has shown that exosomes derived from mesenchymal stem cells (MSCs), carrying microRNAs (miRs), can affect the pathogenesis of HF. Therefore, the present study aimed to identify novel exosomal miRs derived from MSCs that play a critical role in the progression of HF. Next, the expression data of differentially expressed miRs (DEMs) of patients with liver cirrhosis and healthy controls were obtained from the Gene Expression Omnibus dataset. DEMs were analyzed using Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Moreover, to further confirm the function of exosomal miR-618 derived from MSCs on the pathogenesis of HF in vivo, a mouse model of HF was established. The results of the present study suggested that a close associated existed between DEMs and HF. Based on the results of the bioinformatics analysis, miR-618 was one of the main downregulated miRs involved in cirrhosis. In addition, miR-618 could be transferred from MSCs to LX-2 cells via exosomes; exosomal miR-618 derived from MSCs inhibited the viability and migration of LX-2 cells that were treated with TGF-β. Furthermore, exosomal miR-618 derived from MSCs attenuated the progression of HF via targeting Smad4. These findings indicated that treatment of exosomal miR-618 derived from MSCs might serve as a new strategy for HF.
Collapse
Affiliation(s)
- Chao Sun
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuicui Shi
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Duan
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baocan Wang
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Transforming growth factor-beta (TGF-β) in prostate cancer: A dual function mediator? Int J Biol Macromol 2022; 206:435-452. [PMID: 35202639 DOI: 10.1016/j.ijbiomac.2022.02.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-beta (TGF-β) is a member of a family of secreted cytokines with vital biological functions in cells. The abnormal expression of TGF-β signaling is a common finding in pathological conditions, particularly cancer. Prostate cancer (PCa) is one of the leading causes of death among men. Several genetic and epigenetic alterations can result in PCa development, and govern its progression. The present review attempts to shed some light on the role of TGF-β signaling in PCa. TGF-β signaling can either stimulate or inhibit proliferation and viability of PCa cells, depending on the context. The metastasis of PCa cells is increased by TGF-β signaling via induction of EMT and MMPs. Furthermore, TGF-β signaling can induce drug resistance of PCa cells, and can lead to immune evasion via reducing the anti-tumor activity of cytotoxic T cells and stimulating regulatory T cells. Upstream mediators such as microRNAs and lncRNAs, can regulate TGF-β signaling in PCa. Furthermore, some pharmacological compounds such as thymoquinone and valproic acid can suppress TGF-β signaling for PCa therapy. TGF-β over-expression is associated with poor prognosis in PCa patients. Furthermore, TGF-β up-regulation before prostatectomy is associated with recurrence of PCa. Overall, current review discusses role of TGF-β signaling in proliferation, metastasis and therapy response of PCa cells and in order to improve knowledge towards its regulation, upstream mediators of TGF-β such as non-coding RNAs are described. Finally, TGF-β regulation and its clinical application are discussed.
Collapse
|
26
|
Abdel Ghafar MT, Soliman NA. Metadherin (AEG-1/MTDH/LYRIC) expression: Significance in malignancy and crucial role in colorectal cancer. Adv Clin Chem 2022; 106:235-280. [PMID: 35152973 DOI: 10.1016/bs.acc.2021.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metadherin (AEG-1/MTDH/LYRIC) is a 582-amino acid transmembrane protein, encoded by a gene located at chromosome 8q22, and distributed throughout the cytoplasm, peri-nuclear region, nucleus, and nucleolus as well as the endoplasmic reticulum (ER). It contains several structural and interacting domains through which it interacts with transcription factors such as nuclear factor-κB (NF-κB), promyelocytic leukemia zinc finger (PLZF), staphylococcal nuclease domain containing 1 (SND1) and lung homing domain (LHD). It is regulated by miRNAs and mediates its oncogenic function via activation of cell proliferation, survival, migration and metastasis, as well as, angiogenesis and chemoresistance via phosphatidylinositol-3-kinase/AKT (PI3K/AKT), NF-κB, mitogen-activated protein kinase (MAPK) and Wnt signaling pathways. In this chapter, metadherin is reviewed highlighting its role in mediating growth, metastasis and chemoresistance in colorectal cancer (CRC). Metadherin, as well as its variants, and antibodies are associated with CRC progression, poorer prognosis, decreased survival and advanced clinico-pathology. The potential of AEG-1/MTDH/LYRIC as a diagnostic and prognostic marker as well as a therapeutic target in CRC is explored.
Collapse
Affiliation(s)
| | - Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
27
|
Exploring the Study of miR-1301 Inhibiting the Proliferation and Migration of Squamous Cell Carcinoma YD-38 Cells through PI3K/AKT Pathway under Deep Learning Medical Images. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5865640. [PMID: 35186067 PMCID: PMC8853767 DOI: 10.1155/2022/5865640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/18/2022]
Abstract
With the rapid development and application of deep learning medical image recognition, natural language processing, and other fields, at the same time, deep learning has become the most popular research direction in the field of image processing and recognition. Through deep learning medical image recognition technology, it is of great significance to explore the research of miR-1301. The purpose of this article is to use an improved CNN neural network model algorithm combined to contrast the experimental groups and use deep learning medical imaging technology to study the mechanism by which miR-1301 inhibits the proliferation of carcinoma YD-38 cells through the PI3K/AKT pathway. This paper studies the method of image recognition of squamous cell carcinoma YD-38 cells using a convolutional neural network (CNN). First, a CNN classification model for the characteristics of YD-38 cell images is constructed. Then, pretraining and dropout technology are used to improve and optimize the proposed CNN model to improve the robustness of the model. In this paper, the miR mimic group and the miR blank group and the PI3K/AKT pathway inhibitor Wortmannin were selected to jointly treat YD-38 cells. The expression of mRNA in miR-1301 in HGF-1 was determined using RT-PCR (real and real-time fluorescence and YD-38 cells). The blank plasmids and the miR-1301 mimic (miR-1301 mimic) were transfected into YD-38 cells. The experiments were divided into two groups in the miR-1301 blank group and the miR-1301 simulation groups, respectively. The proliferation capacity of YD-38 cells was prepared in 1.5 ml sterile EP tubes and then diluted with medium for the proliferation of the cells. The scratch test and Transwell test were used to detect the effect of miR-1-3p on the migration and invasion of liver cancer cells. In this paper, CCK-8 experiment, clone formation experiment, flow cytometry, scratch experiment, and Transwell chamber experiment are used to analyze the effects of target gene CAAP1 on the proliferation, apoptosis, migration, and invasion of liver cancer cells. This paper uses CCK-8 to detect five kinds of the effect of miRNA on the proliferation ability of liver cancer cells and the effect of miR-1-3p on the proliferation ability of liver cancer cells. Experimental studies have shown that, compared with the miR blank group, the expression of PI3K and p-AKT was significantly downregulated in the miR mimic group after 24, 48, and 72 hours and the phosphorylation level of AKT was also significantly reduced
.
Collapse
|
28
|
Zhang M, Zhang YY, Chen Y, Wang J, Wang Q, Lu H. TGF-β Signaling and Resistance to Cancer Therapy. Front Cell Dev Biol 2021; 9:786728. [PMID: 34917620 PMCID: PMC8669610 DOI: 10.3389/fcell.2021.786728] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
The transforming growth factor β (TGF-β) pathway, which is well studied for its ability to inhibit cell proliferation in early stages of tumorigenesis while promoting epithelial-mesenchymal transition and invasion in advanced cancer, is considered to act as a double-edged sword in cancer. Multiple inhibitors have been developed to target TGF-β signaling, but results from clinical trials were inconsistent, suggesting that the functions of TGF-β in human cancers are not yet fully explored. Multiple drug resistance is a major challenge in cancer therapy; emerging evidence indicates that TGF-β signaling may be a key factor in cancer resistance to chemotherapy, targeted therapy and immunotherapy. Finally, combining anti-TGF-β therapy with other cancer therapy is an attractive venue to be explored for the treatment of therapy-resistant cancer.
Collapse
Affiliation(s)
- Maoduo Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yi Zhang
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Yongze Chen
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Chen J, Liao L, Xu H, Zhang Z, Zhang J. Long non-coding RNA MEG3 inhibits neovascularization in diabetic retinopathy by regulating microRNA miR-6720-5p and cytochrome B5 reductase 2. Bioengineered 2021; 12:11872-11884. [PMID: 34978518 PMCID: PMC8810095 DOI: 10.1080/21655979.2021.2000721] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is a major cause of vision loss in working and elderly populations. long non-coding RNA (LncRNA) MEG3 is thought to have some effect on DR, but the exact mechanism remains to be clarified. The expression levels of lncRNA MEG3, miR-6720-5p, and cytochrome B5 reductase 2 (CYB5R2) in human retinal microvascular endothelial cells (hRMECs) were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), transwell migration, and tube formation assays were used to determine the cell viability, migration, and tube formation ability of hRMECs, respectively. The interaction of MEG3, miR-6720-5p, and CYB5R2 was detected and explored by a luciferase assay. The expression of MEG3 and CYB5R2 was upregulated and that of miR-6720-5p was downregulated in patients with DR and hRMECs treated with high glucose. Knocking down MEG3 or CYB5R2 promoted proliferation, migration, and neovascularization in hRMECs. The intervention of miR-6720-5p reversed the effect of MEG3 knockdown on hRMEC function, and this effect was eliminated by silencing CYB5R2. Therefore, MEG3 acted as a sponge to suppress miR-6720-5p and regulate the expression of CYB5R2, thereby inhibiting DR neovascularization.
Collapse
Affiliation(s)
- Jinpeng Chen
- Department of Ophthalmology, Ezhou Central Hospital, Ezhou, China
| | - Lin Liao
- Department of Ophthalmology, Wuhan Fourth Hospital, Wuhan, China
| | - Huiyong Xu
- Department of Ophthalmology, Ezhou Central Hospital, Ezhou, China
| | - Zheng Zhang
- Department of Ophthalmology, Ezhou Central Hospital, Ezhou, China
| | - Jian Zhang
- Department of Ophthalmology, Ezhou Central Hospital, Ezhou, China
| |
Collapse
|
30
|
Mondal P, Meeran SM. microRNAs in cancer chemoresistance: The sword and the shield. Noncoding RNA Res 2021; 6:200-210. [PMID: 34977437 PMCID: PMC8669341 DOI: 10.1016/j.ncrna.2021.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is a multifactorial disease and one of the leading causes of mortality worldwide. Cancer cells develop multiple strategies to reduce drug sensitivity and eventually lead to chemoresistance. Chemoresistance is initiated either by intrinsic factors or due to the prolonged use of chemotherapeutics as acquired resistance. Further, chemoresistance is also one of the major reasons behind tumor recurrence and metastasis. Therefore, overcoming chemoresistance is one of the primary challenges in cancer therapy. Several mechanisms are involved in chemoresistance. Among them, the key role of ABC transporters and tumor microenvironment have been well studied. Recently, microRNAs (miRNAs) regulation in tumor development, metastasis, and chemotherapy has got wider interest due to its role in regulating genes involved in cancer progression and therapy. Noncoding RNAs, including miRNAs, have been associated with the regulation of tumor-suppressor and tumor-promoter genes. Further, miRNA can also be used as a reliable diagnostic and prognostic marker to predict the stage and types of cancer. Recent evidences have revealed that miRNAs regulation also influences the function of drug transporters and the tumor microenvironment, which affects chemosensitivity to cancer cells. Therefore, miRNAs can be a promising target to reverse back chemosensitivity in cancer cells. This review comprehensively discusses the mechanisms involved in cancer chemoresistance and its regulation by miRNAs.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
31
|
Yan J, Xu H. Regulation of transforming growth factor-beta1 by circANKS1B/miR-515-5p affects the metastatic potential and cisplatin resistance in oral squamous cell carcinoma. Bioengineered 2021; 12:12420-12430. [PMID: 34781814 PMCID: PMC8810104 DOI: 10.1080/21655979.2021.2005221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common oral cancer, with an increasing worldwide incidence and a worsening prognosis. Emerging evidence confirms that circular RNAs (circRNAs) play a critical role in tumor progression via sponging miRNAs. A previous study substantiated the function of circANKS1B in several cancers. However, its role in OSCC remains unclear. This study revealed the high expression of circANKS1B in OSCC tissues and cells. Moreover, the expression level of circANKS1B was highly positively correlated with the expression of transforming growth factor-beta1 (TGF-β1) in OSCC tissues. Additionally, overexpression of circANKS1B enhanced the protein expression of TGF-β1 in OSCC cells, while its inhibition reduced TGF-β1 protein levels. Noticeably, the loss-function of circANKS1B restrained OSCC cell invasion, migration, and epithelial to mesenchymal transition (EMT) by decreasing N-cadherin expression and enhancing E-cadherin expression. Furthermore, the knockdown of circANKS1B sensitized OSCC cells to cisplatin by suppressing cell viability and increasing cell apoptosis and caspase-3 activity. Mechanically, bioinformation software (circinteractome and starBase 3.0) and dual-luciferase reporter assays corroborated that circANKS1B could sponge miR-515-5p. Moreover, miR-515-5p could directly target TGF-β1 to suppress its expression. Importantly, inhibition of miR-515-5p or supplementation with TGF-β1 overturned the effects of circANKS1B knockdown on cell invasion, migration, and cisplatin resistance. Thus, these findings highlight that circANKS1B might act as an oncogenic gene to facilitate the metastatic potential and cisplatin resistance in OSCC by sponging miR-515-5p to regulate TGF-β1. Collectively, circANKS1B may be a promising target for therapy and overcoming chemoresistance in OSCC.
Collapse
Affiliation(s)
- Jiawei Yan
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 410047, P.R. China
| | - Hongyan Xu
- Department of Stomatology, Shaanxi Provincial People's Hospital, Xi'an 710000, P.R. China
| |
Collapse
|
32
|
Cheng Y, Li S, Gao L, Zhi K, Ren W. The Molecular Basis and Therapeutic Aspects of Cisplatin Resistance in Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:761379. [PMID: 34746001 PMCID: PMC8569522 DOI: 10.3389/fonc.2021.761379] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a kind of malignant tumors with low survival rate and prone to have early metastasis and recurrence. Cisplatin is an alkylating agent which induces DNA damage through the formation of cisplatin-DNA adducts, leading to cell cycle arrest and apoptosis. In the management of advanced OSCC, cisplatin-based chemotherapy or chemoradiotherapy has been considered as the first-line treatment. Unfortunately, only a portion of OSCC patients can benefit from cisplatin treatment, both inherent resistance and acquired resistance greatly limit the efficacy of cisplatin and even cause treatment failure. Herein, this review outline the underlying mechanisms of cisplatin resistance in OSCC from the aspects of DNA damage and repair, epigenetic regulation, transport processes, programmed cell death and tumor microenvironment. In addition, this review summarizes the strategies applicable to overcome cisplatin resistance, which can provide new ideas to improve the clinical therapeutic outcome of OSCC.
Collapse
Affiliation(s)
- Yali Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Huang C, Ma L, Duan F, Li R, Zhang Y, Wang Y, Luo M, He Z, Luo Z. MicroRNA-485-5p inhibits glioblastoma progression by suppressing E2F transcription factor 1 under cisplatin treatment. Bioengineered 2021; 12:8020-8030. [PMID: 34726120 PMCID: PMC8806419 DOI: 10.1080/21655979.2021.1982269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cisplatin (CDDP) has been widely used for glioblastoma treatment. miR-485-5p and E2F transcription factor 1 (E2F1) dysfunction has been reported in glioblastoma. Nonetheless, whether CDDP affects glioblastoma progression via the miR-485-5p-E2F1 axis requires investigation. The expression of miR-485-5p and E2F1 was investigated by quantitative real-time polymerase chain reaction or western blotting in glioblastoma tissues and cell lines. The interaction between miR-485-5p and E2F1 was confirmed using a luciferase assay. The malignancy of glioblastoma was detected using Cell Counting Kit-8, bromodeoxyuridine (BrdU), cell adhesion, flow cytometry, and transwell assays. We identified miR-485-5p downregulation and E2F1 upregulation in glioblastoma, and miR-485-5p inhibited cell growth and elevated cell apoptosis in glioblastoma cells after CDDP treatment. Moreover, miR-485-5p targeting E2F1 repressed cell growth and improved cell apoptosis in glioblastoma cells after CDDP treatment. Our study revealed that CDDP retarded glioblastoma cell development via the miR-485-5p-E2F1 axis, which may be a new direction for glioblastoma therapy.
Collapse
Affiliation(s)
- Conggang Huang
- Department of Neurosurgery, The First Hospital of Wuhan, Wuhan, Hubei, China
| | - Lan Ma
- Department of Neurosurgery, The First Hospital of Wuhan, Wuhan, Hubei, China
| | - Faliang Duan
- Department of Neurosurgery, The First Hospital of Wuhan, Wuhan, Hubei, China
| | - Ruixue Li
- Department of Intensive Care Unit, The Sixth Hospital of Wuhan, Wuhan, Hubei, China
| | - Yanguo Zhang
- Department of Neurosurgery, The First Hospital of Wuhan, Wuhan, Hubei, China
| | - Yuan Wang
- Department of Neurosurgery, The First Hospital of Wuhan, Wuhan, Hubei, China
| | - Ming Luo
- Department of Neurosurgery, The First Hospital of Wuhan, Wuhan, Hubei, China
| | - Zhuqiang He
- Department of Neurosurgery, The First Hospital of Wuhan, Wuhan, Hubei, China
| | - Zhihua Luo
- Department of Neurosurgery, The First Hospital of Wuhan, Wuhan, Hubei, China
| |
Collapse
|
34
|
Chi X, Jiang Y, Chen Y, Lv L, Chen J, Yang F, Zhang X, Pan F, Cai Q. Upregulation of microRNA miR-652-3p is a prognostic risk factor for hepatocellular carcinoma and regulates cell proliferation, migration, and invasion. Bioengineered 2021; 12:7519-7528. [PMID: 34608826 PMCID: PMC8806865 DOI: 10.1080/21655979.2021.1979861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As powerful regulatory factors, microRNAs (miRNAs) are involved in tumor progression. The current research aimed to excavate the prognostic significance and potential regulatory mechanisms of miR-652-3p in hepatocellular carcinoma (HCC). Expression of miR-652-3p in HCC tissues and cells was exposed by Quantitative real-time polymerase chain reaction (RT-qPCR) assay, and we found that miR-652-3p was elevated in HCC tissues and cells than in the control group (P < 0.05). Then, the relationship between miR-652-3p levels and clinical characteristics was obtained from the Chi-square test. Kaplan-Meier survival analysis and Cox regression model to explore the outcome of miR-652-3p on the prognosis of HCC. The results investigated that overexpression of miR-652-3p was related to clinical tumor-node-metastasis (TNM) stage (P = 0.020) and differentiation (P = 0.031). HCC patients with elevated miR-652-3p levels were correlated with poor overall survival (log-rank, P = 0.007), and maybe a possible prognostic marker for HCC. Finally, CCK-8, colony formation, wound healing and Transwell assay was detected after transfection of HCC cells with miR-652-3p mimic or inhibitor. And the results confirmed that elevation miR-652-3p promoted the proliferation, migration, and invasion of tumor cells (P < 0.05). All data indicated that elevated miR-652-3p is a prognostic marker and would be able to participate in tumor progression of HCC by regulating cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Xiaobin Chi
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Yi Jiang
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Yongbiao Chen
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Lizhi Lv
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Jianwei Chen
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Fang Yang
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Xiaojin Zhang
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Fan Pan
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Qiucheng Cai
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| |
Collapse
|
35
|
Jin Z, Jiang S. Long non-coding RNA TTN-AS1/microRNA-199a-3p/runt-related transcription factor 1 gene axis regulates the progression of oral squamous cell carcinoma. Bioengineered 2021; 12:7724-7736. [PMID: 34606420 PMCID: PMC8806903 DOI: 10.1080/21655979.2021.1982324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) has a high degree of malignancy, which affects the quality of life and prognosis of patients with OSCC. Our study aimed to reveal the function of long non-coding RNA TTN-AS1/microRNA-199a-3p (miR-199a-3p)/runt-related transcription factor 1 (RUNX1) axis in OSCC progression, thereby providing a novel OSCC effective strategy. Real-time quantitative polymerase chain reaction and western blotting were performed to detect the expression of TTN-AS1, miR-199a-3p, and RUNX1 in OSCC. Several cell functional experiments, including Cell Counting Kit-8, flow cytometry, and cell adhesion assays, were used to assess cell proliferation, apoptosis, adhesion, and migration. A luciferase assay was performed to confirm the interaction between TTN-AS1, miR-199a-3p, and RUNX1. Our results revealed that TTN-AS1 and RUNX1 were upregulated in OSCC tissues and cells, whereas miR-199a-3p expression was downregulated. Knockdown of TTN-AS1 or RUNX1 suppressed cell proliferation, adhesion, and migration but induced apoptosis. Additionally, miR-199a-3p inhibitor partly relieved the effects of silencing TTN-AS1 and RUNX1 in OSCC cells due to their targeting relationship. In conclusion, TTN-AS1 and RUNX1 could promote OSCC progression and miR-199a-3p partly relieved the effects of TTN-AS1 and RUNX1.
Collapse
Affiliation(s)
- Zhongzhi Jin
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shengjun Jiang
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
36
|
Sun L, Wei Y, Wang J. Circular RNA PIP5K1A (circPIP5K1A) accelerates endometriosis progression by regulating the miR-153-3p/Thymosin Beta-4 X-Linked (TMSB4X) pathway. Bioengineered 2021; 12:7104-7118. [PMID: 34546850 PMCID: PMC8806837 DOI: 10.1080/21655979.2021.1978618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As a common gynecologic disease, endometriosis (EM) poses a threat to the reproductive health of about 10% women globally. Recent studies have revealed that circular RNAs (circRNAs) are deeply implicated in EM pathogenesis. However, the functions of circPIP5K1A in EM have not been studied yet. Our study intended to uncover the molecular mechanism of circPIP5K1A in EM. In this work, gene and protein expressions were determined by RT-qPCR or Western blotting. CCK-8, wound healing, transwell, and flow cytometry assays were conducted to analyze cell viability, migration, invasion, cell cycle, and apoptosis. Additionally, bioinformatics analysis, dual-luciferase reporter assay, as well as RIP assay were performed to investigate the combination between miR-153-3p and circPIP5K1A or TMSB4X. Herein, we found remarkable high circPIP5K1A expression in EM tissues and cells. Silencing of circPIP5K1A suppressed proliferation, restrained cell cycle, increased cell apoptosis, and decreased migration and invasion in EM cells. In addition, miR-153-3p inhibition could abrogate the impacts of circPIP5K1A knockdown on EM progression in vitro. Also, we found that circPIP5K1A regulated TMSB4X level via interaction with miR-153-3p in EM cells. Besides, circPIP5K1A promoted EM progression via TMSB4X. Moreover, TMSB4X could activate the TGF-β signaling in hEM15A cells. To sum up, our study elucidated that circPIP5K1A accelerated EM progression in vitro by activating the TGF-β signaling pathway via the miR-153-3p/TMSB4X axis, providing a potential clinical target for EM treatment.
Collapse
Affiliation(s)
- Lin Sun
- Department of Gynecology, Maanshan Maternal and Child Health Care Hospital, Ma'anshan, Anhui, P.R.China
| | - Yan Wei
- Department of Gynecology, The Affiliated Suzhou Science&Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R.China
| | - Junli Wang
- Department of Gynecology, Maanshan Maternal and Child Health Care Hospital, Ma'anshan, Anhui, P.R.China
| |
Collapse
|
37
|
Yu J, Li Y, Leng D, Cao C, Yu Y, Wang Y. microRNA-3646 serves as a diagnostic marker and mediates the inflammatory response induced by acute coronary syndrome. Bioengineered 2021; 12:5632-5640. [PMID: 34519257 PMCID: PMC8806520 DOI: 10.1080/21655979.2021.1967066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acute coronary syndrome (ACS) is one of the main syndromes of coronary artery disease with high mortality. The identification of biomarkers associated with disease occurrence and progression could improve early detection and risk prediction. This study was aimed to reveal the clinical significance and function of miR-3646 in ACS. The expression of miR-3646 was evaluated in ACS patients, healthy volunteers, and non-ACS patients and estimated the clinical significance of miR-3646. The ACS modeling rats were also established in this study to explore the potential mechanism underlying the function of miR-3646. miR-3646 was upregulated in ACS patients compared with healthy volunteers and non-ACS patients. The expression of miR-3646 was positively correlated with the severity and progression of ACS patients and could discriminate ACS patients from healthy volunteers and non-ACS patients. The knockdown of miR-3646 could reverse the inflammatory response induced by ACS.miR-3646 serves as a diagnostic biomarker for ACS. The knockdown of miR-3646 could alleviate ACS by reversing inflammatory response. These results provide a potential therapeutic target of ACS.
Collapse
Affiliation(s)
- Jinming Yu
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Yongmei Li
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Deguo Leng
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Cheng Cao
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Yongzhi Yu
- Department of Cardiology, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Yijuan Wang
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| |
Collapse
|
38
|
Yang Y, Shi L, Zhang D, Wu D, An Y, Zhang Y, Chen X. Long non-coding RNA FGD5-AS1 contributes to cisplatin resistance in hepatocellular carcinoma via sponging microRNA-153-3p by upregulating Twinfilin Actin Binding Protein 1 (TWF1). Bioengineered 2021; 12:6713-6723. [PMID: 34519634 PMCID: PMC8806596 DOI: 10.1080/21655979.2021.1971484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNA (lncRNA) FGD5 antisense RNA 1 (FGD5-AS1) was reported to exert critical roles in multiple cancers. The current work aimed to determine the role of FGD5-AS1 in cisplatin (DDP) resistance of hepatocellular carcinoma (HCC). The levels of FGD5-AS1, miR-153-3p, and twinfilin actin binding protein 1 (TWF1) were analyzed using RT-qPCR. CCK-8, colony formation, Transwell, and TUNEL assays were used to examine the IC50 value of DDP, cell viability, invasion, and apoptosis. The interaction between miR-153-3p and TWF1 or FGD5-AS1 was determined by luciferase reporter and RIP assays. In our study, we found that FGD5-AS1 level was elevated in DDP-resistant HCC tissues and cell lines. FGD5-AS1 silencing improved the sensitivity of HCC cells to DDP. Moreover, FGD5-AS1 directly bound to miR-153-3p and FGD5-AS1 addition neutralized the inhibitory impacts of miR-153-3p supplementation on DDP resistance in the HCC cells. In addition, knockdown of TWF1 inhibited DDP resistance of HCC cells, which was reversed by miR-153-3p deletion. Lastly, FGD5-AS1 interference decreased TWF1 expression level, which was rescued by miR-153-3p inhibition. Our study exhibited that FGD5-AS1 promoted DDP resistance through modulating the miR-153-3p/TWF1 axis in HCC cells. This could be an effective treatment strategy for HCC patients.
Collapse
Affiliation(s)
- Yue Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Longqing Shi
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Dong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Yong An
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Yue Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| |
Collapse
|
39
|
Luo Y, Qu X, Kan D, Cai B. The microRNA-451a/chromosome segregation 1-like axis suppresses cell proliferation, migration, and invasion and induces apoptosis in nasopharyngeal carcinoma. Bioengineered 2021; 12:6967-6980. [PMID: 34516344 PMCID: PMC8806603 DOI: 10.1080/21655979.2021.1975018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
MicroRNA-451a (miR-451a) has been implicated in the initiation and progression of multiple cancers. However, the regulatory mechanisms underlying its function in nasopharyngeal carcinoma (NPC) are poorly understood. Thus, we investigated in detail the role of the microRNA-451a/chromosome segregation 1-like (miR-45a/CSE1L) axis and its regulatory mechanism in NPC. We examined the levels of miR-451a and CSE1L in NPC, and assessed the effects of miR-451a and CSE1L on NPC by cell functional experiments. Furthermore, we elucidated the direct regulatory effect of miR-451a on CSE1L by the luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation and validated our observations by calculating the Pearson's correlation coefficient. We found that miR-451a was down-regulated in NPC cells, and its over-expression attenuated cell proliferation, migration, and invasion, and tumor growth in 5-8 F and SUNE-1 cells and promoted apoptosis. Moreover, CSE1L was the direct gene target of miR-451a, and its over-expression abrogated miR-451a-dependent inhibition of malignancy in 5-8 F and SUNE-1 cells. The Pearson's correlation coefficient indicated a negative correlation between CSE1L and miR-451a. miR-451a serves as a tumor suppressor and targets CSE1L. miR-451a suppresses CSE1L expression, thereby reducing proliferation, invasion, and migration and increasing apoptosis of NPC cells.
Collapse
Affiliation(s)
- Yi Luo
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Xiu Qu
- Department of Pain Treatment, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Dan Kan
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Binlin Cai
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Liu D, Wan L, Gong H, Chen S, Kong Y, Xiao B. Sevoflurane promotes the apoptosis of laryngeal squamous cell carcinoma in-vitro and inhibits its malignant progression via miR-26a/FOXO1 axis. Bioengineered 2021; 12:6364-6376. [PMID: 34511023 PMCID: PMC8806578 DOI: 10.1080/21655979.2021.1962684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a laryngeal malignancy with a high mortality rates, and its treatment remains difficult. Sevoflurane is a surgical anesthesia which has anti-tumor effect. This investigation assessed the effects of LSCC cells treatment with Sevoflurane in vitro and in vivo. Hep-2 and Tu177 cells, human LSCC samples and BALB/C nude mice were used for result assessments. Cell viability, proliferation, migration and invasion were assessed via Cell Count Kit-8, wound healing assay and transwell invasion assay respectively. MiR-26a and FOXO1 expressions was examined by qRT-PCR. FOXO1, E-cadherin, N-cadherin and vimentin activities were examined by Western blotting. Moreover, animal experiments were performed to verify our findings in vitro. Lastly, miR-26a and FOXO1 expression levels in clinical samples were analyzed. According to the results, Sevoflurane decreased LSCC cells’ viability and even stimulated their apoptosis in vitro and in vivo. Moreover, it could reduce the migration, invasion and EMT. Mechanistically, sevoflurane could downregulate miR-26a expression and that miR-26a could negatively modulate FOXO1 activity. Thus, sevoflurane could increase FOXO1 activity. In the clinical samples, miR-26a expression was significantly upregulated, but FOXO1 was remarkably down-regulated and miR-26a expression in LSCC was linked with better prognosis. In conclusion, MiR-26a is increased and FOXO1 is reduced in human LSCC, Sevoflurane inhibits proliferation and mediates apoptosis of LSCC cells. Further, MiR-26a binds FOXO1 directly, and FOXO1 expression is down-regulated by Sevoflurane. Finally, Sevoflurane triggers LSCC cells apoptosis in vivo. Sevoflurane use to target miR-26a/FOXO1 may be a novel alternative for LSCC therapy.
Collapse
Affiliation(s)
- Dan Liu
- Department Of Otorhinolaryngology, Huangshi Central Hospital Of Edong Healthcare Group, Hubei Polytechnic University, Huangshi City, Hubei Province, China
| | - Lang Wan
- Department Of Otorhinolaryngology, Huangshi Central Hospital Of Edong Healthcare Group, Hubei Polytechnic University, Huangshi City, Hubei Province, China
| | - Hao Gong
- Department Of Anesthesiology, Huangshi Maternity And Children's Health Hospital, Huangshi City, Hubei Province, China
| | - Shiming Chen
- Department Of Otolaryngology Head And Neck Surgery, Renmin Hospital Of Wuhan University, Wuhan City, Hubei Province, China
| | - Yonggang Kong
- Department Of Otolaryngology Head And Neck Surgery, Renmin Hospital Of Wuhan University, Wuhan City, Hubei Province, China
| | - Bokui Xiao
- Otorhinolaryngology-Head And Neck Surgery Laboratory, Wuhan University School Of Medicine, Wuhan City, Hubei Province, China
| |
Collapse
|
41
|
Shi F, Zhang L, Liu X, Wang Y. Knock-down of microRNA miR-556-5p increases cisplatin-sensitivity in non-small cell lung cancer (NSCLC) via activating NLR family pyrin domain containing 3 (NLRP3)-mediated pyroptotic cell death. Bioengineered 2021; 12:6332-6342. [PMID: 34488537 PMCID: PMC8806686 DOI: 10.1080/21655979.2021.1971502] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are closely associated with cancer progression and drug resistance, however, up until now, the involvement of miR-556-5p in regulating cisplatin-sensitivity in non-small cell lung cancer (NSCLC) has not been studied. In the present study, we found that miR-556-5p was significantly upregulated in the cisplatin-resistant NSCLC (CR-NSCLC) patients’ tissues and cells, instead of the corresponding cisplatin-sensitive NSCLC (CS-NSCLC) tissues and cells. Further experiments validated that knock-down of miR-556-5p suppressed cell viability and tumorigenesis, and induced cell apoptosis in the cisplatin-treated CR-NSCLC cells, and conversely, upregulation of miR-556-5p increased cisplatin-resistance in CS-NSCLC cells. Interestingly, miR-556-5p ablation triggered pyroptotic cell death in cisplatin-treated CR-NSCLC cells via upregulating NLRP3, and the promoting effects of miR-556-5p silence on cisplatin-sensitivity in CR-NSCLC cells were abrogated by both cell pyroptosis inhibitor NSA and NLRP3 downregulation. Taken together, this study firstly evidenced that induction of NLRP3-mediated cell pyroptosis by miR-556-5p downregulation was effective to increase cisplatin-sensitivity in NSCLC, which provided new therapy strategies to overcome chemo-resistance for NSCLC patients in clinic.
Collapse
Affiliation(s)
- Feng Shi
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Luquan Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xing Liu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Wang
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, USA
| |
Collapse
|
42
|
Moghbeli M, Zangouei AS, Nasrpour Navaii Z, Taghehchian N. Molecular mechanisms of the microRNA-132 during tumor progressions. Cancer Cell Int 2021; 21:439. [PMID: 34419060 PMCID: PMC8379808 DOI: 10.1186/s12935-021-02149-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer as one of the leading causes of human deaths has always been one of the main health challenges in the world. Despite recent advances in therapeutic and diagnostic methods, there is still a high mortality rate among cancer patients. Late diagnosis is one of the main reasons for the high ratio of cancer related deaths. Therefore, it is required to introduce novel early detection methods. Various molecular mechanisms are associated with the tumor progression and metastasis. MicroRNAs (miRNAs) are a class of non-coding RNAs (ncRNAs) family that has important functions in regulation of the cellular processes such as cell proliferation, apoptosis, and tumor progression. Moreover, they have higher stability in body fluids compared with mRNAs which can be introduced as non-invasive diagnostic markers in cancer patients. MiR-132 has important functions as tumor suppressor or oncogene in different cancers. In the present review, we have summarized all of the studies which have been reported the role of miR-132 during tumor progressions. We categorized the miR-132 target genes based on their cell and molecular functions. Although, it has been reported that the miR-132 mainly functions as a tumor suppressor, it has also oncogenic functions especially in pancreatic tumors. MiR-132 mainly exerts its roles during tumor progressions by regulation of the transcription factors and signaling pathways. Present review clarifies the tumor specific molecular mechanisms of miR-132 to introduce that as an efficient non-invasive diagnostic marker in various cancers.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Nasrpour Navaii
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
43
|
Jiang L, Ge W, Cui Y, Wang X. The regulation of long non-coding RNA 00958 (LINC00958) for oral squamous cell carcinoma (OSCC) cells death through absent in melanoma 2 (AIM2) depending on microRNA-4306 and Sirtuin1 (SIRT1) in vitro. Bioengineered 2021; 12:5085-5098. [PMID: 34384029 PMCID: PMC8806533 DOI: 10.1080/21655979.2021.1955561] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been proposed as potential targets in OSCC gene therapy. Thus, the study aims to analyze how they exert functions in OSCC. LINC00958, AIM2, Gasdermin D (GSDMD) and tumor protein p53 (TP53) expression levels are analyzed by Quantitative Real-time PCR (qPCR) or Western blotting (WB) in OSCC cells lines. The roles of LINC00958 in cell proliferation, cell death, and GSDMD expression respectively were analyzed by Cell Counting Kit-8 (CCK8) assay, flow cytometry and Immunofluorescence (IF) assay. In addition, expressions of pyroptosis- and autophagy-related proteins are evaluated by WB detection. The targeted binding of LINC00958 and miR-4306 or AIM2 mRNA is predicted by bioinformatics analysis and detected by biodual luciferase system. RIP and qPCR assays analyze whether LINC00958 interacts with SIRT1. We found that LINC00958 showed upregulation in OSCC cells compared to normal oral epithelial cells. LINC00958 silencing significantly suppressed OSCC cell proliferation, induced cell death and reduced autophagy. LINC00958 regulated the levels of miR-4306 which binds to the 3'UTR of AIM2, and interacts with and modulates SIRT1 protein expression. LINC00958 regulated GSDMD and AIM2 levels, as well as p53 and SIRT1 levels. SIRT1 overexpression markedly reversed aforementioned effects of LINC00958. LINC00958 not only downregulated miR-4306 levels to activate the pyroptosis pathway mediated by AIM2 and promoted cancer cell survival but also induced a decrease in SIRT protein expression to further reduce p53 levels.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang. China
| | - Wenyu Ge
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University. Harbin Institute of Technology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Yifei Cui
- Department of Pathology, Harbin Medical University Cancer Hospital, Heilongjiang, China
| | - Xiaofeng Wang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| |
Collapse
|
44
|
Li Z, Xu C, Sun D. MicroRNA-488 serves as a diagnostic marker for atherosclerosis and regulates the biological behavior of vascular smooth muscle cells. Bioengineered 2021; 12:4092-4099. [PMID: 34288824 PMCID: PMC8806555 DOI: 10.1080/21655979.2021.1953212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis (AS) is one of the main causes of cerebral infarction. Researches on AS mainly focus on the gene level, among which microRNA is the research hotspot nowadays. This study investigated the diagnostic value of aberrant serum miR-488 in AS patients, and further explored the effect of abnormally expressed miR-488 on the biological behavior of vascular smooth muscle (VSMCs) cells by cell transfection. The qRT-PCR was used to investigate the expression level of miR-488 in 125 AS patients and 60 healthy controls. The diagnostic value of miR-488 was analyzed by the receiver operator characteristic (ROC) curve. CCK-8 and Transwell assays were used to detect the ability of miR-488 on the proliferation and migration ability of VSMCs cells. Serum expression of miR-488 in AS patients was higher than that in healthy controls. The expression level of miR-488 was significantly positively correlated with the Carotid Intima-Media Thickness (CIMT) value. The AUC of the ROC curve was 0.892, specificity was 99.3%, and sensitivity was 77.6%. In VSMCs cells, overexpression of miR-488 significantly promoted the proliferation and migration ability. The high expression of miR-488 is a good diagnostic marker for AS. The upregulation of miR-488 promotes VSMCs cell proliferation, and migration, which may provide a new theory for the treatment of AS.
Collapse
Affiliation(s)
- Zhen Li
- Department of Cardiology, Shengli Oilfield Central Hospital, Shandong, China
| | - Congjian Xu
- Department of Cardiology, Shengli Oilfield Central Hospital, Shandong, China
| | - Di Sun
- Department of Cardiology, Shengli Oilfield Central Hospital, Shandong, China
| |
Collapse
|
45
|
Han J, Tang H, Yao L, Jin E, Pan W, Chen S. Azilsartan protects against hyperglycemia-induced hyperpermeability of the blood-brain barrier. Bioengineered 2021; 12:3621-3633. [PMID: 34266350 PMCID: PMC8806574 DOI: 10.1080/21655979.2021.1948950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease with significant neurological complications and is reported to be closely related to the blood-brain barrier (BBB) disruption. Azilsartan is an antagonist of the Angiotensin II receptor developed for the treatment of hypertension, and it has been recently reported to have neuroprotective effects. The present study aims to investigate the protective effect of Azilsartan against hyperglycemia-induced BBB disruption and its underlying mechanism. Male db/db mice were treated with Azilsartan (20 μg/day) for 10 consecutive days. Compared to the control group, increased BBB permeability, suppressed occludin expression, excessive release of inflammatory factors, and downregulation of krüppel-like factor 2 (KLF2) were observed in diabetic mice, all of which were dramatically reversed by Azilsartan treatment. In the in vitro experiments, elevated endothelial permeability and decreased expression of occludin and KLF2 were observed in high glucose-challenged endothelial cells, which were significantly alleviated by Azilsartan. Lastly, the silencing of KLF2 abolished the protective effects of Azilsartan against the high glucose-induced expression of occludin and endothelial monolayer permeability in bEnd.3 brain endothelial cells. Based on these observations, we concluded that Azilsartan protected against hyperglycemia-induced hyperpermeability of BBB via the KLF2/occludin axis.
Collapse
Affiliation(s)
- Jing Han
- Department of Neurosurgery, the People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Hua Tang
- Department of Neurosurgery, the People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Longfei Yao
- Department of Neurosurgery, the People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Erliang Jin
- Department of Neurosurgery, the People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Wanxi Pan
- Department of Neurosurgery, the People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Shaojun Chen
- Department of Neurosurgery, the People's Hospital of China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
46
|
Zhang HW, Guo Y, Sun LX, Ni FB, Xu K. Prognostic value of small mother against decapentaplegic expression in human gastric cancer. Bioengineered 2021; 12:2534-2549. [PMID: 34138687 PMCID: PMC8806811 DOI: 10.1080/21655979.2021.1935192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer is the fifth most common malignancy in the world with alow 5-year survival rate. To date, no study has investigated the prognostic role of the small mother against decapentaplegic (SMAD) in gastric cancer. The association of SMADs with overall survival (OS) of gastric cancer was analyzed on the online Kaplan-Meier (KM) plotter database. Clinical data such as stage, differentiation, gender, treatment, and Her2 mutation status of gastric cancer patients were analyzed. The (E)-SIS3 was used to inhibit SMAD3 expression in gastric cancer cells, and the effects of SMAD3 on gastric cancer cells were analyzed via real-time cellular analysis (RTCA), flow cytometry, colony formation, and immunofluorescence assay. The results showed that the high expression of three members of SMADs (SMAD1, SMAD2, SMAD4) was correlated with afavorable OS of gastric cancer patients. Meanwhile, SMAD3 expression level indicated highly differentiated cancer. We also observed that surgical treatment was associated with high expression level of SMAD1 and SMAD2. Besides, the effect of Her2 on gastric cancer was not noticeable. Moreover, (E)-SIS3 pharmacological assay revealed that inhibition of expression of SMAD3 suppressed the proliferation and migration ability of gastric cancer cells via inducing apoptosis. Collectively, these results demonstrate that the high expression level of three members of SMADs (SMAD1, SMAD2, and SMAD4) is significantly correlated with favorable OS of gastric cancer patients, which is opposite to SMAD3. Thus, SMADs regulate the differentiation of cancer and can be used to guide treatment decisions.
Collapse
Affiliation(s)
- He-Wei Zhang
- Department of Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Ying Guo
- Department of Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Lin-Xiao Sun
- Department of Surgery, Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Fu-Biao Ni
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Ke Xu
- Endocrinology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
47
|
Lu J, Xiao D, Sun J, Huang J. Effect of comprehensive nursing on the appearance and recovery effect of oral squamous cell carcinoma patients. Am J Transl Res 2021; 13:5519-5525. [PMID: 34150152 PMCID: PMC8205707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the effect of comprehensive nursing on the appearance and recovery of oral squamous cell carcinoma. METHODS 52 patients with oral squamous cell carcinoma admitted to our hospital from February 2019 to February 2020 were selected and divided into a control group (n = 26, conventional nursing care) and an observation group (n = 26, comprehensive nursing). The postoperative hospital stay and postoperative intravenous infusion time, quality of life score, postoperative complications, nursing satisfaction, shape recovery, SAS score, etc. were compared between the two groups. RESULTS (1) The observation group had a shorter postoperative hospital stay and postoperative intravenous infusion time compared to the control group. The observation group also showed higher scores of ADL, psychological function, physical function, and social function after nursing. Regarding the incidence of postoperative complications, the observation group was lower than the control group; the observation group had higher nursing satisfaction (92.31%) than the control group (61.54%) (All P < 0.05). (2) The satisfaction rate in terms of postoperative appearance recovery and overall recovery in the observation group were all significantly higher than the control group (P < 0.05). (3) The ASA score in observation group was significantly lower compared to the control group (inter-group effect: F = 76.210, P < 0.001), and the ASA score of both groups had a tendency to decrease with time (time effect: F = 36.580, P < 0.001); There is an interaction effect between grouping and time (interaction effect: F = 11.770, P < 0.001). (4) After nursing, the VAS score of the two groups of patients was lower than that before nursing, and the score of observation group patients was much lower (P < 0.05). CONCLUSION The application of comprehensive nursing in patients with oral squamous cell carcinoma is remarkable, which can promote the recovery of patients' disease and their appearance, decrease postoperative complications, and relieve the anxiety feelings of patients, with a higher satisfaction rate.
Collapse
Affiliation(s)
- Junli Lu
- Infection Control Department, Qingdao Chengyang District People’s HospitalQingdao, China
| | - Dailing Xiao
- Stomatology Department, Qingdao Chengyang District People’s HospitalQingdao, China
| | - Junjie Sun
- Stomatology Department, Qingdao Chengyang District People’s HospitalQingdao, China
| | - Junqian Huang
- Administration, Qingdao Chengyang District People’s HospitalQingdao, China
| |
Collapse
|
48
|
Wang L, Ge S, Zhou F. MicroRNA-487a-3p inhibits the growth and invasiveness of oral squamous cell carcinoma by targeting PPM1A. Bioengineered 2021; 12:937-947. [PMID: 33724144 PMCID: PMC8291853 DOI: 10.1080/21655979.2021.1884396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) forms the majority of the entire cancerous tumors which occur in the mouth. Current treatment advances, such as surgical resection, chemotherapy, and radiotherapy, have significantly helped reduce OSCC. However, the overall patient survival rate remains relatively low. MiRNAs, a non-coding RNA group, are essential for multiple biological functions, which are essential for the progression of cancer, including survival of the cell, migration, multiplication, differentiation, and apoptosis. The study aimed to explore the existing association between miR-487a-3p and PPM1A and elucidating their role in modulation of proliferation in OSCC cell lines. In this study, we used CAL-27 and TCA-8113 OSCC cell lines and human samples to validate our results. The manifestation of miR-487a-3p and PPM1A was checked using quantitative real-time PCR. The miR-487a-3p and PPM1A binding was investigated through western blot assay and dual-luciferase reporter gene. Functional experiments, including colony formation, CCK-8, and transwell experimentations, were undertaken to validate cells' growth and invasion activities. According to the results, the expression of miR-487a-3p is regulated in the OSCC cell lines compared to normal cells. Moreover, the mimicking of miR-487a-3p significantly reduces the OSCC cell growth and invasion, and PPM1A overexpression exerts oncogenic effects and hinders the anti-oncogenic effects of miR-487a-3p. In conclusion, the study demonstrated that miR-487a-3p might act as a tumor suppressor by inhibiting the growth and invasion of OSCC via regulating PPM1A expression.
Collapse
Affiliation(s)
- Lishan Wang
- Department of Maxillofacial Surgery, Weifang City People's Hospital, Weifang City, Shandong Province, China
| | - Shuqing Ge
- Department of Maxillofacial Surgery, Weifang City People's Hospital, Weifang City, Shandong Province, China
| | - Futing Zhou
- Department of Maxillofacial Surgery, Weifang City People's Hospital, Weifang City, Shandong Province, China
| |
Collapse
|
49
|
Taheri M, Shoorei H, Tondro Anamag F, Ghafouri-Fard S, Dinger ME. LncRNAs and miRNAs participate in determination of sensitivity of cancer cells to cisplatin. Exp Mol Pathol 2021; 123:104602. [PMID: 33422487 DOI: 10.1016/j.yexmp.2021.104602] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023]
Abstract
Cisplatin is an extensively used chemotherapeutic substance for various types of human malignancies including sarcomas, carcinomas and lymphomas. Yet, the vast application of this drug is hampered by the emergence of chemoresistance in some treated patients. Several mechanisms such as degradation of the membrane transporters by cisplatin have been implicated in the pathogenesis of this event. Recent researches have also indicated the role of long non-coding RNAs (lncRNAs) as well as micoRNAs (miRNAs) in the emergence of resistance to cisplatin in several cancer types. For instance, up-regulation of miR-21 has been associated with resistance to this agent in ovarian cancer, oral squamous cell cancer, gastric malignancy and non-small cell lung cancer (NSCLC). On the other hand, down-regulation of miR-218 has been implicated in emergence of chemoresistance in breast cancer and esophageal squamous cell carcinoma. MALAT1 is implicated in the chemoresistance of bladder cancer cells, NSCLC, gastric cancer and cervical cancer. Most notably, the expression profile of resistance-associated miRNAs and lncRNAs can predict overall survival of cancer patients. Mechanistic assays have revealed that interference with expression of some miRNAs and lncRNAs can reverse the resistance phenotype in cancer cells. In this paper, we review the scientific writings on the role of lncRNAs and miRNAs in the evolution of chemoresistance to cisplatin in cancer cells.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
50
|
Zhao J, Zhou K, Ma L, Zhang H. MicroRNA-145 overexpression inhibits neuroblastoma tumorigenesis in vitro and in vivo. Bioengineered 2020; 11:219-228. [PMID: 32083506 PMCID: PMC7039631 DOI: 10.1080/21655979.2020.1729928] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma (NB) is responsible for 15% of all childhood cancer deaths. Despite advances in treatment and disease management, the overall 5-year survival rates remain poor in high-risk disease (25-40%). It is well known that miR-145 functions as a tumor suppressor in several types of cancer. However, the impact of miR-145 on NB is still ambiguous. Our aim was to investigate the potential tumor suppressive role and mechanisms of miR-145 in high-risk neuroblastoma. Expression levels of miR-145 in tissues and cells were determined using RT-qPCR. The effect of miR-145 on cell viability was evaluated using MTT assays, apoptosis levels were determined using TUNEL staining, and the MTDH protein expression was determined using western blot and RT-PCR. Luciferase reporter plasmids were constructed to confirm direct targeting for MTDH. The results showed that miR-145 expression was significantly lower in high-risk MYCN amplified (MNA) tumors and low miR-145 expression was associated with worse EFS and OS in our cohort. Over-expression of miR-145 reduced cell viability and increased apoptosis in SH-SY-5Y cells. We identified MTDH as a direct target for miR-145 in SH-SY-5Y cells. Targeting MTDH has the similar results as miR-145 overexpression. Our findings suggest that low miR-145 expression was associated with poor prognosis in patients with NB, and the overexpression of miR-145 inhibited NB cells growth by down-regulating MTDH, thus providing a potential target for the development of microRNA-based approach for NB therapy.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Kai Zhou
- Urology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Liang Ma
- Child Health Division, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huanyu Zhang
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|