1
|
Gao J, Cheng S, Sun X, Bai Y, Yu X, Zeng X, Hu S, Zhang M, Yue J, Xu X, Han M. Combination of contact ultrasound and infrared radiation for improving the quality and flavor of air-dried beef during hot air drying. ULTRASONICS SONOCHEMISTRY 2024; 110:107047. [PMID: 39208591 PMCID: PMC11401203 DOI: 10.1016/j.ultsonch.2024.107047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/18/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Air-dried beef, a traditional dry fermented meat product in China, whose quality is largely influenced by processing conditions. In this study, contact ultrasound (CU) and infrared radiation (IR) were employed to enhance hot air drying (HAD), with an investigation into the mechanisms underlying improvements in quality and flavor. Samples subjected to CU and IR treatments during HAD (CU-IRD) demonstrated superior color (L* = 42.68, a* = 5.05, b* = -3.86) and tenderness (140.59 N) than HAD group, primarily attributed to reduced drying times and alterations in ultrastructure. Analyses utilizing SDS-PAGE and total volatile basic nitrogen (TVB-N) revealed that HAD and CU-HAD resulted in significant protein oxidation (197.85 mg TVB-N/kg and 202.23 mg TVB-N/kg, respectively), while IR treatments were associated with increased thermal degradation of proteins, producing lower molecular weight peptides. Compared with HAD group, the activities of certain lipases and proteases were enhanced by ultrasound and infrared treatments, leading to the release of greater amounts of free fatty acids and flavor amino acids. Furthermore, the thermal effects of infrared and the cavitation effects of ultrasound contributed to increased fat oxidation, amino acid Strecker degradation, and esterification reactions, thereby augmenting the diversity and concentration of volatile flavor compounds, including alkanes, ketones, aldehydes, and esters. These findings indicate that the synergistic application of CU and IR represents a promising strategy for enhancing the quality of air-dried beef.
Collapse
Affiliation(s)
- Jiahua Gao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Siyu Cheng
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomei Sun
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Bai
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaobo Yu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianming Zeng
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Songmei Hu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Minwei Zhang
- Guangdong Testing Institute of Product Quality Supervision, Shunde 528300, China
| | - Jianping Yue
- Emin County Xinda Tongchuang Bioengineering Co., Ltd., Tacheng 834600, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Minyi Han
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; Wens Foodstuff Group Co., Ltd., Yunfu 527400, China.
| |
Collapse
|
2
|
Jia R, Yang Y, Liao G, Yang Y, Gu D, Wang G. Effect of Stewing Time on the Small Molecular Metabolites, Free Fatty Acids, and Volatile Flavor Compounds in Chicken Broth. Food Sci Anim Resour 2024; 44:651-661. [PMID: 38765279 PMCID: PMC11097019 DOI: 10.5851/kosfa.2024.e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 05/21/2024] Open
Abstract
Chicken broth has a taste of umami, and the stewing time has an important effect on the quality of chicken broth, but there are fewer studies on the control of the stewing time. Based on this, the study was conducted to analyze the effects of different stewing times on the sensory, small molecular metabolites, free fatty acids, and volatile flavor compounds contents in chicken broths by liquid chromatography-quadrupole/time-of-flight mass spectrometry, gas chromatography-mass spectrometry, headspace solid-phase microextraction, and gas chromatography-mass spectrometry. Eighty-nine small molecular metabolites, 15 free fatty acids, and 86 volatile flavor compounds were detected. Palmitic and stearic acids were the more abundant fatty acids, and aldehydes were the main volatile flavor compounds. The study found that chicken broth had the best sensory evaluation, the highest content of taste components, and the richest content of volatile flavor components when the stewing time was 2.5 h. This study investigated the effect of stewing time on the quality of chicken broth to provide scientific and theoretical guidance for developing and utilizing local chicken.
Collapse
Affiliation(s)
- Rong Jia
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yucai Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guozhou Liao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yuan Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Dahai Gu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guiying Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Jia R, Xun W, Liao G, Yang Y, Wang G. Comparison of the Fatty Acid Composition and Small Molecular Metabolites between Yanjin Blackbone Chicken and Piao Chicken Meat. Food Sci Anim Resour 2023; 43:975-988. [PMID: 37969319 PMCID: PMC10636213 DOI: 10.5851/kosfa.2023.e53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 11/17/2023] Open
Abstract
The fatty acid composition and small molecular metabolites in breast and leg meat of Yanjin blackbone chickens (YBC) and Piao chickens (PC) were detected by gas chromatography-mass spectrometry and liquid chromatography-quadrupole static field orbital trap mass spectrometry. Thirty-two fatty acids were detected, and the total fatty acid content of PC was significantly higher than that of YBC (p<0.05). Oleic acid, linoleic acid, palmitic acid, stearic acid, and arachidonic acid were the main fatty acids in the two chicken varieties, and the composition of fatty acids in the two varieties were mainly unsaturated fatty acids, being more than 61.10% of the total fatty acids. Meanwhile, 12 and 16 compounds were screened out from chicken legs and chicken breasts of YBC and PC, respectively, which had important contributions to the differences between groups.
Collapse
Affiliation(s)
- Rong Jia
- College of Food Science and Technology,
Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and
Engineering Technology Research Center of Yunnan Province, Yunnan
Agricultural University, Kunming 650201, China
| | - Wen Xun
- College of Food Science and Technology,
Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and
Engineering Technology Research Center of Yunnan Province, Yunnan
Agricultural University, Kunming 650201, China
| | - Guozhou Liao
- Livestock Product Processing and
Engineering Technology Research Center of Yunnan Province, Yunnan
Agricultural University, Kunming 650201, China
| | - Yuan Yang
- College of Food Science and Technology,
Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and
Engineering Technology Research Center of Yunnan Province, Yunnan
Agricultural University, Kunming 650201, China
| | - Guiying Wang
- College of Food Science and Technology,
Yunnan Agricultural University, Kunming 650201, China
- Livestock Product Processing and
Engineering Technology Research Center of Yunnan Province, Yunnan
Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Kuang G, Wang Z, Luo X, Geng Z, Cui J, Bilal M, Wang Z, Jia S. Immobilization of lipase on hydrophobic MOF synthesized simultaneously with oleic acid and application in hydrolysis of natural oils for improving unsaturated fatty acid production. Int J Biol Macromol 2023; 242:124807. [PMID: 37178887 DOI: 10.1016/j.ijbiomac.2023.124807] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/29/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
The hydrolysis of natural oils (vegetable oils and fats) by lipase has significant applications in food and medicine. However, free lipases are usually sensitive to temperature, pH and chemical reagents in aqueous solutions, which hinders their widespread industrial application. Excitingly, immobilized lipases have been widely reported to overcome these problems. Herein, inspired by lipase interface activation, a hydrophobic Zr-MOF (UiO-66-NH2-OA) with oleic acid was synthesized for the first time in an emulsion consisting of oleic acid and water, and the Aspergillus oryzae lipase (AOL) was immobilized onto the UiO-66-NH2-OA through hydrophobic interaction and electrostatic interaction to obtain immobilized lipase (AOL/UiO-66-NH2-OA). 1H NMR and FT-IR data indicated that oleic acid was conjugated with the 2-amino-1,4-benzene dicarboxylate (BDC-NH2) by amidation reaction. As a result, the Vmax and Kcat values of AOL/UiO-66-NH2-OA were 179.61 μM﹒min-1 and 8.27 s-1, which were 8.56 and 12.92 times higher than those of the free enzyme, respectively, due to the interfacial activation. After treated at 70 °C for 120 min, the immobilized lipase maintained 52 % of its original activity, but free AOL only retained 15 %. Significantly, the yield of fatty acids by the immobilized lipase reached 98.3 % and still exceeded 82 % after seven times of recycling.
Collapse
Affiliation(s)
- Geling Kuang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No 29, 13(th), Avenue, Tianjin 300457, PR China
| | - Zichen Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No 29, 13(th), Avenue, Tianjin 300457, PR China
| | - Xiuyan Luo
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No 29, 13(th), Avenue, Tianjin 300457, PR China
| | - Zixin Geng
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No 29, 13(th), Avenue, Tianjin 300457, PR China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No 29, 13(th), Avenue, Tianjin 300457, PR China.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland
| | - Ziyuan Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No 29, 13(th), Avenue, Tianjin 300457, PR China.
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), No 29, 13(th), Avenue, Tianjin 300457, PR China
| |
Collapse
|
5
|
Iversen JF, Bohr SSR, Pinholt HD, Moses ME, Iversen L, Christensen SM, Hatzakis NS, Zhang M. Single-Particle Tracking of Thermomyces lanuginosus Lipase Reveals How Mutations in the Lid Region Remodel Its Diffusion. Biomolecules 2023; 13:biom13040631. [PMID: 37189378 DOI: 10.3390/biom13040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The function of most lipases is controlled by the lid, which undergoes conformational changes at a water–lipid interface to expose the active site, thus activating catalysis. Understanding how lid mutations affect lipases’ function is important for designing improved variants. Lipases’ function has been found to correlate with their diffusion on the substrate surface. Here, we used single-particle tracking (SPT), a powerful tool for deciphering enzymes’ diffusional behavior, to study Thermomyces lanuginosus lipase (TLL) variants with different lid structures in a laundry-like application condition. Thousands of parallelized recorded trajectories and hidden Markov modeling (HMM) analysis allowed us to extract three interconverting diffusional states and quantify their abundance, microscopic transition rates, and the energy barriers for sampling them. Combining those findings with ensemble measurements, we determined that the overall activity variation in the application condition is dependent on surface binding and lipase mobility when bound. Specifically, the L4 variant with a TLL-like lid and wild-type (WT) TLL displayed similar ensemble activity, but WT bound stronger to the surface than L4, while L4 had a higher diffusion coefficient and thus activity when bound to the surface. These mechanistic elements can only be de-convoluted by our combined assays. Our findings offer fresh perspectives on the development of the next iteration of enzyme-based detergent.
Collapse
Affiliation(s)
- Josephine F. Iversen
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Søren S.-R. Bohr
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Henrik D. Pinholt
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | - Nikos S. Hatzakis
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Min Zhang
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Ain Syaqirah Sapian N, Aidilfitri Mohamad Roslan M, Mohd Hashim A, Nasir Mohd Desa M, Halim M, Noorzianna Abdul Manaf Y, Wasoh H. Differentiation of lard from other animal fats based on n-Alkane profiles using chemometric analysis. Food Res Int 2023; 164:112332. [PMID: 36737925 DOI: 10.1016/j.foodres.2022.112332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Adulteration of lard with other fats and oils in food production affects many areas including economics, religion, and health. Previous studies discriminated lard based on major components of fats, i.e. triglycerides and fatty acids. This study aimed to differentiate lard and other animal fats (beef, chicken and mutton fat) based on n-alkane profiles established by gas chromatography-mass spectrometry (GC-MS). Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA) were able to initiate clustering of lard and other animal fats. Good result was obtained using Random Forest (RF) and Partial Least Squares-Discriminant Analysis (PLS-DA). Statistical models propose tetracosane (C24) as a potential n-alkane marker and it was found that C24 was the major alkane with composition of 15.72% (GC-MS) of total alkanes identified. Based on this finding, more interesting study may potentially be explored for the interest of various fats and oils consumers in vast applications especially using chemometrics analysis.
Collapse
Affiliation(s)
- Nur Ain Syaqirah Sapian
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Muhamad Aidilfitri Mohamad Roslan
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Nasir Mohd Desa
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Murni Halim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yanty Noorzianna Abdul Manaf
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Helmi Wasoh
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Mojtabavi S, Hervé M, Forootanfar H, Jafari-Nodoushan H, Sharifian G, Samadi N, Ameri A, Faramarzi MA. A survey on the stabilizing effect of osmolytes on the ultrasound-irradiated lipase for efficient enzymatic hydrolysis of coconut oil. Colloids Surf B Biointerfaces 2022; 220:112910. [DOI: 10.1016/j.colsurfb.2022.112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/18/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022]
|
8
|
Carballares D, Rocha-Martin J, Fernandez-Lafuente R. Chemical amination of immobilized enzymes for enzyme coimmobilization: Reuse of the most stable immobilized and modified enzyme. Int J Biol Macromol 2022; 208:688-697. [PMID: 35358572 DOI: 10.1016/j.ijbiomac.2022.03.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
Although Lecitase and the lipase from Thermomyces lanuginosus (TLL) could be coimmobilized on octyl-agarose, the stability of Lecitase was lower than that of TLL causing the user to discard active immobilized TLL when Lecitase was inactivated. Here, we propose the chemical amination of immobilized TLL to ionically exchange Lecitase on immobilized TLL, which should be released to the medium after its inactivation by incubation at high ionic strength. Using conditions where Lecitase was only adsorbed on immobilized TLL after its amination, the combibiocatalyst was produced. Unfortunately, the release of Lecitase was not possible using just high ionic strength solutions, and if detergent was added, TLL was also released from the support. This occurred when using 0.25 M ammonium sulfate, Lecitase did not immobilize on aminated TLL. That makes the use octyl-vinylsulfone supports necessary to irreversibly immobilize TLL, and after blocking with ethylendiamine, the immobilized TLL was aminated. Lecitase immobilized and released from this biocatalyst using 0.25 M ammonium sulfate and 0.1% Triton X-100. That way, a coimmobilized TLL and Lecitase biocatalyst could be produced, and after Lecitase inactivation, it could be released and the immobilized, aminated, and fully active TLL could be utilized to build a new combibiocatalyst.
Collapse
Affiliation(s)
- Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
9
|
Enzymatic Hydrolysis of Waste Cooking Oil by Lipase Catalysis: Simplex Mixture Design Optimization. Catal Letters 2022. [DOI: 10.1007/s10562-022-04025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Xin G, Yang J, Li R, Gao Q, Li R, Wang J, Zhang J, Wang J. Dietary supplementation of hemp oil in teddy dogs: Effect on apparent nutrient digestibility, blood biochemistry and metabolomics. Bioengineered 2022; 13:6173-6187. [PMID: 35200081 PMCID: PMC8974180 DOI: 10.1080/21655979.2022.2043018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Present study aimed to evaluate the influence of distinct concentration of dietary supplements hemp oil on apparent nutrient digestibility, blood biochemical parameters and metabolomics of teddy dogs. A total of 25 healthy teddy dogs were selected and divided into five treatments according to diet supplements hemp oil at a rate of 0% (A), 0.5% (B), 1% (C), 2% (D), and 4% (E). Appropriate added hemp oil improved apparent nutrient digestibility of dry matter, crude protein and crude fat (86.32–88.08%, 86.87–88.87% and 96.76–97.43%). The hemp oil significantly increased blood biochemical of utilization related total protein, albumin and globulin (61.33–69.54, 35.08–40.38 and 26.53–31.63 g/L), immunity capacity related immunoglobulin E and γ-interferon (203–347kU/L and 23.04–25.78ng/L), energy-related thyroxine and triiodothyronine (27.11–36.75 and 0.94–1.67 nmol/L). In addition, hemp oil improved superoxide dismutation (26.47–33.02 U/ml) and reduced malondialdehyde (5.30–3.28 nmol/ml). The differential metabolites mainly included nucleotides and metabolites of oxidized lipids, bile and other fatty acids, coenzymes and vitamins. The main metabolic pathways included purine and arachidonic acid metabolism, bile and unsaturated fatty acid biosynthesis, cell oxidative phosphorylation and rheumatoid arthritis. Overall, appropriate dietary supplements hemp oil positively to nutrient digestibility and blood metabolism, immunity and antioxidant capacity, 1% to 2% hemp oil supplements was recommended for teddy dog diet.
Collapse
Affiliation(s)
- Guosheng Xin
- School of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous, China.,Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, Ningxia Hui Autonomous, China
| | - Jie Yang
- School of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous, China.,Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, Ningxia Hui Autonomous, China
| | - Ruiguo Li
- School of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous, China.,Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, Ningxia Hui Autonomous, China
| | - Qiaoxian Gao
- School of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous, China.,Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, Ningxia Hui Autonomous, China
| | - Ronglin Li
- Petpal Pet Nutrition Technology Co., Ltd, Hangzhou, Zhejiang province, China
| | - Jianguo Wang
- Petpal Pet Nutrition Technology Co., Ltd, Hangzhou, Zhejiang province, China
| | - Juan Zhang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Jing Wang
- Ningxia Hiby Analysis & Testing Institute, Yinchuan, Ningxia Hui Autonomous, China
| |
Collapse
|
11
|
Recent Advances in the Application of Enzyme Processing Assisted by Ultrasound in Agri-Foods: A Review. Catalysts 2022. [DOI: 10.3390/catal12010107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The intensification of processes is essential for the sustainability of the biorefinery concept. Enzyme catalysis assisted by ultrasound (US) may offer interesting opportunities in the agri-food sector because the cavitation effect provided by this technology has been shown to improve the efficiency of the biocatalysts. This review presents the recent advances in this field, focused on three main applications: ultrasound-assisted enzymatic extractions (UAEE), US hydrolysis reactions, and synthesis reactions assisted by US for the manufacturing of agri-food produce and ingredients, enabling the upgrading of agro-industrial waste. Some theoretical and experimental aspects of US that must be considered are also reviewed. Ultrasonic intensity (UI) is the main parameter affecting the catalytic activity of enzymes, but a lack of standardization for its quantification makes it unsuitable to properly compare results. Applications of enzyme catalysis assisted by US in agri-foods have been mostly concentrated in UAEE of bioactive compounds. In second place, US hydrolysis reactions have been applied for juice and beverage manufacturing, with some interesting applications for producing bioactive peptides. In last place, a few efforts have been performed regarding synthesis reactions, mainly through trans and esterification to produce structured lipids and sugar esters, while incipient applications for the synthesis of oligosaccharides show promising results. In most cases, US has improved the reaction yield, but much information is lacking on how different sonication conditions affect kinetic parameters. Future research should be performed under a multidisciplinary approach for better comprehension of a very complex phenomenon that occurs in very short time periods.
Collapse
|
12
|
Hydrolysis of vegetable and microbial oils catalyzed by a solid preparation of castor bean lipase. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Filipe HAL, Almeida MCF, Teixeira RR, Esteves MIM, Henriques CA, Antunes FE. Dancing with oils - the interaction of lipases with different oil/water interfaces. SOFT MATTER 2021; 17:7086-7098. [PMID: 34155497 DOI: 10.1039/d1sm00590a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of enzymes as biocatalysts in industrial applications has received much attention during the last few years. Lipases are widely employed in the food and cosmetic industry, for the synthesis of novel biomaterials and as a greener solution for the treatment of waste cooking oils (WCO). The latter topic has been widely explored with the use of enzymes from several origins and types, for the treatment of different used and non-used cooking oils. The experimental conditions of such works are also quite broad, hampering the detailed understanding of the process. In this work we present a detailed characterization of the interaction of several commonly used lipases with different types of vegetal oils and food fats through coarse-grained molecular dynamics simulations. First, the molecular details of the oil/water (O/W) mixtures, namely at the O/W interface, are described. The O/W interface was found to be enriched in triglyceride molecules with higher polarity. Then, the interaction of lipases with oil mixtures is characterized from different perspectives, including the identification of the most important protein residues for this process. The lipases from Thermomyces lanuginosus (TLL), Rhizomucor miehei (RML) and Candida antarctica (CALB) were found to bind to the O/W interface in a manner that makes the protein binding site more available for the oil molecules. These enzymes were also found to efficiently bind to the O/W interface of all oil mixtures, which in addition to reactivity factors, may explain the efficient applicability of these enzymes to a large variety of edible oils and WCO.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - Maëva C F Almeida
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - Rafaela R Teixeira
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - Margarida I M Esteves
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - César A Henriques
- EcoXperience, HIESE, Quinta Vale do Espinhal, 3230-343, Penela, Portugal
| | - Filipe E Antunes
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| |
Collapse
|
14
|
Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 2020; 19:169. [PMID: 32847584 PMCID: PMC7449042 DOI: 10.1186/s12934-020-01428-8] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Lipases are very versatile enzymes, and produced the attention of the several industrial processes. Lipase can be achieved from several sources, animal, vegetable, and microbiological. The uses of microbial lipase market is estimated to be USD 425.0 Million in 2018 and it is projected to reach USD 590.2 Million by 2023, growing at a CAGR of 6.8% from 2018. Microbial lipases (EC 3.1.1.3) catalyze the hydrolysis of long chain triglycerides. The microbial origins of lipase enzymes are logically dynamic and proficient also have an extensive range of industrial uses with the manufacturing of altered molecules. The unique lipase (triacylglycerol acyl hydrolase) enzymes catalyzed the hydrolysis, esterification and alcoholysis reactions. Immobilization has made the use of microbial lipases accomplish its best performance and hence suitable for several reactions and need to enhance aroma to the immobilization processes. Immobilized enzymes depend on the immobilization technique and the carrier type. The choice of the carrier concerns usually the biocompatibility, chemical and thermal stability, and insolubility under reaction conditions, capability of easy rejuvenation and reusability, as well as cost proficiency. Bacillus spp., Achromobacter spp., Alcaligenes spp., Arthrobacter spp., Pseudomonos spp., of bacteria and Penicillium spp., Fusarium spp., Aspergillus spp., of fungi are screened large scale for lipase production. Lipases as multipurpose biological catalyst has given a favorable vision in meeting the needs for several industries such as biodiesel, foods and drinks, leather, textile, detergents, pharmaceuticals and medicals. This review represents a discussion on microbial sources of lipases, immobilization methods increased productivity at market profitability and reduce logistical liability on the environment and user.
Collapse
Affiliation(s)
- Prem Chandra
- Food Microbiology & Toxicology, Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh 226025 India
| | - Enespa
- Department of Plant Pathology, School for Agriculture, SMPDC, University of Lucknow, Lucknow, 226007 U.P. India
| | - Ranjan Singh
- Department of Environmental Science, School for Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| | - Pankaj Kumar Arora
- Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| |
Collapse
|
15
|
One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. Catalysts 2020. [DOI: 10.3390/catal10060605] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipases are among the most utilized enzymes in biocatalysis. In many instances, the main reason for their use is their high specificity or selectivity. However, when full modification of a multifunctional and heterogeneous substrate is pursued, enzyme selectivity and specificity become a problem. This is the case of hydrolysis of oils and fats to produce free fatty acids or their alcoholysis to produce biodiesel, which can be considered cascade reactions. In these cases, to the original heterogeneity of the substrate, the presence of intermediate products, such as diglycerides or monoglycerides, can be an additional drawback. Using these heterogeneous substrates, enzyme specificity can promote that some substrates (initial substrates or intermediate products) may not be recognized as such (in the worst case scenario they may be acting as inhibitors) by the enzyme, causing yields and reaction rates to drop. To solve this situation, a mixture of lipases with different specificity, selectivity and differently affected by the reaction conditions can offer much better results than the use of a single lipase exhibiting a very high initial activity or even the best global reaction course. This mixture of lipases from different sources has been called “combilipases” and is becoming increasingly popular. They include the use of liquid lipase formulations or immobilized lipases. In some instances, the lipases have been coimmobilized. Some discussion is offered regarding the problems that this coimmobilization may give rise to, and some strategies to solve some of these problems are proposed. The use of combilipases in the future may be extended to other processes and enzymes.
Collapse
|