1
|
Zhao L, Biswas S, Li Y, Sooranna SR. The emerging roles of LINC00511 in breast cancer development and therapy. Front Oncol 2024; 14:1429262. [PMID: 39206156 PMCID: PMC11349568 DOI: 10.3389/fonc.2024.1429262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer (BC) is associated with malignant tumors in women worldwide with persistently high incidence and mortality rates. The traditional therapies including surgery, chemotherapy, radiotherapy and targeted therapy have certain therapeutic effects on BC patients, but acquired drug resistance can lead to tumor recurrence and metastasis. This remains a clinical challenge that is difficult to solve during treatment. Therefore, continued research is needed to identify effective targets and treatment methods, to ultimately implement personalized treatment strategies. Several studies have implicated that the long non-coding RNA LINC00511 is closely linked to the occurrence, development and drug resistance of BC. Here we will review the structure and the mechanisms of action of lnc RNA LINC00511 in various cancers, and then explore its expression and its related regulatory mechanisms during BC. In addition, we will discuss the biological functions and the potential clinical applications of LINC00511 in BC.
Collapse
Affiliation(s)
- Lifeng Zhao
- Department of Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Faculty of Medicine, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Sangita Biswas
- Department of Preclinical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Yepeng Li
- Department of Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
- Life Science and Clinical Research Center, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
2
|
Javadi M, Sazegar H, Doosti A. Genome editing approaches with CRISPR/Cas9: the association of NOX4 expression in breast cancer patients and effectiveness evaluation of different strategies of CRISPR/Cas9 to knockout Nox4 in cancer cells. BMC Cancer 2023; 23:1155. [PMID: 38012557 PMCID: PMC10683234 DOI: 10.1186/s12885-023-11183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/16/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The increasing prevalence of cancer detection necessitated practical strategies to deliver highly accurate, beneficial, and dependable processed information together with experimental results. We deleted the cancer biomarker NOX4 using three novel genetic knockout (KO) methods. Homology-directed repair (HDR), Dual allele HITI (Du-HITI) and CRISPR-excision were utilized in this study. METHODS The predictive value of the NOX4 expression profile was assessed using a combined hazard ratio (HR) with a 95% confidence interval (CI). With a 95% confidence interval, a pooled odd ratio (OR) was used to calculate the relationship between NOX4 expression patterns and cancer metastasis. There were 1060 tumor patients in all sixteen research that made up this meta-analysis. To stop the NOX4 from being transcribed, we employed three different CRISPR/Cas9-mediated knockdown methods. The expression of RNA was assessed using RT-PCR. We employed the CCK-8 assay, colony formation assays, and the invasion transwell test for our experiments measuring cell proliferation and invasion. Using a sphere-formation test, the stemness was determined. Luciferase reporter tests were carried out to verify molecular adhesion. Utilizing RT-qPCR, MTT, and a colony formation assay, the functional effects of NOX4 genetic mutation in CRISPR-excision, CRISPR-HDR, and CRISPR du-HITI knockdown cell lines of breast cancer were verified. RESULTS There were 1060 malignant tumors in the 16 studies that made up this meta-analysis. In the meta-analysis, higher NOX4 expression was linked to both a shorter overall survival rate (HR = 1.93, 95% CI 1.49-2.49, P < 0.001) and a higher percentage of lymph node metastases (OR = 3.22, 95% CI 2.18-4.29, P < 0.001). In breast carcinoma cells, it was discovered that NOX4 was overexpressed, and this increase was linked to a poor prognosis. The gain and loss-of-function assays showed enhanced NOX4 breast carcinoma cell proliferation, sphere-forming capacity, and tumor development. To activate transcription, the transcriptional factor E2F1 also attaches to the promoter region of the Nanog gene. The treatment group (NOX4 ablation) had substantially more significant levels of proapoptotic gene expression than the control group (P < 0.01). Additionally, compared to control cells, mutant cells expressed fewer antiapoptotic genes (P < 0.001). The du-HITI technique incorporated a reporter and a transcription termination marker into the two target alleles. Both donor vector preparation and cell selection were substantially simpler using this approach than with "CRISPR HDR" or "CRISPR excision." Furthermore, single-cell knockouts for both genotypes were created when this method was applied in the initial transfection experiment. CONCLUSIONS The NOX4 Knockout cell lines generated in this research may be used for additional analytical studies to reveal the entire spectrum of NOX4 activities. The du-HITI method described in this study was easy to employ and could produce homozygous individuals who were knockout for a specific protein of interest.
Collapse
Affiliation(s)
- Marzieh Javadi
- Department of Biology, Faculty of Science, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hossein Sazegar
- Department of Biology, Faculty of Science, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
3
|
Eldash S, Sanad EF, Nada D, Hamdy NM. The Intergenic Type LncRNA (LINC RNA) Faces in Cancer with In Silico Scope and a Directed Lens to LINC00511: A Step toward ncRNA Precision. Noncoding RNA 2023; 9:58. [PMID: 37888204 PMCID: PMC10610215 DOI: 10.3390/ncrna9050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Long intergenic non-coding RNA, is one type of lncRNA, exerting various cellular activities, as does ncRNA, including the regulation of gene expression and chromatin remodeling. The abnormal expression of lincRNAs can induce or suppress carcinogenesis. MAIN BODY LincRNAs can regulate cancer progression through different mechanisms and are considered as potential drug targets. Genetic variations such as single nucleotide polymorphisms (SNPs) in lincRNAs may affect gene expression and messenger ribonucleic acid (mRNA) stability. SNPs in lincRNAs have been found to be associated with different types of cancer, as well. Specifically, LINC00511 has been known to promote the progression of multiple malignancies such as breast cancer, colorectal cancer, lung cancer, hepatocellular carcinoma, and others, making it a promising cancer prognostic molecular marker. CONCLUSION LincRNAs have been proved to be associated with different cancer types through various pathways. Herein, we performed a comprehensive literature and in silico databases search listing lncRNAs, lincRNAs including LINC00511, lncRNAs' SNPs, as well as LINC00511 SNPs in different cancer types, focusing on their role in various cancer types and mechanism(s) of action.
Collapse
Affiliation(s)
- Shorouk Eldash
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk, Cairo 11837, Egypt; (S.E.)
| | - Eman F. Sanad
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Dina Nada
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk, Cairo 11837, Egypt; (S.E.)
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
4
|
Zhang G, Wang Z, Liu J, Feng S, Ji S, Ai D. LINC00511 promotes melanoma progression by targeting miR-610/NUCB2. Open Med (Wars) 2023; 18:20230628. [PMID: 36874361 PMCID: PMC9979001 DOI: 10.1515/med-2023-0628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 03/05/2023] Open
Abstract
Long intergenic noncoding RNA 00511 (LINC00511) predicts poor prognosis in various malignancies and functions as an oncogene in distinct malignant tumors. The role of LINC00511 in melanoma progression was assessed. In our research, expression of LINC00511 in melanoma cells was detected by quantitative reverse transcription PCR. Colony formation and CCK8 assays were used to detect cell proliferation. Cell metastasis was evaluated by transwell and wound healing assays. Downstream target of LINC00511 was investigated by luciferase activity assay. As a results, LINC00511 was elevated in melanoma cells and tissues. Loss of LINC00511 decreased cell viability, reduced proliferation, invasion, and migration of melanoma. miR-610 was target of LINC00511, and miR-610 binds to 3'UTR of nucleobindin-2 (NUCB2). Inhibition of miR-610 attenuated LINC00511 deficiency-induced decrease of NUCB2 in melanoma cells. Loss of miR-610 weakened LINC00511 deficiency-induced decrease of cell viability, proliferation, invasion, and migration of melanoma. In conclusion, silence of LINC00511 reduced cell proliferation and metastasis of melanoma through down-regulation of miR-610-mediated NUCB2.
Collapse
Affiliation(s)
- Guangjing Zhang
- Department of Dermatology, Hebei Province Cangzhou Central Hospital, Hebei, 061001, China
| | - Zhengxiang Wang
- Department of Dermatology, Hebei Province Cangzhou Central Hospital, Hebei, 061001, China
| | - Jie Liu
- Department of Dermatology, Hebei Province Cangzhou Central Hospital, Hebei, 061001, China
| | - Shijun Feng
- Department of Dermatology, Hebei Province Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, Hebei, 061001, China
| | - Shanshan Ji
- Department of Dermatology, Hebei Province Cangzhou Central Hospital, Hebei, 061001, China
| | - Dongfang Ai
- Department of Dermatology, Hebei Province Cangzhou Central Hospital, Hebei, 061001, China
| |
Collapse
|
5
|
Metformin Treatment Modulates Long Non-Coding RNA Isoforms Expression in Human Cells. Noncoding RNA 2022; 8:ncrna8050068. [PMID: 36287120 PMCID: PMC9607547 DOI: 10.3390/ncrna8050068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) undergo splicing and have multiple transcribed isoforms. Nevertheless, for lncRNAs, as well as for mRNA, measurements of expression are routinely performed only at the gene level. Metformin is the first-line oral therapy for type 2 diabetes mellitus and other metabolic diseases. However, its mechanism of action remains not thoroughly explained. Transcriptomic analyses using metformin in different cell types reveal that only protein-coding genes are considered. We aimed to characterize lncRNA isoforms that were differentially affected by metformin treatment on multiple human cell types (three cancer, two non-cancer) and to provide insights into the lncRNA regulation by this drug. We selected six series to perform a differential expression (DE) isoform analysis. We also inferred the biological roles for lncRNA DE isoforms using in silico tools. We found the same isoform of an lncRNA (AC016831.6-205) highly expressed in all six metformin series, which has a second exon putatively coding for a peptide with relevance to the drug action. Moreover, the other two lncRNA isoforms (ZBED5-AS1-207 and AC125807.2-201) may also behave as cis-regulatory elements to the expression of transcripts in their vicinity. Our results strongly reinforce the importance of considering DE isoforms of lncRNA for understanding metformin mechanisms at the molecular level.
Collapse
|
6
|
Li C, Li Z, Yi H, Liu Z. Effect of lncRNA00511 on Non-Small Cell Lung Cancer by Regulating miR-29b-3p. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assessed the effect of LINC00511 on NSCLC cells through regulating miR-29b-3p/DRAM1 axis. LINC00511 expression in NSCLC tissue and para-carcinoma tissue was analyzed and its correlation with TNM stage was assessed. Lung carcinoma cells as A549 cells were cultivated in
vitro and transfected with LINC00511 siRNA or plasmid with DRAM1 overexpression followed by analysis of LINC00511 and miR-184 expression by RT-PCR, cell proliferation and invasion, Bcl-2, Bax and DRAM1 expression by Western Blot. LINC00511 was significantly upregulated in NSCLC tissue
and positively correlated with the TNM staging. However, miR-29b-3p was significantly downregulated in NSCLC tissue. The miR-29b-3p was a target of LINC00511. The DRAM1 was a target of miR-29b-3p. Downregulation of LINC00511 restrained proliferation and invasion of A549 cells and promoted
cell apoptosis. The development of NSCLC could be prompted by increasing the presentation of LINC00511 through increasing presentation of DRAM1 and being targeted with miR-29b-3p. It could be restrained through reducing the presentation of LINC00511.
Collapse
Affiliation(s)
- Chunlin Li
- Department of Thoracic Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia Autonomous Region, 010000, P. R. China
| | - Zhenyu Li
- Department of Thoracic Surgery, Inner Mongolia Armed Police Hospital, Hohhot, Inner Mongolia, 010000, China
| | - Hua Yi
- Department of Pathology Department, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010000, China
| | - Zhidong Liu
- Department of Thoracic Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia Autonomous Region, 010000, P. R. China
| |
Collapse
|
7
|
Pan T, Wang H, Wang S, Liu F. Long Non-Coding RNA LINC01929 Facilitates Cell Proliferation and Metastasis as a Competing Endogenous RNA Against MicroRNA miR-1179 in Non-Small Cell Lung Carcinoma. Br J Biomed Sci 2022; 79:10598. [PMID: 35996496 PMCID: PMC9329516 DOI: 10.3389/bjbs.2022.10598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022]
Abstract
Introduction: Non-small cell lung carcinoma (NSCLC) constitutes most lung cancers and has a poor prognosis. LncRNAs are a potential repository for the discovery of cancer prognostic markers. This study explored the role of LINC01929 in NSCLC, both the clinical prognostic significance and the mechanism of its influence on cells. Materials and Methods: LINC01929 levels in 143 pairs of NSCLC tissues and non-cancerous tissues were detected by RT-qPCR. Kaplan-Meier curves and multivariate Cox regression assays were generated for evaluating the prognostic values of LINC01929. To evaluate the cellular function, an XTT assay and transwell invasion assays were performed. Results: LINC01929 was up-regulated in NSCLC tissues compared with healthy tissues. A positive correlation was observed between LINC01929 expression level and tumor T (p = 0.002) or N stage (p = 0.010). Patients with higher LINC01929 levels had shorter overall survival (p = 0.009). Compared with other factors, high LINC01929 expression was significantly associated with poor survival in univariate Cox analysis (HR: 2.485, 95%CI: 1.220–5.060, p = 0.012). After multivariate Cox regression assays, LINC01929 was a independent prognostic factor (HR: 3.021, 95%CI: 1.377–6.628, p = 0.006). miR-1179 was a target miRNA of LINC01929. Inhibited expression of LINC01929 significantly reduced the proliferation, migration, and invasion of NSCLC cells by targeting miR-1179. Discussion: This study revealed the upregulation of LINC01929 in NSCLC. This study supports previous studies showing LINC01929 as a potential prognostic factor for NSCLC.
Collapse
Affiliation(s)
- Tinghong Pan
- Department of Thoracic Surgery, Yidu Central Hospital of Weifang, Weifang, China
| | - Hui Wang
- Department of Thoracic Surgery, Yidu Central Hospital of Weifang, Weifang, China
| | - Shuai Wang
- Department of Thoracic Surgery, Yidu Central Hospital of Weifang, Weifang, China
| | - Feng Liu
- Department of Cardiothoracic Surgery, Zhucheng People’s Hospital, Weifang, China
- *Correspondence: Feng Liu, , orcid.org/0000-0002-3218-9173
| |
Collapse
|
8
|
Azadbakht N, Doosti A, Jami MS. CRISPR/Cas9-mediated LINC00511 knockout strategies, increased apoptosis of breast cancer cells via suppressing antiapoptotic genes. Biol Proced Online 2022; 24:8. [PMID: 35790898 PMCID: PMC9254607 DOI: 10.1186/s12575-022-00171-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/20/2022] [Indexed: 12/19/2022] Open
Abstract
Background The growing detection of long noncoding RNAs (lncRNAs) required the application of functional approaches in order to provide absolutely precise, conducive, and reliable processed information along with effective consequences. We utilized genetic knockout (KO) techniques to ablate the Long Intergenic Noncoding RNA 00,511 gene in several humans who suffered from breast cancer cells and at the end we analyzed and examined the results. Results The predictive relevance of LINC00511 expression pattern was measured by using a pooled hazard ratio (HR) with a 95% confidence interval (CI). The link among LINC00511 expression profiles and cancer metastasis was measured by using a pooled odds ratio (OR) with a 95% confidence interval. This meta- analysis was composed of fifteen studies which contained a total of 1040 tumor patients. We used three distinct CRISPR/Cas9-mediated knockdown techniques to prevent the LINC00511 lncRNA from being transcribed. RT-PCR was used to measure lncRNA and RNA expression. We used CCK-8, colony formation tests, and the invasion transwell test to measure cell proliferation and invasion. The stemness was measured by using a sphere-formation test. To validate molecular attachment, luciferase reporter assays were performed. The functional impacts of LINC00511 gene deletion in knockdown breast cancer cell lines were confirmed by using RT-qPCR, MTT, and a colony formation test. This meta-analysis was composed of 15 trials which contained a total of 1040 malignant tumors. Greater LINC00511 expression was ascribed to a lower overall survival (HR = 1.93, 95% CI 1.49–2.49, < P 0.001) and to an increased proportion of lymph node metastasis (OR = 3.07, 95% CI 2.23–4.23, P < 0.001) in the meta‐analysis. It was found that the role of LINC00511 was overexpressed in breast cancer samples, and this overexpression was ascribed to a poor prognosis. The gain and loss-of-function tests demonstrated findings such as LINC00511 increased breast cancer cell proliferation, sphere-forming ability, and tumor growth. Additionally, the transcription factor E2F1 binds to the Nanog gene's promoter site to induce transcription. P57, P21, Prkca, MDM4, Map2k6, and FADD gene expression in the treatment group (LINC00511 deletion) was significantly higher than in the control group (P < 0.01). In addition, knockout cells had lower expression of BCL2 and surviving genes than control cells P < 0.001). In each of the two target alleles, the du-HITI approach introduced a reporter and a transcription termination signal. This strategy's donor vector preparation was significantly easier than "CRISPR HDR," and cell selection was likewise much easier than "CRISPR excision." Furthermore, when this approach was used in the initial transfection attempt, single-cell knockouts for both alleles were generated. Conclusions The methods employed and described in this work could be extended to the production of LINC00511 knockout cell lines and, in theory, to the deletion of other lncRNAs to study their function. Supplementary Information The online version contains supplementary material available at 10.1186/s12575-022-00171-1.
Collapse
|
9
|
Cheng Z, Hong J, Tang N, Liu F, Gu S, Feng Z. Long non-coding RNA p53 upregulated regulator of p53 levels (PURPL) promotes the development of gastric cancer. Bioengineered 2022; 13:1359-1376. [PMID: 35012438 PMCID: PMC8805877 DOI: 10.1080/21655979.2021.2017588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gastric cancer (GC), one of the most prevalent malignancies across the world, has an increasing incidence rate. Long non-coding RNA (lncRNA) PURPL (also referred to as LINC01021) has been demonstrated to influence malignant GC behaviors and partake in other cancers. Notwithstanding, reports pertaining to the underlying mechanism of PURPL in GC haven’t been rarely seen. Presently, in-vivo and ex-vivo experiments were implemented to examine the PURPL-miR-137-ZBTB7A-PI3K-AKT-NF-κB regulatory axis in GC. Our statistics revealed that PURPL presented a high expression in GC tissues and cell lines. PURPL overexpression remarkably exacerbated colony formation, migration, and invasion and repressed apoptosis in GC cells (AGS and MNK-45). In-vivo experiments also corroborated that cell growth was boosted by PURPL up-regulation. Mechanistic investigations verified that PURPL interacted with miR-137 and lowered its profile in GC cell lines. miR-137 overexpression or ZBTB7A knockdown upended the oncogenic function mediated by PURPL. PURPL initiated the PI3K/AKT/NF-κB pathway. PI3K and NF-κB inhibition impaired the promoting impact on GC cells elicited by PURPL overexpression and contributed to PURPL down-regulation. These findings disclosed that PURPL serves as an oncogene in the context of GC via miR-137-ZBTB7A-PI3K-AKT-NF-κB axis modulation.
Collapse
Affiliation(s)
- Zhonghua Cheng
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jing Hong
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Nan Tang
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Fenghua Liu
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shuo Gu
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhen Feng
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
10
|
Chen K, Gan JX, Huang ZP, Liu J, Liu HP. Clinical significance of long noncoding RNA MNX1-AS1 in human cancers: a meta-analysis of cohort studies and bioinformatics analysis based on TCGA datasets. Bioengineered 2021; 12:875-885. [PMID: 33685348 PMCID: PMC8291812 DOI: 10.1080/21655979.2021.1888596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023] Open
Abstract
MNX1-AS1 expression has been proposed to be abnormally upregulated in multiple human malignancies and be linked with the survival outcome of patients. However, relevant conclusions were yielded based on the limited samples. Therefore, we herein implemented a meta-analysis of the published cohort studies to further decipher the relationship of MNX1-AS1 level to prognosis and clinicopathological features in various cancers. Additionally, using The Cancer Genome Atlas (TCGA) datasets we carried out a bioinformatics analysis to make a further evaluation on the prognostic value of MNX1-AS1 expression. The results of meta-analysis indicated elevated MNX1-AS1 level closely correlated with poorer overall survival (OS) (HR = 1.97, 95% CI, 1.73-2.24; P < 0.00001), and disease-free survival (DFS) (HR = 2.24, 95% CI, 1.48-3.38; P = 0.0001) in cancers, which was confirmed by the bioinformatics analysis. Besides, it was observed the upregulated MNX1-AS1 level was significantly related to invasion depth, disease stage, tumor metastasis, and differentiation. Collectively, high MNX1-AS1 level correlated with poor survival outcome and aggressive clinicopathological characteristics in various cancers, suggesting that MNX1-AS1 may be applied as a prognostic marker and even a therapeutic target. Nevertheless, more high-quality studies designed with a large sample size should be conducted to further determine the clinical role of MNX1-AS1 in specific cancer types.
Collapse
Affiliation(s)
- Kang Chen
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jian-Xin Gan
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Ze-Ping Huang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jun Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai-Peng Liu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Xiong G, Pan S, Jin J, Wang X, He R, Peng F, Li X, Wang M, Zheng J, Zhu F, Qin R. Long Noncoding Competing Endogenous RNA Networks in Pancreatic Cancer. Front Oncol 2021; 11:765216. [PMID: 34760707 PMCID: PMC8573238 DOI: 10.3389/fonc.2021.765216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant disease characterized by insidious onset, rapid progress, and poor therapeutic effects. The molecular mechanisms associated with PC initiation and progression are largely insufficient, hampering the exploitation of novel diagnostic biomarkers and development of efficient therapeutic strategies. Emerging evidence recently reveals that noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and microRNAs (miRNAs), extensively participate in PC pathogenesis. Specifically, lncRNAs can function as competing endogenous RNAs (ceRNAs), competitively sequestering miRNAs, therefore modulating the expression levels of their downstream target genes. Such complex lncRNA/miRNA/mRNA networks, namely, ceRNA networks, play crucial roles in the biological processes of PC by regulating cell growth and survival, epithelial-mesenchymal transition and metastasis, cancer stem cell maintenance, metabolism, autophagy, chemoresistance, and angiogenesis. In this review, the emerging knowledge on the lncRNA-associated ceRNA networks involved in PC initiation and progression will be summarized, and the potentials of the competitive crosstalk as diagnostic, prognostic, and therapeutic targets will be comprehensively discussed.
Collapse
Affiliation(s)
- Guangbing Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shutao Pan
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikuan Jin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Zheng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Liang S, Xie J, Wang F, Jing J, Li J. Application of three-dimensional printing technology in peripheral hip diseases. Bioengineered 2021; 12:5883-5891. [PMID: 34477478 PMCID: PMC8806600 DOI: 10.1080/21655979.2021.1967063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The incidence of peripheral hip diseases is increasing every year, and its treatment is always tricky due to the complexity of hip joint anatomy and a variety of surgical methods. This paper summarizes the application research and progress of three-dimensional (3D) printing technology in different peripheral hip diseases in recent years published by PubMed from January 2017 to July 2021 with the search terms including “3D or three-dimensional, print*, and hip*. In general, the application of 3D printing technology is mainly to print bone models of patients, make surgical plans, and simulate pre-operation, customized surgical navigation templates for precise positioning or targeted resection of tissue or bone, and customized patient-specific instruments (PSI) fully conforms to the patient’s anatomical morphology. It mainly reduces operative time, intraoperative blood loss, and improves joint function. Consequently, 3D printing technology can be customized according to the patient’s disease condition, which provides a new option for treating complex hip diseases and has excellent application and development potential.
Collapse
Affiliation(s)
- Shuai Liang
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jia Xie
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fangyuan Wang
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Juehua Jing
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Li
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
13
|
Pu Z, Ge F, Wang Y, Jiang Z, Zhu S, Qin S, Dai Q, Liu H, Hua H. Ginsenoside-Rg3 inhibits the proliferation and invasion of hepatoma carcinoma cells via regulating long non-coding RNA HOX antisense intergenic. Bioengineered 2021; 12:2398-2409. [PMID: 34130594 PMCID: PMC8806740 DOI: 10.1080/21655979.2021.1932211] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ginsenoside Rg3, a natural compound, has been reported to function as an anticancer agent for hepatoma carcinoma, while the mechanisms underlying the anticancer effects are not clear. Therefore, the objective of our study was to explore the impact of RG3 on cell migration and invasion by regulating the lncRNA HOX antisense intergenic (HOTAIR) expression involving PI3K/AKT signaling pathway. qRT-PCR was utilized to measure the mRNA expression of HOTAIR. Furthermore, HOTAIR overexpression plasmids were transfected to SMMC-7721 and SK-Hep-1 cells. Additionally, MTT assay was used to evaluate the proliferation of transfected cells. The scratch and transwell assays were used to determine the migration and invasion ability of the cell. The protein levels were determined with Western blot. lncRNA HOTAIR was overexpressed in SMMC-7721 and SK-Hep-1 cells. Ginsenoside-Rg3 reduced the level of lncRNA HOTAIR. Overexpressed lncRNA HOTAIR offset ginsenoside-Rg3 inhibited proliferation, migration and invasion of HCC cells. Furthermore, ginsenoside-Rg3 decreased the expression of p-AKT, p-PI3K, matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9), which was reversed after the treatment of HOTAIR. LncRNA HOTAIR was overexpressed in SMMC-7721 cells. Ginsenoside-Rg3 could reduce the expression of lncRNA HOTAIR, resulting in the inhibited cell proliferation, migration and invasion. Furthermore, ginsenoside-Rg3 inhibited cell proliferation and invasion ability through the PI3k/AKT pathway. Thus, ginsenoside-Rg3 might be a potential and effective treatment for HCC.
Collapse
Affiliation(s)
- Zhongjian Pu
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Fei Ge
- Department of Gastroenterology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Yajun Wang
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Ziyu Jiang
- Department of Oncology, Hospital of Integrated Traditional Chinese Medicine and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shilin Zhu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Shukui Qin
- Department of Oncology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qijun Dai
- Department of Neurology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Haiqing Hua
- Department of Oncology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Liu Y, Zhang H, Wang H, Du J, Dong P, Liu M, Lin Y. Long non-coding RNA DUXAP8 promotes the cell proliferation, migration, and invasion of papillary thyroid carcinoma via miR-223-3p mediated regulation of CXCR4. Bioengineered 2021; 12:496-506. [PMID: 33522355 PMCID: PMC8291844 DOI: 10.1080/21655979.2021.1882134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is a differentiated type of thyroid malignancy with a high incidence. Long non-coding RNA (lncRNA) DUXAP8 has been reported to participate in the proliferation, migration, and invasion of several cancer types. However, its association with PTC has not yet been reported. The current study aimed to investigate the role of DUXAP8 in PTC and revealed the underlying mechanisms. The expression of DUXAP8 was knocked down in two PTC cell lines and the effects of DUXAP8 on the PTC biological behavior were examined by cell counting kit-8 (CCK-8), wound healing, and transwell invasion assays. Luciferase reporter assay was used to detect the binding activity between miR-223-3p and DUXAP8. We found that knockdown of DUXAP8 inhibited the proliferation, migration, and invasion of PTC cells. DUXAP8 could sponge miR-223-3p through the specific binding site. CXCR4 was a target of miR-223-3p. The malignant phenotypes of the PTC cells were suppressed by the over-expression of miR-223-3p. Moreover, miR-223-3p inhibition or CXCR4 over-expression partly restored the proliferation, migration, and invasion activities of DUXAP8-downregulated PTC cells. The results evidenced that DUXAP8 acted as an oncogene in PTC, these effects seemed to partly dependent on the miR-223-3p/CXCR4 axis.
Collapse
Affiliation(s)
- Yan Liu
- Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, People's Republic of China
| | - Hejia Zhang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, People's Republic of China
| | - Hui Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, People's Republic of China
| | - Jiarui Du
- Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, People's Republic of China
| | - Peng Dong
- Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, People's Republic of China
| | - Meihan Liu
- Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, People's Republic of China
| | - Yuanqiang Lin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, People's Republic of China
| |
Collapse
|
15
|
Liu R, Kong W, Zheng S, Yu C, Yu Y, Xu Y, Ye L, Shao Y. Prognostic significance of microRNA miR-24 in cancers: a meta-analysis. Bioengineered 2021; 12:450-460. [PMID: 33550881 PMCID: PMC8291878 DOI: 10.1080/21655979.2021.1875662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The prognostic significance of miR-24 in tumors has not been determined. Therefore, we conducted a meta-analysis to systematically assess the correlation between miR-24 and its prognostic value in cancers PubMed, EMBASE, and Web of Science databases were used to search relevant articles (up to 1 October 2020). Studies that evaluated the prognostic value of miR-24 in tumors were included. The hazard ratio (HR) and odds ratio (OR) with 95% confidence intervals (CI) were used to evaluate survival outcomes and clinical characteristics. All data analyses were implemented using STATA 12.0 software. A total of 17 studies from 15 articles involving 1705 patients were collected for the meta-analysis. The pooled analysis revealed that elevated miR-24 expression was obviously associated with poor overall survival (OS) (HR = 1.66, 95% CI: 1.20-2.31). Furthermore, we also found that elevated miR-24 expression was positively correlated with tumor size (large or small) and tumor stage (III-IV vs I-II). Elevated miR-24 expression indicates poor prognosis and may be a promising prognostic marker in different cancers. Our findings needed to be verified through further investigations. [Figure: see text].
Collapse
Affiliation(s)
- Rongqiang Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong, China
| | - Weihao Kong
- Department of Emergency Surgery, Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University , Hefei, Anhui, China
| | - Shiyang Zheng
- Department of Breast Surgery, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Chenyu Yu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Yajie Yu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Yuling Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Li B, Ren Q, Ling J, Tao Z, Yang X, Li Y. Clinical relevance of neutrophil-to-lymphocyte ratio and mean platelet volume in pediatric Henoch-Schonlein Purpura: a meta-analysis. Bioengineered 2021; 12:286-295. [PMID: 33412982 PMCID: PMC8291875 DOI: 10.1080/21655979.2020.1865607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The association of neutrophil-to-lymphocyte ratio (NLR) and mean platelet volume (MPV) with the severe gastrointestinal (GI) involvement in pediatric Henoch–Schonlein Purpura (HSP) has been reported in many studies. However, the conclusions from the previous studies were controversial. Therefore, for the first time, we performed a meta-analysis to systematically evaluate the relationship of NLR and MPV to the severe GI involvements. We retrieved PubMed, EMBASE, Web of Science, and Chinese National Knowledge Infrastructure (CNKI) (up to October 2020) thoroughly to acquire eligible studies. The pooled standard mean difference (SMD) with 95% confidence interval (CI) was used to describe the correlation of NLR and MPV with the severe GI involvement. A total of 12 studies comprising 2168 patients with HSP were included in this meta-analysis. Our combined analysis showed that NLR in HSP patients with the severe GI involvement was significantly higher than that in those without the severe GI involvement (SMD = 1.37; 95% CI: 0.70–2.05; p < 0.01). In addition, a lower MPV was observed in children with severe GI involvement (SMD = −0.29; 95% CI: −0.56 – −0.01, p = 0.042). Our sensitivity analysis and publication bias evaluation indicated that our combined results were reliable. Taken together, our study suggested NLR and MPV may be used as biomarkers for predicting or diagnosing the severe GI involvement in children with HSP. Nevertheless, more homogeneous studies with a larger sample size are required to validate these findings.
Collapse
Affiliation(s)
- Bowen Li
- Department of Pediatrics, The First Hospital of Lanzhou University , Lanzhou, China
| | - Qian Ren
- Department of Gastroenterology, The First Hospital of Lanzhou University , Lanzhou, China
| | - Jizu Ling
- Department of Pediatrics, The First Hospital of Lanzhou University , Lanzhou, China
| | - Zhongbin Tao
- Department of Pediatrics, The First Hospital of Lanzhou University , Lanzhou, China
| | - Xuemei Yang
- Department of Pediatrics, The First Hospital of Lanzhou University , Lanzhou, China
| | - Yuning Li
- Department of Pediatrics, The First Hospital of Lanzhou University , Lanzhou, China
| |
Collapse
|