1
|
Li X. Recent applications of quantitative mass spectrometry in biopharmaceutical process development and manufacturing. J Pharm Biomed Anal 2023; 234:115581. [PMID: 37494866 DOI: 10.1016/j.jpba.2023.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Biopharmaceutical products have seen rapid growth over the past few decades and continue to dominate the global pharmaceutical market. Aligning with the quality by design (QbD) framework and realization, recent advances in liquid chromatography-mass spectrometry (LC-MS) instrumentation and related techniques have enhanced biopharmaceutical characterization capabilities and have supported an increased development of biopharmaceutical products. Beyond its routine qualitative characterization, the quantitative feature of LC-MS has unique applications in biopharmaceutical process development and manufacturing. This review describes the recent applications and implications of the advancement of quantitative MS methods in biopharmaceutical process development, and characterization of biopharmaceutical product, product-related variants, and process-related impurities. We also provide insights on the emerging applications of quantitative MS in the lifecycle of biopharmaceutical product development including quality control in the Good Manufacturing Practice (GMP) environment and process analytical technology (PAT) practices during process development and manufacturing. Through collaboration with instrument and software vendors and regulatory agencies, we envision broader adoption of phase-appropriate quantitative MS-based methods for the analysis of biopharmaceutical products, which in turn has the potential to enable manufacture of higher quality products for patients.
Collapse
Affiliation(s)
- Xuanwen Li
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ 07065, USA.
| |
Collapse
|
2
|
Waldenmaier HE, Gorre E, Poltash ML, Gunawardena HP, Zhai XA, Li J, Zhai B, Beil EJ, Terzo JC, Lawler R, English AM, Bern M, Mahan AD, Carlson E, Nanda H. "Lab of the Future"─Today: Fully Automated System for High-Throughput Mass Spectrometry Analysis of Biotherapeutics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37186948 DOI: 10.1021/jasms.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Here we describe a state-of-the-art, integrated, multi-instrument automated system designed to execute methods involved in mass spectrometry characterization of biotherapeutics. The system includes liquid and microplate handling robotics and utilities, integrated LC-MS, along with data analysis software, to perform sample purification, preparation, and analysis as a seamless integrated unit. The automated process begins with tip-based purification of target proteins from expression cell-line supernatants, which is initiated once the samples are loaded onto the automated system and the metadata are retrieved from our corporate data aggregation system. Subsequently, the purified protein samples are prepared for MS, including deglycosylation and reduction steps for intact and reduced mass analysis, and proteolytic digestions, desalting, and buffer exchange via centrifugation for peptide map analysis. The prepared samples are then loaded into the LC-MS instrumentation for data acquisition. The acquired raw data are initially stored on a local area network storage system that is monitored by watcher scripts that then upload the raw MS data to a network of cloud-based servers. The raw MS data are processed with the appropriately configured analysis workflows such as database search for peptide mapping or charge deconvolution for undigested proteins. The results are verified and formatted for expert curation directly in the cloud. Finally, the curated results are appended to sample metadata in the corporate data aggregation system to accompany the biotherapeutic cell lines in subsequent processes.
Collapse
Affiliation(s)
- Hans E Waldenmaier
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Elsa Gorre
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Michael L Poltash
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Harsha P Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | | | - Jing Li
- Protein Metrics LLC., Cupertino, California 95014, United States
| | - Bo Zhai
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Eric J Beil
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Joseph C Terzo
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Rose Lawler
- Protein Metrics LLC., Cupertino, California 95014, United States
| | | | - Marshall Bern
- Protein Metrics LLC., Cupertino, California 95014, United States
| | - Andrew D Mahan
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Eric Carlson
- Protein Metrics LLC., Cupertino, California 95014, United States
| | - Hirsh Nanda
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
3
|
Böttinger K, Esser-Skala W, Segl M, Herwig C, Huber CG. At-line quantitative profiling of monoclonal antibody products during bioprocessing using HPLC-MS. Anal Chim Acta 2022; 1207:339813. [DOI: 10.1016/j.aca.2022.339813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/01/2022]
|
4
|
Candish E, Dykstra A, Polozova A, Ren D, Zhang H. New Aspects in the Integration of MS Technologies in the Biopharmaceutical Industry. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.sn9080m1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decade, advances in both separations and mass spectrometry (MS) technologies have enabled new, streamlined, and data-rich approaches to monitor product quality attributes and their relationship with process parameters throughout the lifecycle of therapeutic proteins. As we enter a new decade of technology and method development, MS-based approaches utilized in the biopharmaceutical industry are evolving further. In this mini-review, we explore key developments that could inspire and improve the future of therapeutic protein development.
Collapse
|
5
|
Ding X, Peng D. Transient Global Amnesia: An Electrophysiological Disorder Based on Cortical Spreading Depression-Transient Global Amnesia Model. Front Hum Neurosci 2020; 14:602496. [PMID: 33363460 PMCID: PMC7753037 DOI: 10.3389/fnhum.2020.602496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 01/09/2023] Open
Abstract
Transient global amnesia (TGA) is a benign memory disorder with etiologies that have been debated for a long time. The prevalence of stressful events before a TGA attack makes it hard to overlook these precipitating factors, given that stress has the potential to organically effect the brain. Cortical spreading depression (CSD) was proposed as a possible cause decades ago. Being a regional phenomenon, CSD seems to affect every aspect of the micro-mechanism in maintaining the homeostasis of the central nervous system (CNS). Corresponding evidence regarding hemodynamic and morphological changes from TGA and CSD have been accumulated separately, but the resemblance between the two has not been systematically explored so far, which is surprising especially considering that CSD had been confirmed to cause secondary damage in the human brain. Thus, by deeply delving into the anatomic and electrophysiological properties of the CNS, the CSD-TGA model may render insights into the basic pathophysiology behind the façade of the enigmatic clinical presentation.
Collapse
Affiliation(s)
- Xuejiao Ding
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|