1
|
Matošić Ž, Šimunović L, Jukić T, Granić R, Meštrović S. "Examining the link between tooth agenesis and papillary thyroid cancer: is there a risk factor?" Observational study. Prog Orthod 2024; 25:12. [PMID: 38523193 PMCID: PMC10961299 DOI: 10.1186/s40510-024-00511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/14/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Mutations in one or multiple genes can lead to hypodontia and its characteristic features. Numerous studies have shown a strong genetic influence on the occurrence of hypodontia, and identified several genes, including AXIN2, EDA, FGF3, FGFR2, FGFR10, WNT10A, MSX1, and PAX9, that are directly associated with dental agenesis and carcinogenesis. The objective of this study was to investigate the occurrence and pattern of tooth agenesis, microdontia, and palatally displaced canine (PDC) in women diagnosed with papillary thyroid cancer (PTC), compared to a control group of women without any malignancy or thyroid disease. MATERIALS AND METHODS This case-control study was carried at the Department of Orthodontics, School of Dental Medicine University of Zagreb, and Department of Oncology and Nuclear Medicine Sestre Milosrdnice University Hospital Centre. The study involved a clinical examination and evaluation of dental status, panoramic X-ray analysis, and assessment of medical and family history of 116 female patients aged 20-40 with PTC, as well as 424 females in the control group who were of similar age. RESULTS The prevalence of hypodontia, microdontia, and PDC was statistically higher in women with PTC than in the control group. The prevalence rate of hypodontia was 11.3% in the experimental group and 3.5% in the control group. The experimental group showed a higher occurrence of missing upper lateral incisors, lower left central incisors, and all the third molars (except the upper left) compared to the control group. Women with PTC showed the prevalence of PDC significantly higher than the control group (3.5%, 0.7%, p = 0.002). The probability of hypodontia as a clinical finding increases 2.6 times, and microdontia occurs 7.7 times more frequently in women with PTC. CONCLUSION Our study suggests a possible link between odontogenesis and PTC. The absence of permanent teeth may increase the likelihood of PTC in women. Leveraging the age-7 orthopantomogram to identify women at high risk for PTC within a critical early detection window could significantly improve oral health outcomes and PTC prognosis through proactive interventions.
Collapse
Affiliation(s)
- Željana Matošić
- School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Šimunović
- Department of Orthodontics, School of Dental Medicine, University of Zagreb, Zagreb, Croatia.
| | - Tomislav Jukić
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Roko Granić
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, 10000, Zagreb, Croatia
| | - Senka Meštrović
- Department of Orthodontics, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Yang R, Yang N, Yin P, Xue Z, Sun F, Fan R, Liang J, Lv X, Wu S, Sun L. PCDH8 is a novel prognostic biomarker in thyroid cancer and promotes cell proliferation and viability. Funct Integr Genomics 2024; 24:35. [PMID: 38368303 PMCID: PMC10874333 DOI: 10.1007/s10142-024-01312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Protocadherin 8 (PCDH8), a calcium-dependent transmembrane protein in the protocadherin family, regulates cell adhesion and signal transduction. While some studies have provided indirect evidence that PCDH8 has cancer-promoting properties, this association is controversial. In particular, its involvement in thyroid cancer (THCA) remains unclear. We aimed to elucidate the role of PCDH8 in THCA using bioinformatic analysis. Subsequently, the results were experimentally validated. The analysis conducted using the R programming language and online web tools explored PCDH8 expression levels, prognostic, and clinical implications, and its relationship with the tumor immune microenvironment in THCA. Furthermore, we examined the association between PCDH8 and co-expressed genes, highlighting their involvement in several biological processes relevant to THCA. The potential of PCDH8 as a therapeutic target for this pathology was also explored. Immunohistochemical (IHC) staining was performed on samples from 98 patients with THCA, and experimental validation was carried out. PCDH8 was significantly elevated in cancer tissues and associated with poor prognosis, several clinical factors, and immune cell and checkpoint abundance. Cox regression and survival analyses, together with Receiver Operating Curves (ROC) indicated that PCDH8 was an independent prognostic factor for THCA. Furthermore, PCDH8 impacts cell viability and proliferation, promoting tumorigenesis. Also, it influences tumor cell sensitivity to various drugs. Thus, PCDH8 might be a potential therapeutic target for THCA. IHC, cell culture, MTT, and colony formation experiments further confirmed our findings. This analysis provided insights into the potential carcinogenic role of PCDH8 in THCA, as it impacts cell viability and proliferation. Thus, PCDH8 might play an important role in its prognosis, immune infiltration, and diagnosis.
Collapse
Affiliation(s)
- Ruida Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Nan Yang
- Department of Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Pan Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Zihan Xue
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Feidi Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Ruihan Fan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - JiaFu Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xinru Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Shaobo Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
3
|
Tous C, Muñoz-Redondo C, Gavilán A, Bravo-Gil N, Baco-Antón F, Navarro-González E, Antiñolo G, Borrego S. Delving into the Role of lncRNAs in Papillary Thyroid Cancer: Upregulation of LINC00887 Promotes Cell Proliferation, Growth and Invasion. Int J Mol Sci 2024; 25:1587. [PMID: 38338866 PMCID: PMC10855357 DOI: 10.3390/ijms25031587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common histological category of thyroid cancer. In recent years, there has been an increasing number of studies on lncRNAs in PTC. Long intergenic non-protein coding RNA 887 (LINC00887) is a critical oncogene in developing other cancers. LINC00887 is upregulated in PTC samples but its role in PTC is currently unclear. This study aimed to investigate the impact the disruption of LINC00887 expression has on PTC progression. We performed a CRISPR/Cas9 strategy for the truncation of LINC00887 in BCPAP and TPC1 cell lines. Functional assays showed that LINC00887 knockdown in both TPC1 and BCPAP cells reduced cell proliferation, colony formation and migration, delayed the cell cycle, and increased apoptosis. These results strengthened the role of LINC00887 in cancer and showed for the first time that this lncRNA could be a potential oncogene in PTC, acting as a tumor promoter. Modulation of the immune system may be one of the etiopathogenic mechanisms of LINC00887 in PTC, as shown by the observed influence of this lncRNA on PD-L1 expression. In addition, the biological pathways of LINC00887 identified to date, such as EMT, the Wnt/β-catenin signaling pathway or the FRMD6-Hippo signaling pathway may also be relevant regulatory mechanisms operating in PTC.
Collapse
Affiliation(s)
- Cristina Tous
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Carmen Muñoz-Redondo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Angela Gavilán
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Nereida Bravo-Gil
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Fátima Baco-Antón
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Elena Navarro-González
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
- Department of Endocrinology and Nutrition, University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| |
Collapse
|
4
|
Gordon JAR, Tye CE, Banerjee B, Ghule PN, van Wijnen AJ, Kabala FS, Page NA, Falcone MM, Stein JL, Stein GS, Lian JB. LINC01638 sustains human mesenchymal stem cell self-renewal and competency for osteogenic cell fate. Sci Rep 2023; 13:20314. [PMID: 37985890 PMCID: PMC10662126 DOI: 10.1038/s41598-023-46202-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023] Open
Abstract
The skeleton forms from multipotent human mesenchymal stem cells (hMSCs) competent to commit to specific lineages. Long noncoding RNAs (lncRNAs) have been identified as key epigenetic regulators of tissue development. However, regulation of osteogenesis by lncRNAs as mediators of commitment to the bone phenotype is largely unexplored. We focused on LINC01638, which is highly expressed in hMSCs and has been studied in cancers, but not in regulating osteogenesis. We demonstrated that LINC01638 promotes initiation of the osteoblast phenotype. Our findings reveal that LINC01638 is present at low levels during the induction of osteoblast differentiation. CRISPRi knockdown of LINC01638 in MSCs prevents osteogenesis and alkaline phosphatase expression, inhibiting osteoblast differentiation. This resulted in decreased MSC growth rate, accompanied by double-strand breaks, DNA damage, and cell senescence. Transcriptome profiling of control and LINC01638-depleted hMSCs identified > 2000 differentially expressed mRNAs related to cell cycle, cell division, spindle formation, DNA repair, and osteogenesis. Using ChIRP-qPCR, molecular mechanisms of chromatin interactions revealed the LINC01638 locus (Chr 22) includes many lncRNAs and bone-related genes. These novel findings identify the obligatory role for LINC01638 to sustain MSC pluripotency regulating osteoblast commitment and growth, as well as for physiological remodeling of bone tissue.
Collapse
Affiliation(s)
- Jonathan A R Gordon
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Coralee E Tye
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | | | - Prachi N Ghule
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Fleur S Kabala
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Natalie A Page
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Michelle M Falcone
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Janet L Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA.
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT, 05405, USA.
| |
Collapse
|
5
|
Gordon J, Tye CE, Banerjee B, Ghule PN, Wijnen AJ, Kabala FS, Page NA, Falcone MM, Stein JL, Stein GS, Lian JB. LINC01638 Sustains Human Mesenchymal Stem Cell Self-Renewal and Competency for Osteogenic Cell Fate. RESEARCH SQUARE 2023:rs.3.rs-3210911. [PMID: 37693373 PMCID: PMC10491330 DOI: 10.21203/rs.3.rs-3210911/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The skeleton forms from multipotent human mesenchymal stem cells (hMSCs) competent to commit to specific lineages. Long noncoding RNAs (lncRNAs) have been identified as key epigenetic regulators of tissue development. However, regulation of osteogenesis by lncRNAs as mediators of commitment to the bone phenotype is largely unexplored. We focused on LINC01638, which is highly expressed in hMSCs and has been studied in cancers, but not in regulating osteogenesis. We demonstrated that LINC01638 promotes initiation of the osteoblast phenotype. Our findings reveal that LINC01638 is present at low levels during the induction of osteoblast differentiation. CRISPRi knockdown of LINC01638 in MSCs prevents osteogenesis and alkaline phosphatase expression, inhibiting osteoblast differentiation. This resulted in decreased MSC cell growth rate, accompanied by double-strand breaks, DNA damage, and cell senescence. Transcriptome profiling of control and LINC01638-depleted hMSCs identified > 2,000 differentially expressed mRNAs related to cell cycle, cell division, spindle formation, DNA repair, and osteogenesis. Using ChIRP-qPCR, molecular mechanisms of chromatin interactions revealed the LINC01638 locus (Chr 22) includes many lncRNAs and bone-related genes. These novel findings identify the obligatory role for LINC01638 to sustain MSC pluripotency regulating osteoblast commitment and growth, as well as for physiological remodeling of bone tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gary S Stein
- University of Vermont, Larner College of Medicine
| | - Jane B Lian
- University of Vermont, Larner College of Medicine
| |
Collapse
|
6
|
Wang J, Luo J, Wu X, Li Z. ELK1 suppresses SYTL1 expression by recruiting HDAC2 in bladder cancer progression. Hum Cell 2022; 35:1961-1975. [DOI: 10.1007/s13577-022-00789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/02/2022] [Indexed: 11/04/2022]
|
7
|
Chen B, Liu D, Chen R, Guo L, Ran J. Elevated LINC00894 relieves the oncogenic properties of thyroid cancer cell by sponging let-7e-5p to promote TIA-1 expression. Discov Oncol 2022; 13:56. [PMID: 35776220 PMCID: PMC9249958 DOI: 10.1007/s12672-022-00520-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/20/2022] [Indexed: 11/04/2022] Open
Abstract
LINC00894 plays an important role in cancer cell proliferation and invasion in breast and kidney cancer. However, its role in thyroid cancer proliferation and metastasis remains unclear. In this study, data on LINC00894 expression in thyroid cancer tissues were obtained from GEPIA2. miRNA expression in thyroid cancer tissues was obtained from starBase 3.0 and OncomiR. Cell proliferation was evaluated using CCK-8, and Transwell chambers were used for the migration and invasion assays. LINC00894 and let-7e-5p expressions in thyroid cancer cells were measured using qRT-PCR. Meanwhile, TIA-1 expression in thyroid cancer cells was analyzed via western blotting. We found that LINC00894 expression was markedly reduced in thyroid cancer tissues and cells, and low expression of LINC00894 was associated with poor prognosis in thyroid cancer. LINC00894 overexpression inhibited the proliferation, migration, and invasion of CAL-62 and TPC-1 cells. Additionally, let-7e-5p expression was substantially enhanced in CAL-62 and TPC-1 cells. LINC00894 overexpression promoted TIA-1 expression by acting as a sponge of let-7e-5p. Finally, let-7e-5p weakened the function of LINC00894 in thyroid cancer cells via reduction in TIA-1 levels. In conclusion, our data suggest that increased LINC00894 expression reduces the oncogenic properties of thyroid cancer cells by sponging let-7e-5p to promote TIA-1 expression.
Collapse
Affiliation(s)
- Bo Chen
- Endocrinology Department, Guangzhou Red Cross Hospital, Medical College of Jinan University, Guangzhou, 510220, China
- Institute of Diseases-Oriented Nutrition Research, Guangzhou Red Cross Hospital, Medical College of Jinan University, Guangzhou, 510220, China
- Endocrinology Department, Guangdong Second Provincial General Hospital, Guangzhou, 510350, China
| | - Deqing Liu
- Endocrinology Department, Guangdong Second Provincial General Hospital, Guangzhou, 510350, China
| | - Runjie Chen
- Endocrinology Department, Guangdong Second Provincial General Hospital, Guangzhou, 510350, China
| | - Libing Guo
- Oncology Department, Guangdong Second Provincial General Hospital, 510350, Guangzhou, China
| | - Jianmin Ran
- Endocrinology Department, Guangzhou Red Cross Hospital, Medical College of Jinan University, Guangzhou, 510220, China.
- Institute of Diseases-Oriented Nutrition Research, Guangzhou Red Cross Hospital, Medical College of Jinan University, Guangzhou, 510220, China.
| |
Collapse
|
8
|
Xin Y, Shang X, Sun X, Xu G, Liu Y, Liu Y. SLC8A1 antisense RNA 1 suppresses papillary thyroid cancer malignant progression via the FUS RNA binding protein (FUS)/NUMB like endocytic adaptor protein (Numbl) axis. Bioengineered 2022; 13:12572-12582. [PMID: 35599603 PMCID: PMC9275960 DOI: 10.1080/21655979.2022.2073125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Papillary thyroid cancer (PTC) is one of the most prevalent endocrine malignancies and is associated with severe morbidity and high mortality. This study aimed to explore the role of long non-coding RNA (lncRNA) SLC8A1 antisense RNA 1 (SLC8A1-AS1) in the pathogenesis of PTC. In this study, we explored the function of SLC8A1-AS1 in PTC progression. We observed that the expression of SLC8A1-AS1 was downregulated in clinical PTC samples and PTC cell lines compared to that in normal controls. Cell counting kit (CCK)-8 assays demonstrated that the overexpression of SLC8A1-AS1 significantly reduced the proliferation of PTC cells. Consistently, apoptosis of PTC cells was enhanced by SLC8A1-AS1 overexpression. SLC8A1-AS1 overexpression attenuated the invasion and migration of PTC cells. Mechanistically, SLC8A1-AS1 maintained NUMB like endocytic adaptor protein (Numbl) mRNA stability by interacting with FUS RNA Binding Protein (FUS) in PTC cells. Depletion of Numbl reversed the inhibitory effect of SLC8A1-AS1 overexpression on PTC. Thus, we concluded that SLC8A1-AS1 suppresses PTC progression via the FUS/Numbl axis. Our findings provide novel insights into the mechanism underlying SLC8A1-AS1 attenuation of the malignant development of PTC, improving our understanding of the association between lncRNAs and PTC. SLC8A1-AS1 and FUS may be potential targets for PTC treatment.
Collapse
Affiliation(s)
- Yunchao Xin
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiaoling Shang
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiaoran Sun
- Department of Gastroenterology, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Guogang Xu
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yachao Liu
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yanbin Liu
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| |
Collapse
|
9
|
Song Y, Yu J, Li L, Wang L, Dong L, Xi G, Lu YJ, Li Z. Luteolin impacts deoxyribonucleic acid repair by modulating the mitogen-activated protein kinase pathway in colorectal cancer. Bioengineered 2022; 13:10998-11011. [PMID: 35473479 PMCID: PMC9161897 DOI: 10.1080/21655979.2022.2066926] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study aimed to investigate the effects of luteolin on colorectal cancer (CRC) and explore its underlying mechanism. HCT-116 and HT-29 cells were treated with luteolin, cisplatin, or selumetinib. The cell survival, cell proliferation, apoptosis and cell cycle distribution, and DNA damage were detected using Cell Counting Kit-8, colony formation, flow cytometry, and immunofluorescence staining analysis, respectively. Western blotting was used to detect the expression of apoptosis-related, cycle-related, DNA-damage-related, and mitogen-activated protein kinase (MAPK) pathway-related proteins. Luteolin showed inhibitory effects on cellular growth by reducing cell survival and proliferation, inducing apoptosis and DNA damage, and arresting the cell cycle in a concentration-dependent manner in HCT-116 and HT-29 cells. Meanwhile, luteolin increased the expression of pro-apoptotic proteins, p-CHK1 (central to the induction of cell cycle arrest), and DNA excision repair protein and decreased anti-apoptotic proteins, G2-M phase-related proteins, and DNA repair proteins. The combination of cisplatin and luteolin significantly decreased cell survival and increased the apoptosis rate of HCT-116 and HT-29 cells compared with cisplatin alone. Bioinformatic analysis using the Comparative Toxicogenomics Database and STITCH and MalaCards databases showed that the MAPK pathway is involved in the pharmacology of luteolin. Furthermore, western blotting demonstrated that luteolin plays an inhibitory role by suppressing the MAPK signaling pathway in CRC, which is enhanced when combined with selumetinib. Luteolin can also prevent tumourigenesis in CRC in vivo. In conclusion, luteolin suppressed cell proliferation, blocked the cell cycle, and induced DNA damage and apoptosis progression in CRC cells by mediating the MAPK pathway
Collapse
Affiliation(s)
- Yelin Song
- Department of cardiovascular medicine, Qingdao Hospital of Traditional Chinese Medicine, Qingdao, Shandong, China
| | - Jie Yu
- Cardiovascular disease department, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, Chinas
| | - LingLing Li
- Cardiovascular disease department, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, Chinas
| | - Lei Wang
- Digestive System Department, Chengyang District People's Hospital, Qingdao, Shandong, China
| | - Liangle Dong
- Cardiovascular disease department, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, Chinas
| | - Guangmin Xi
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,College of Life Science, Qi Lu Normal University, Jinan, Shandong, China
| | - Yun Jing Lu
- Medical Department, People's Hospital of Chengyang, Qingdao, Shandong, China
| | - Zuowei Li
- Cardiovascular disease department, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, Chinas
| |
Collapse
|
10
|
Jin A, Zhou J, Yu P, Zhou S, Chang C. High Expression of THBS1 Leads to a Poor Prognosis in Papillary Thyroid Cancer and Suppresses the Anti-Tumor Immune Microenvironment. Technol Cancer Res Treat 2022; 21:15330338221085360. [PMID: 35315710 PMCID: PMC8943644 DOI: 10.1177/15330338221085360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objectives: To study the role of thrombospondin-1 (THBS1) in
papillary thyroid cancer (PTC) prognosis and the immune microenvironment.
Methods: A retrospective cohort study was designed, and data
from The Cancer Genome Atlas database and PTC tissues from Fudan University
Shanghai Cancer Center were used. Weighted gene co-expression network analysis
was performed to build a THBS1-immune-related gene prognostic
index (T-I index). Results: High THBS1 expression
was correlated with advanced TNM stage, higher recurrence risk, and shorter
progression-free interval. High THBS1 expression correlated
with MAPK and PD1 pathways indicating a tumor promoting and immunity-inhibiting
tendency. The T-I index showed a powerful capacity to predict progression-free
survival and immunotherapy benefit. Conclusion: High expression of
THBS1 leads to a poor prognosis in PTCs and suppresses the
anti-tumor immune microenvironment.
Collapse
Affiliation(s)
- Anqi Jin
- 89667Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jin Zhou
- 89667Fudan University Shanghai Cancer Center, Shanghai, China
| | - Pengcheng Yu
- 89667Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shichong Zhou
- 89667Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cai Chang
- 89667Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|