1
|
Ma W, Wei D, Li X, Shan L, Fan H, Jin H, Song B, Zhang B. CircPCNX Promotes PDGF-BB-Induced Proliferation and Migration of Human Aortic Vascular Smooth Muscle Cells Through Regulating miR-1278/DNMT1 Axis. Cardiovasc Drugs Ther 2023; 37:877-889. [PMID: 35670983 DOI: 10.1007/s10557-022-07342-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human aortic vascular smooth muscle cells (HA-VSMCs) play vital roles in the pathogenesis of vascular diseases. Circular RNAs (circRNAs) have been reported to regulate the biological functions of HA-VSMCs. In this study, the functions of circRNA pecanex homolog (circPCNX) in platelet-derived growth factor-BB (PDGF-BB)-induced HA-VSMCs were investigated. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the expression of circPCNX, DNA methyltransferase 1 (DNMT1), and microRNA-1278 (miR-1278). 5'-Ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry analysis, wound healing assay, and transwell assay were used to examine cell proliferation, cell cycle, and migration. Western blot assay was utilized to measure protein levels. RNA immunoprecipitation (RIP) assay, RNA pull down assay, and dual-luciferase reporter assay were adopted to analyze the relationships among circPCNX, miR-1278, and DNMT1. RESULTS CircPCNX was upregulated in PDGF-BB-treated HA-VSMCs in a dose- or time-dependent manner. CircPCNX knockdown alleviated PDGF-BB-induced cell proliferation, cell cycle progression, and migration in HA-VSMCs. CircPCNX knockdown could reverse PDGF-BB-induced HA-VSMC progression by regulating DNMT1. Moreover, circPCNX was identified to regulate DNMT1 expression by sponging miR-1278. Inhibition of miR-1278 reversed circPCNX knockdown-mediated effects on cell proliferation and migration in PDGF-BB-induced HA-VSMCs. MiR-1278 overexpression suppressed PDGF-BB-stimulated HA-VSMC proliferation and migration by targeting DNMT1. CONCLUSION CircPCNX promoted PDGF-BB-induced HA-VSMC proliferation and migration by elevating DNMT1 expression through sponging miR-1278.
Collapse
Affiliation(s)
- Wenbin Ma
- Department of Laboratory Medicine, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, China
| | - Dongmei Wei
- Department of Traditional Chinese Geriatric Medicine, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, China
| | - Xinying Li
- Department of Internal Medicine-Digestive, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, China
| | - Lina Shan
- Department of Internal Medicine-Cardiovascular, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, The Fourth Department of Internal Medicine-Cardiovascular Office, 10th Floor, Building 5, South Hospital of Qiqihar First Hospital, 700 Bukui South Street, Longsha District, Qiqihar, 161005, Heilongjiang, China
| | - Hua Fan
- Department of Laboratory Medicine, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, China
| | - Huixin Jin
- Department of Laboratory Medicine, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, China
| | - Binghui Song
- Department of Internal Medicine-Cardiovascular, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, The Fourth Department of Internal Medicine-Cardiovascular Office, 10th Floor, Building 5, South Hospital of Qiqihar First Hospital, 700 Bukui South Street, Longsha District, Qiqihar, 161005, Heilongjiang, China
| | - Ben Zhang
- Department of Internal Medicine-Cardiovascular, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, The Fourth Department of Internal Medicine-Cardiovascular Office, 10th Floor, Building 5, South Hospital of Qiqihar First Hospital, 700 Bukui South Street, Longsha District, Qiqihar, 161005, Heilongjiang, China.
| |
Collapse
|
2
|
Barungi S, Hernández-Camarero P, Moreno-Terribas G, Villalba-Montoro R, Marchal JA, López-Ruiz E, Perán M. Clinical implications of inflammation in atheroma formation and novel therapies in cardiovascular diseases. Front Cell Dev Biol 2023; 11:1148768. [PMID: 37009489 PMCID: PMC10061140 DOI: 10.3389/fcell.2023.1148768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading causes of death and disability in the world. Among all CVD, the most common is coronary artery disease (CAD). CAD results from the complications promoted by atherosclerosis, which is characterized by the accumulation of atherosclerotic plaques that limit and block the blood flow of the arteries involved in heart oxygenation. Atherosclerotic disease is usually treated by stents implantation and angioplasty, but these surgical interventions also favour thrombosis and restenosis which often lead to device failure. Hence, efficient and long-lasting therapeutic options that are easily accessible to patients are in high demand. Advanced technologies including nanotechnology or vascular tissue engineering may provide promising solutions for CVD. Moreover, advances in the understanding of the biological processes underlying atherosclerosis can lead to a significant improvement in the management of CVD and even to the development of novel efficient drugs. To note, over the last years, the observation that inflammation leads to atherosclerosis has gained interest providing a link between atheroma formation and oncogenesis. Here, we have focused on the description of the available therapy for atherosclerosis, including surgical treatment and experimental treatment, the mechanisms of atheroma formation, and possible novel therapeutic candidates such as the use of anti-inflammatory treatments to reduce CVD.
Collapse
Affiliation(s)
- Shivan Barungi
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | | | | | | | - Juan Antonio Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
| | - Elena López-Ruiz
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
- *Correspondence: Elena López-Ruiz, ; Macarena Perán,
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
- *Correspondence: Elena López-Ruiz, ; Macarena Perán,
| |
Collapse
|
3
|
Wang Q, Wang T, Liang S, Zhou L. Ox-LDL-Induced Vascular Smooth Muscle Cell Dysfunction Partly Depends on the Circ_0044073/miR-377-3p/AURKA Axis in Atherosclerosis. Int Heart J 2023; 64:252-262. [PMID: 37005319 DOI: 10.1536/ihj.22-148] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Atherosclerosis (AS) is the main reason for most cardiovascular diseases. Circular RNA hsa_circ_0044073 (circ_0044073) has been found to promote AS progression. However, the specific regulatory mechanism of circ_0044073 in AS progression remains unclear.In this study, oxidized low-density lipoprotein (Ox-LDL) -stimulated human vascular smooth muscle cells (VSMCs) were used as AS cell models. The expression changes of circ_0044073 in serum samples and Ox-LDL-stimulated human VSMCs were assessed via real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, proliferation, colony formation, migration, and invasion were assessed using 3- (4,5-Dimethylthiazol-2-yl) -2,5-Diphenyltetrazolium Bromide (MTT), 5-ethynyl-2'-deoxyuridine (EDU), colony formation, and transwell assays. Some protein levels were detected via Western blotting. The regulatory mechanism of circ_0044073 was predicted using bioinformatics analysis and validated by dual-luciferase reporter and RNA pull-down assays.We observed an overt increase in circ_0044073 expression in serum samples derived from AS patients and Ox-LDL-stimulated human VSMCs. Circ_0044073 was identified as a miR-377-3p sponge. Either circ_0044073 knockdown or miR-377-3p overexpression could impair Ox-LDL-induced human VSMC proliferation, migration, invasion, and inflammation. AURKA served as a miR-377-3p target, and circ_0044073 regulated AURKA expression by adsorbing miR-377-3p. Furthermore, AURKA overexpression partly reversed the effects of circ_0044073 inhibition on Ox-LDL-induced human VSMC proliferation, migration, invasion, and inflammation.Circ_0044073 promoted AS progression by elevating AURKA expression by functioning as a miR-377-3p sponge. Providing a proof-of-concept demonstration to support circ_0044073 might be a target for AS treatment.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Vascular Surgery, Taizhou University Affiliated Municipal Hospital
| | - Tao Wang
- Department of Vascular Surgery, Taizhou University Affiliated Municipal Hospital
| | - Siyuan Liang
- Department of Vascular Surgery, Taizhou University Affiliated Municipal Hospital
| | - Long Zhou
- Department of Vascular Surgery, Taizhou University Affiliated Municipal Hospital
| |
Collapse
|
4
|
Wan X, Tian J, Hao P, Zhou K, Zhang J, Zhou Y, Ge C, Song X. cGAS-STING Pathway Performance in the Vulnerable Atherosclerotic Plaque. Aging Dis 2022; 13:1606-1614. [PMID: 36465175 PMCID: PMC9662268 DOI: 10.14336/ad.2022.0417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/17/2022] [Indexed: 11/03/2023] Open
Abstract
The important role of Ca2+ in pathogenic store-operated calcium entry (SOCE) is well-established. Among the proteins involved in the calcium signaling pathway, Stromal interacting molecule 1 (STIM1) is a critical endoplasmic reticulum transmembrane protein. STIM1 is activated by the depletion of calcium stores and then binds to another calcium protein, Orai1, to form a channel through which the extracellular Ca2+ can enter the cytoplasm to replenish the calcium store. Multiple studies have shown that increased STIM1 facilitates the aberrant proliferation and apoptosis of vascular smooth cells (VSMC) and macrophages which can promote the formation of rupture-prone plaque. Together with regulating the cytosolic Ca2+ concentration, STIM1 also activates STING through altered intracellular Ca2+ concentration, a critical pro-inflammatory molecule. The cGAS-STING pathway is linked with cellular proliferation and phenotypic conversion of VSMC and enhances the progression of atherosclerosis plaque. In summary, we conclude that STIM1/cGAS-STING is involved in the progression of AS and plaque vulnerability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changjiang Ge
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | | |
Collapse
|
5
|
Yang J, Zhou X, Lu J, Li M. miR-146-5p restrains calcification of vascular smooth muscle cells by suppressing TRAF6. Open Med (Wars) 2022; 17:1515-1527. [PMID: 36237831 PMCID: PMC9510824 DOI: 10.1515/med-2022-0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Vascular calcification is a prominent manifestation of advanced atherosclerosis. Tumor necrosis factor-receptor-associated factors (TRAFs) were reported to participate in atherosclerosis development. In this study, the role and mechanism of TRAF6 in vascular calcification were explored. To induce the vascular calcification, oxidized low-density lipoprotein (Ox-LDL) was applied to treat vascular smooth muscle cells (VSMCs). TRAF6 protein expression in VSMCs was assessed by western blotting. Osteogenic differentiation of VSMCs was assessed by alkaline phosphatase activity analysis. Mineral deposition in VSMCs was evaluated by von Kossa staining. VSMC proliferation, migration, apoptosis, inflammation, and reactive oxygen species (ROS) generation were detected using cell counting kit-8, Transwell, flow cytometry, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), and dichlorodihydrofluorescein diacetate staining, respectively. Luciferase reporter assay was utilized to identify the binding relationship between miR-146-5p and TRAF6 in VSMCs. We found that Ox-LDL administration induced the calcification of VSMCs and elevated the TRAF6 level. TRAF6 knockdown restrained VSMC calcification, proliferation, migration, inflammation, and ROS generation caused by Ox-LDL. Mechanically, TRAF6 was targeted by miR-146-5p in VSMCs. Furthermore, TRAF6 overexpression offset the inhibitory effects of miR-146-5p upregulation on vascular calcification in VSMCs under the Ox-LDL condition. Overall, miR-146-5p restrains the calcification of VSMCs by suppressing TRAF6.
Collapse
Affiliation(s)
- Jing Yang
- Department of Cardiology, The Fourth Hospital of Harbin Medical University , Harbin 150001 , Heilongjiang , China
| | - Xiaoman Zhou
- Department of Radiology, Wuhan Pulmonary Hospital , Wuhan 430030 , Hubei , China
| | - Jingwei Lu
- Department of Physical Examination, The Fourth Hospital of Harbin Medical University , Harbin 150001 , Heilongjiang , China
| | - Meng Li
- Department of Cardiology, The Fourth Hospital of Harbin Medical University , 37 Yiyuan Street, Nangang District , Harbin 150001 , Heilongjiang , China
| |
Collapse
|
6
|
Tuo B, Xu J, Zhang W, Li X, Peng L, Zou Q, Deng Y, Lei J, Li H. Upregulation of miR-140-5p uncouples mitochondria by targeting Bcl-xL in vascular smooth muscle cells in angiotensin II-induced hypertension. Bioengineered 2022; 13:1137-1148. [PMID: 35258391 PMCID: PMC8805896 DOI: 10.1080/21655979.2021.2017696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Angiotensin II–induced vascular smooth muscle cell (VSMC) remodeling and dysfunction is a major contributor to the development of hypertension. In spite of the low content of mitochondria and their low contribution to bioenergetics in VSMCs, recent studies have suggested that mitochondria play an important role in the regulation of VSMC function. However, the role of mitochondria in angiotensin II–induced VSMC dysfunction remains unknown. Here, we found that angiotensin II decreased the expression of Bcl-2-like protein 1 (Bcl-xL), a newly identified protein in inhibition of uncoupled proton flux in mitochondria through interaction with the β-subunit of ATP synthase, and uncoupled mitochondria in VSMCs both in vivo and in vitro. Overexpression of Bcl-xL restored the mitochondrial and VSMC function in response to angiotensin II treatment in vitro, suggesting that angiotensin II uncouples mitochondria through downregulation of Bcl-xL. Mechanistically, angiotensin II increased the expression of miR-140-5p, which targeted and downregulated Bcl-xL in VSMCs. Inhibition of miR-140-5p using antagomir-140-5p in vivo attenuated mitochondrial uncoupling and hypertension in angiotensin II-treated mice. These results suggested that upregulation of miR-140-5p uncouples mitochondria by targeting Bcl-xL in VSMCs in angiotensin II–induced hypertension, and miR-140-5p and Bcl-xL are potential targets for treatment of vascular dysfunction.
Collapse
Affiliation(s)
- Buxiong Tuo
- Department of Cardiology, 986th Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Xu
- Department of Cardiology, 986 Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenqiang Zhang
- Department of Cardiology, 986 Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaomiao Li
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lijing Peng
- Department of Cardiology, 986 Hospital, Fourth Military Medical University, Xi'an, China
| | - Qian Zou
- Department of Cardiology, 986 Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Deng
- Department of Cardiology, 986 Hospital, Fourth Military Medical University, Xi'an, China
| | - Junning Lei
- Department of Cardiology, 986 Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Li
- Department of Cardiology, 986 Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Apolipoprotein J Attenuates Vascular Restenosis by Promoting Autophagy and Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells. J Cardiovasc Transl Res 2022; 15:1086-1099. [PMID: 35244876 DOI: 10.1007/s12265-022-10227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
Abstract
This research investigated the mechanism of CLU in vascular restenosis by regulating vascular smooth muscle cell (VSMC) proliferation and migration. Firstly, rat models of balloon injury (BI) were established, followed by the assessment of the injury to the common carotid artery. The effect of CLU on the intimal hyperplasia of BI rats was measured after the intervention in CLU, in addition to the evaluation of proliferation, migration, and autophagy of VSMCs. Moreover, the interaction between ATG and LC3 was analyzed, followed by validation of the role of autophagy in CLU's regulation on the proliferation and migration of VSMCs. It was found that CLU was highly expressed in BI rats. Altogether, our findings indicated that CLU was highly expressed in vascular restenosis, and CLU over-expression promoted the binding between ATG3 and LC3, thus facilitating VSMC autophagy and eventually attenuating intimal hyperplasia and vascular restenosis.
Collapse
|
8
|
Li N, Yi K, Li X, Wang Y, Jing J, Hu J, Wang Z. MiR-143-3p facilitates motility and invasiveness of endometriotic stromal cells by targeting VASH1/TGF-β signaling. Reprod Biol 2022; 22:100592. [PMID: 34995817 DOI: 10.1016/j.repbio.2021.100592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/11/2021] [Accepted: 11/27/2021] [Indexed: 12/22/2022]
Abstract
Endometriosis is a benign gynecological disease. Accumulating evidence has revealed the participation of dysregulated miRNAs in the progression of endometriosis. Here, the function and molecular mechanism of miR-143-3p in endometriosis were investigated. The levels of vasohibin 1 (VASH1) and miR-143-3p in endometrial tissues and endometriotic stromal cells (ESCs) were detected by RT-qPCR. Migrative and invasive phenotypes of ESCs were tested by Transwell assays. The protein expression of VASH1, TGF-β signaling markers, and epithelial to mesenchymal transition (EMT) markers was examined by western blotting. The targeted relationship between miR-143-3p and VASH1 was confirmed by bioinformatics analysis and luciferase reporter assay. We found that miR-143-3p expression was significantly upregulated in ectopic endometrial tissues compared to that in eutopic and normal endometrial tissues. MiR-143-3p knockdown restrained EMT process, invasive and migrative behaviors of ESCs. Mechanically, miR-143-3p targeted VASH1 and negatively regulated VASH1. VASH1 downregulation reserved the effects of miR-143-3p knockdown in ESCs. MiR-143-3p activated TGF-β signaling via targeting VASH1. Furthermore, activation of TGF-β signaling counteracted the miR-143-3p knockdown-caused suppression of migration, invasion and EMT process in ESCs. Overall, miR-143-3p activates TGF-β signaling by targeting VASH1 to facilitate migration and invasion of ESCs.
Collapse
Affiliation(s)
- Na Li
- Department of Gynecology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Keyun Yi
- Department of Gynecology, Zhou kou Central Hospital, Zhoukou 466000, Henan, China
| | - Xia Li
- Department of Gynecology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Yue Wang
- Department of Gynecology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Jiayu Jing
- Department of Gynecology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Jiaxuan Hu
- Department of Obstetrics and Gynecology, Zhoukou Maternal and Child Health Care, Zhoukou, 466000, Henan, China
| | - Zhenhua Wang
- Department of Gynecology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
9
|
Hou X, Dai H, Zheng Y. Circular RNA hsa_circ_0008896 accelerates atherosclerosis by promoting the proliferation, migration and invasion of vascular smooth muscle cells via hsa-miR-633/CDC20B (cell division cycle 20B) axis. Bioengineered 2022; 13:5987-5998. [PMID: 35212610 PMCID: PMC8973975 DOI: 10.1080/21655979.2022.2039467] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Circular RNAs, a class of circularly closed non-coding RNAs, play essential roles in the formation of atherosclerosis, which is a frequent cause of cardiovascular and cerebrovascular diseases. Although many circular RNAs are found to be involved in the progression of atherosclerosis, more circular RNA regulators still need to be identified, to improve the understanding of the regulatory networks of atherosclerosis. Here, we found that hsa_circ_0008896 was significantly up-regulated in both in vitro and in vivo atherosclerosis models, indicating hsa_circ_0008896 was involved in the progression of atherosclerosis. Further functional analyses confirmed that knockdown of hsa_circ_0008896 decreased proliferation, migration, and invasion of VSMCs. In addition, we conducted bioinformatics analysis and found that hsa-miR-633 could directly bind to hsa_circ_0008896, which was confirmed by RNA immune-precipitation (RIP) assays. Results of proliferation, migration, and invasion assays showed that hsa-miR-633 inhibitor reversed the si-circ_0008896 phenotypes, indicating that hsa_circ_0008896 functionally bound to hsa-miR-633. At last, combining bioinformatics and experimental analyses, we found the protein target of hsa_circ_0008896/hsa-miR-633, CDC20B (cell division cycle 20B). The expression level of CDC20B was regulated by hsa-miR-633, and knockdown of CDC20B decreased proliferation, migration, and invasion of VSMCs. Taken together, hsa_circ_0008896 regulated the expression of CDC20B by sponging hsa-miR-633, and then enhanced proliferation, migration, and invasion of VSMCs to promote the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xumin Hou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Huangdong Dai
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zheng
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Yang D, Wei GY, Li M, Peng MS, Sun Y, Zhang YL, Lu C, Qing KX, Cai HB. Cyclic tensile strain facilitates proliferation and migration of human aortic smooth muscle cells and reduces their apoptosis via miRNA-187-3p. Bioengineered 2021; 12:11439-11450. [PMID: 34895047 PMCID: PMC8810176 DOI: 10.1080/21655979.2021.2009321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The cardiovascular is a system that contains extremely complex mechanical factors, in which the circulatory flow of blood has rich mechanical laws. Many studies have revealed that mechanical factors play a very important role in the process of revascularization. Hence, it is essential to investigate the mechanical factors in the process of revascularization in depth. A cyclic tensile strain (CTS) was applied to human aortic smooth muscle cells (HASMCs) at a frequency of 1 Hz and amplitudes of 5%, 10% and 15%, respectively. SmallRNA-seq was used to identify differentially expressed miRNAs (DE-miRNAs) responding to CTS in HASMCs. Starbase database predicted the target genes of DE-miRNAs. Metascape was applied for GO and KEGG pathway enrichment analysis and protein–protein interaction network construction. The proliferation and migration of CTS-treated HASMCs were significantly enhanced, and apoptosis were significantly reduced compared to the control group. SmallRNA-seq results demonstrated that 55, 16 and 16 DE-miRNAs were present in 5%, 10% and 15% CTS-treated HASMCs, respectively. Compared to controls, with miR-26a-2-3p and miR-187-3p being the intersection of these DE-miRNAs. Starbase database identified 189 common target genes for miR-26a-2-3p and miR-187-3p. Common target genes are mainly enriched in the basolateral plasma membrane and endocytosis. Further, in vitro experiments exhibited that CTS upregulated miR-187-3p expression, and miR-187-3p enhanced the proliferation and migration of HASMCs and reduced their apoptosis. It is suggested that miR-187-3p may be an important target for CTS participate in the process of cardiovascular disease. ![]() ![]()
Collapse
Affiliation(s)
- Di Yang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Guang-Yuan Wei
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Min Li
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ming-Sheng Peng
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuan Sun
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan-Liang Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chuang Lu
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Kai-Xiong Qing
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hong-Bo Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
11
|
Meng J, Song X, Yan G, Wang H, Li H, Lou D. Dendrobine suppresses endoplasmic reticulum stress-induced apoptosis through upregulating microRNA miR-381-3p to decrease caspase-4. Bioengineered 2021; 12:4452-4463. [PMID: 34308746 PMCID: PMC8806451 DOI: 10.1080/21655979.2021.1956672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Dendrobine has been reported to reduce blood lipid levels and apoptosis. The present study was designed to observe the effect of dendrobine in a model of ERS using vascular endothelial cells and to reveal the biological mechanisms and pathways responsible for the therapeutic effects of dendrobine on AS. Human umbilical vein endothelial cells (HUVECs) were pre-treated with various concentrations of dendrobine, followed by treatment with tunicamycin (TM) for the establishment of the cell models of ERS. The proliferation and apoptosis of HUVECs were detected by bromodeoxyuridine staining and flow cytometry, respectively. The target binding association was verified through dual luciferase reporter assay. It was found that TM treatment resulted in a low expression of miR-381-3p. Dendrobine treatment not only promoted the proliferation, but also inhibited the apoptosis of HUVECs induced by TM. The reduced expression of 78-kDa glucose-regulated protein, inositol-requiring enzyme 1, caspase-4, C/EBP homologous protein and caspase-3 was also observed following treatment with dendrobine. Dendrobine reduced the apoptosis of endothelial cells in the model of ERS by increasing miR-381-3p expression, and partially restored the cell proliferation level. This effect was significantly reduced after the expression of miR-381-3p was blocked. On the whole, the present study demonstrated that dendrobine upregulated miR-381-3p expression to inhibit apoptosis induced by ERS in HUVECs and this process was found to be mediated by caspase-4. The findings of the present study may provide new insight into the causes of endothelial cell apoptosis during AS and reveal the potent therapeutic effects of dendrobine in AS.
Collapse
Affiliation(s)
- Jing Meng
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoying Song
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoliang Yan
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Haihui Wang
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Haitao Li
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Danfei Lou
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Li Z, Xu C, Sun D. MicroRNA-488 serves as a diagnostic marker for atherosclerosis and regulates the biological behavior of vascular smooth muscle cells. Bioengineered 2021; 12:4092-4099. [PMID: 34288824 PMCID: PMC8806555 DOI: 10.1080/21655979.2021.1953212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis (AS) is one of the main causes of cerebral infarction. Researches on AS mainly focus on the gene level, among which microRNA is the research hotspot nowadays. This study investigated the diagnostic value of aberrant serum miR-488 in AS patients, and further explored the effect of abnormally expressed miR-488 on the biological behavior of vascular smooth muscle (VSMCs) cells by cell transfection. The qRT-PCR was used to investigate the expression level of miR-488 in 125 AS patients and 60 healthy controls. The diagnostic value of miR-488 was analyzed by the receiver operator characteristic (ROC) curve. CCK-8 and Transwell assays were used to detect the ability of miR-488 on the proliferation and migration ability of VSMCs cells. Serum expression of miR-488 in AS patients was higher than that in healthy controls. The expression level of miR-488 was significantly positively correlated with the Carotid Intima-Media Thickness (CIMT) value. The AUC of the ROC curve was 0.892, specificity was 99.3%, and sensitivity was 77.6%. In VSMCs cells, overexpression of miR-488 significantly promoted the proliferation and migration ability. The high expression of miR-488 is a good diagnostic marker for AS. The upregulation of miR-488 promotes VSMCs cell proliferation, and migration, which may provide a new theory for the treatment of AS.
Collapse
Affiliation(s)
- Zhen Li
- Department of Cardiology, Shengli Oilfield Central Hospital, Shandong, China
| | - Congjian Xu
- Department of Cardiology, Shengli Oilfield Central Hospital, Shandong, China
| | - Di Sun
- Department of Cardiology, Shengli Oilfield Central Hospital, Shandong, China
| |
Collapse
|