1
|
Tao ZY, Yang WF, Zhu WY, Wang LL, Li KY, Guan XY, Su YX. A neural-related gene risk score for head and neck squamous cell carcinoma. Oral Dis 2024; 30:477-491. [PMID: 36346196 DOI: 10.1111/odi.14434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES This study aimed to establish a neural-related gene risk score (NRGRS) for the prediction of head and neck squamous cell carcinoma prognosis and explore its predictive value on the benefit of immune checkpoint inhibitor therapy. METHODS Based on the transcriptome data of HNSCC patients (n = 546) from The Cancer Genome Atlas database, 37 neural-related hub genes were identified by weighted gene co-expression network analysis. Four genes (ITGA5, PYGM, GNG7 and ATP2A3) were identified to construct NRGRS using Lasso-Cox regression method based on the derivation cohort and validated in the Gene Expression Omnibus cohort (n = 109). The survival analysis was performed to validate the prognostic value of NRGRS and immune characteristics in NRGRS-defined subgroups were analyzed. RESULTS NRGRS-high patients had a worse overall survival than NRGRS-low patients. Tumors with high NRGRS were more likely to have high infiltration of naive CD4+ T cells, M0, M2 macrophages and resting mast cells, which illustrated suppressive immunity and less benefit from immunotherapy therapy. CONCLUSION NRGRS strongly correlates with survival and is a promising biomarker to predict immunotherapy benefits for head and neck cancer patients. This study provides evidence for the potential correlation between neural-related transcriptome alteration and immune activity.
Collapse
Affiliation(s)
- Zhuo-Ying Tao
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wei-Fa Yang
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wang-Yong Zhu
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lei-Lei Wang
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kar Yan Li
- Clinical Research Centre, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yu-Xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
2
|
Zhou J, Wu J, Wu G, Huang J, Zhang Y, Che J, Zhu K, Geng J, Fan Q. TBX18 knockdown sensitizes esophageal squamous cell carcinoma to radiotherapy by blocking the CHN1/RhoA axis. Radiother Oncol 2023; 186:109788. [PMID: 37399907 DOI: 10.1016/j.radonc.2023.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/08/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Radioresistance is a challenge in the effective treatment of esophageal squamous cell carcinoma (ESCC). Herein, this research ascertained whether TBX18 reduced the radiosensitivity of ESCC. METHODS Bioinformatics analysis was utilized to retrieve differentially expressed genes. Then, the expression of corresponding candidate genes was tested using qRT-PCR in ESCC clinical specimens, and TBX18 was selected for subsequent experiments. The binding between TBX18 and CHN1 was evaluated by dual-luciferase reporter and ChIP assays, and the relationship between CHN1 and RhoA was identified by GST pull-down. Ectopic expression or knockdown experiments and radiation treatment were performed in cells and the nude mouse xenograft model to clarify the impacts of TBX18, CHN1, and RhoA on radiosensitivity in ESCC. RESULTS Bioinformatics analysis and qRT-PCR retrieved upregulated TBX18 in ESCC for the follow-up study. Additionally, TBX18 was positively correlated with CHN1 in ESCC clinical specimens. Mechanistically, TBX18 bound to the CHN1 promoter region to transcriptionally activate CHN1, thus elevating RhoA activity. Moreover, TBX18 knockdown reduced ESCC cell proliferation and migration while augmenting their apoptosis after radiation, which was negated by further overexpressing CHN1 or RhoA. CHN1 or RhoA knockdown diminished ESCC cell proliferation and migration, as well as enhanced cell apoptosis, subsequent to radiation. Likewise, TBX18 overexpression increased ESCC cell autophagy after radiation, which was partially reversed by knockdown of RhoA. The results of in vivo xenograft experiments in nude mice were concurrent with the in vitro results. CONCLUSION TBX18 knockdown lowered CHN1 transcription and thus reduced RhoA activity, which sensitized ESCC cells to radiotherapy.
Collapse
Affiliation(s)
- Jialiang Zhou
- Depatement of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jia Wu
- Depatement of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Gang Wu
- Depatement of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianfeng Huang
- Depatement of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yunxia Zhang
- Depatement of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jun Che
- Depatement of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Koujun Zhu
- Depatement of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jiqun Geng
- Depatement of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qiang Fan
- Depatement of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
3
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Liu YJ, Yin SY, Zeng SH, Hu YD, Wang MQ, Huang P, Li JP. Prognostic Value of LHFPL Tetraspan Subfamily Member 6 (LHFPL6) in Gastric Cancer: A Study Based on Bioinformatics Analysis and Experimental Validation. Pharmgenomics Pers Med 2021; 14:1483-1504. [PMID: 34848995 PMCID: PMC8612673 DOI: 10.2147/pgpm.s332345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose The identification of biomarkers and effective therapeutic targets for gastric cancer (GC), the most common cause of cancer-related deaths around the world, is currently a major focus in research. Here, we examined the utility of LHFPL6 as a prognostic biomarker and therapeutic target for GC. Methods We explored the clinical relevance, function, and molecular role of LHFPL6 in GC using the MethSurv, cBioPortal, TIMER, Gene Expression Profiling Interactive Analysis, ONCOMINE, MEXPRESS, and EWAS Atlas databases. The GSE118919, GSE29272, and GSE13861 datasets were used for differential expression analysis. Using The Cancer Genome Atlas, we developed a Cox regression model and assessed the clinical significance of LHFPLs. In addition, we used the “CIBERSORT” algorithm to make reliable immune infiltration estimations. Western blot and immunohistochemistry were used to examine protein expression. Cell migration and invasion were assessed using transwell experiments. THP-1-derived macrophages and GC cells were co-cultured in order to model tumor–macrophage interactions in vitro. The levels of CD206 and CD163 were measured using immunofluorescence assays. The results were visualized with the “ggplot2” and “circlize” packages. Results Our results showed that in GC, LHFPL6 overexpression was significantly associated with a poor prognosis. Our findings also suggested that LHFPL6 may be involved in the activation of the epithelial–mesenchymal transition. Furthermore, LHFPL6 expression showed a positive correlation with the abundance of M2 macrophages, which are potent immunosuppressors. Conclusion LHFPL6 could be a prognostic biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, People's Republic of China.,Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Sheng-Yan Yin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Shu-Hong Zeng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Yi-Dou Hu
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, People's Republic of China
| | - Meng-Qi Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Pan Huang
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, People's Republic of China
| | - Jie-Pin Li
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, People's Republic of China.,Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| |
Collapse
|