1
|
Zhou Y, Li R. Exosomal miR-502-5p suppresses the progression of gastric cancer by repressing angiogenesis through the Wnt/β-catenin pathway. Ir J Med Sci 2024; 193:2681-2694. [PMID: 39325329 DOI: 10.1007/s11845-024-03789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a significant global health concern, ranking as the fifth most common cancer and the third leading cause of cancer-related deaths. The role of miR-502-5p in various cancers has been studied, but its specific impact on gastric cancer through exosomes is not well understood. This study aimed to investigate the role and mechanism of exosome-derived miR-502-5p in gastric cancer. METHODS Differential expression of miR-502-5p in tissues or serum of GC patients was determined using qRT-PCR. The impact of miR-502-5p on cell proliferation, migration, and invasion was assessed through in vitro and in vivo experiments. The potential of exosome-miR-502-5p to inhibit metastatic ability was also explored by using vivo and vitro assay. Furthermore, the underlying mechanism of miR-502-5p in gastric cancer was investigated using western blotting. RESULTS It was found that miR-502-5p suppressed the proliferation, migration, and invasion of gastric cancer cells. Exosome-miR-502-5p expression was negatively linked to metastatic ability and demonstrated inhibition of metastasis in vitro and in vivo. Additionally, miR-502-5p appeared to inhibit angiogenesis through the Wnt/β-catenin pathway in gastric cancer. CONCLUSIONS Exosomal miR-502-5p acts as a suppressor in the development and progression of gastric cancer, suggesting its potential as a target for anti-cancer therapy or as a diagnostic biomarker.
Collapse
Affiliation(s)
- Yanwu Zhou
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Rong Li
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, People's Republic of China.
| |
Collapse
|
2
|
Zhang J, He Y, Ruan Q, Bi A, Zhou J, Weng S, Ma H, Lin T, Wang H, Xu Y. The hsa_circ_0002371/hsa-miR-502-5p/ATG16L1 axis modulates the survival of intracellular Mycobacterium tuberculosis and autophagy in macrophages. Cell Signal 2024; 121:111271. [PMID: 38944259 DOI: 10.1016/j.cellsig.2024.111271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Circular RNAs (circRNAs) play a critical role in pathological mechanisms of Mycobacterium tuberculosis (Mtb) and can be used as a new biomarker for active tuberculosis (ATB) diagnosis. Therefore, we identified significantly dysregulated circRNAs in ATB patients and healthy controls (HC) and explored their molecular mechanism. We found that hsa_circ_0002371 was significantly up-regulated in PBMCs of ATB patients and Mycobacterium tuberculosis H37Rv- or Mycobacterium bovis bacillus Calmette Guerin (BCG)-infected THP-1 cells. Functional experiments demonstrated that hsa_circ_0002371 inhibited autophagy in BCG-infected THP-1 cells and promoted intracellular BCG survival rate. In terms of mechanism, hsa_circ_0002371 facilitated the expression of hsa-miR-502-5p, as shown by bioinformatics and dual-luciferase reporter gene analysis, respectively. Notably, hsa-miR-502-5p inhibited autophagy via suppressing autophagy related 16 like 1 (ATG16L1) in BCG-infected macrophages and thus promoting intracellular BCG growth. In summation, hsa_circ_0002371 increased the suppression of hsa-miR-502-5p on ATG16L1 and inhibited autophagy to promote Mtb growth in macrophages. In Conclusion, our data suggested that hsa_circ_0002371 was significantly up-regulated in the PBMCs of ATB patients compared with HC. The hsa_circ_0002371/hsa-miR-502-5p/ATG16L1 axis promoted the survival of intracellular Mtb and inhibited autophagy in macrophages. Our findings suggested hsa_circ_0002371 could act as a potential diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Jinyi Zhang
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Yumo He
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Qiaoling Ruan
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Aixiao Bi
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jingyu Zhou
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shufeng Weng
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Huixia Ma
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Taiyue Lin
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Honghai Wang
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Ying Xu
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Kousa YA, Singh S, Horvath A, Tomasso F, Nazarian J, Henderson L, Mansour TA. Transcriptomic Meta-analysis Identifies Long Non-Coding RNAs Mediating Zika's Oncolytic Impact in Glioblastoma Multiforme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.04.605859. [PMID: 39372798 PMCID: PMC11452190 DOI: 10.1101/2024.08.04.605859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and lethal form of brain cancer with few effective treatments. In this context, Zika virus has emerged as a promising therapeutic agent due to its ability to selectively infect and kill GBM cells. To elucidate these mechanisms and expand the landscape of oncolytic virotherapy, we pursued a transcriptomic meta-analysis comparing the molecular signatures of Zika infection in GBM and neuroblastoma (NBM). Over-representation analysis of dysregulated coding genes showed significant enrichment of tumor necrosis factor (TNF), NF-κB, and p53 signaling pathways. A refined list of long non-coding RNAs consistently dysregulated in Zika-infected GBMs was also developed. Functional review of these candidates revealed their potential regulatory role in Zika-mediated oncolysis. We performed validation of the less-researched targets in adult and pediatric GBM cell lines and found significant differential regulation, as predicted. Altogether, our results provide novel insights into the molecular mechanisms underlying the effect of Zika on GBM. We highlight potential therapeutic targets that could be further interrogated to improve the efficacy of tumor cell death and the utility of Zika as an adjuvant virotherapy for GBM and other related cancers.
Collapse
|
4
|
Wang L, Yao Y, Si D. MMP-3 gene regulates the carcinogenesis and metabolic process of ovarian cancer, evidence from a Chinese population: Observational study and meta-analysis. Medicine (Baltimore) 2023; 102:e36471. [PMID: 38115289 PMCID: PMC10727570 DOI: 10.1097/md.0000000000036471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
The current investigation aims to explore the relationship between matrix metalloproteinase-3 (MMP-3) gene polymorphism and ovarian cancer (OC) risk. Two hundred forty pathologically confirmed OC patients and 390 healthy controls participated in the present investigation. Polymerase chain reaction-restriction fragment length polymorphism was applied to investigate the present polymorphism. At the same time, the meta-analysis was also performed to comprehensively explore the relationship. Three genotypes (5A/5A, 5A/6A, and 6A/6A) were observed for MMP-3 gene polymorphism. 6A/6A genotype and 6A allele displayed significant increase in OC patients (all P < .05). Meta-analysis found that no significant results (all P > .05). In conclusion, our results indicate that MMP-3 gene polymorphism contributes increased risk to OC for southern Chinese population. And meta-analysis indicates that MMP-3 gene polymorphism contributes no risk to OC in other populations.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yanping Yao
- Department of Pharmacy, Suzhou Xiangcheng People’s Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Dan Si
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
5
|
Yu C, Huang X, Huang R, Wang P, Cai Z, Guo Z, Lan Q, Cao H, Yu J. Hsa_circ_0079557 Promotes the Proliferation of Colorectal Cancer Cells Through the hsa_circ_0079557/miR-502-5p/CCND1 Axis. Cancer Genomics Proteomics 2023; 20:567-581. [PMID: 37889059 PMCID: PMC10614065 DOI: 10.21873/cgp.20406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/22/2023] [Accepted: 08/04/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND/AIM Recent studies have demonstrated the crucial regulatory roles of circular RNAs (circRNAs) in cancer initiation and progression. The sponge mechanism of circRNAs has been shown to be widely active in various types of tumors. However, many circRNAs still have not been verified to function through this mechanism. This study aimed to investigate the regulatory mechanism of hsa_circ_0079557 in colorectal cancer (CRC) and its role in CRC progression. MATERIALS AND METHODS Raw gene expression profile datasets were downloaded from Gene Expression Omnibus (GEO) and combined to form a new dataset. Hsa_circ_0079557 was found to be highly expressed in CRC. Its role was evaluated in vitro and in vivo through a series of experiments, including quantitative real-time polymerase chain reaction (qRT-PCR), flow cytometry, colony formation, cell counting kit-8 (CCK-8), transwell assays, scratch wound healing assays, nude mice experiments, and immunohistochemistry (IHC). The association between hsa_circ_0079557 and the identified target microRNAs (miRNA) was confirmed through fluorescence in situ hybridization (FISH) and dual-luciferase reporter assays. The downstream target proteins were predicted using the web-based tool "TargetScan," and their expressions were determined using Western blot (WB). RESULTS Hsa_circ_0079557 was found to be relatively up-regulated in CRC tissues and cell lines. Suppression of hsa_circ_0079557 expression inhibited cell proliferation in vitro and in vivo. Additionally, hsa_circ_0079557 acted as a "molecular sponge" for miR-502-5p, up-regulating the expression of Cyclin D1 (CCND1). CONCLUSION In this study, we identify a highly expressed circRNA in CRC and propose a novel pathway of hsa_circ_0079557/miR-502-5p/CCND1 in CRC.
Collapse
Affiliation(s)
- Chao Yu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xue Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Renli Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Peiqi Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zongda Cai
- Department of Gastrointestinal Sugery, First Quanzhou Hospital, Fujian Medical University, Quanzhou, P.R. China
| | - Zeyi Guo
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Qingnan Lan
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Haodi Cao
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangdong, P.R. China
| | - Jinlong Yu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China;
| |
Collapse
|
6
|
Meng W, Jiang Z, Zhang X, Cai B, Ma L, Guan Y. Comprehensive Pan-Cancer Analysis of GINS2 for Human Tumour Prognosis and as an Immunological Biomarker. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3119721. [PMID: 36466552 PMCID: PMC9711967 DOI: 10.1155/2022/3119721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/07/2023]
Abstract
BACKGROUND In recent years, more and more reports have shown that GINS complex subunit 2 (GINS2) plays an important role in the occurrence and progression of tumours. However, there is a lack of comprehensive and systematic research on its prognostic and immune effects in pan-cancer. Therefore, this study is aimed at investigating the prognostic value and immune-related role of GINS2 in human tumours and providing a comprehensive understanding of its carcinogenic mechanism in pan-cancer. METHODS We investigated different databases, including TIMER, TCGA, GTEX, CPTAC, GEPIA, and SangerBox. The study was carried out on the expression and prognosis of GINS2 in human tumours, immune infiltration and microenvironment, immune checkpoints, neoantigens, tumour mutational burden, microsatellite instability, mismatch repair (MMR) genes, methylation, cancer-associated fibroblasts (CAFs), and enrichment analysis of gene set. RESULTS GINS2 plays a potential carcinogenic role in various human tumours through mRNA and protein levels. It is highly expressed in most cancers, and its expression is significantly correlated with tumour prognosis. In addition, the expression of GINS2 is associated with immune microenvironment and immune infiltration, especially in brain lower-grade glioma, lung squamous cell carcinoma, TGCT, breast invasive carcinoma, and glioblastoma multiforme. At the same time, GINS2 is related to immune neoantigens and the expression profiles of immune checkpoint genes in pan-cancer. It also affects the expression of DNA MMR genes and methyltransferase in pan-cancer. Finally, the correlation between GINS2 and CAF abundance in most tumours was studied, and an enrichment analysis of GINS2 and its related proteins was also carried out. CONCLUSION This is the first study on GINS2 as a prognostic and immune mechanism in pan-cancer. GINS2 may be a valuable prognostic immunological biomarker of pan-cancer. This paper provides a relatively comprehensive understanding on the correlation of GINS2 with pan-cancer.
Collapse
Affiliation(s)
- Wei Meng
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zhaosheng Jiang
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiang Zhang
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Bo Cai
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Limin Ma
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yangbo Guan
- Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
7
|
Zhou Y, Yan J, Chen H, Zhou W, Yang J. MicroRNA-133a-3p Inhibits Lung Adenocarcinoma Development and Cisplatin Resistance through Targeting GINS4. Cells Tissues Organs 2022; 213:55-66. [PMID: 36273455 DOI: 10.1159/000527684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/13/2022] [Indexed: 02/18/2024] Open
Abstract
GINS subunit complex 4 (GINS4) is fundamental to DNA replication and G1/S phase transition of the cell cycle in eukaryotes. Further, recent studies implied that GINS4 can mediate the progression of several tumors, but its mechanism in lung adenocarcinoma (LUAD) is not clarified. Therefore, the role of GINS4 in LUAD was explored. miR-133a-3p and GINS4 mRNA expression were tested through qRT-PCR. Protein levels of the two genes were assayed by Western blot. Their targeting relationship was predicted and verified by bioinformatics prediction and dual-luciferase analysis. The functions of miR-133a-3p and GINS4 in LUAD were evaluated by Transwell, wound healing, CCK-8, and flow cytometry assays. MTT assay and caspase-3 activity detection were utilized to measure the regulation of miR-133a-3p/GINS4 in the cisplatin sensitivity of LUAD cells. The results showed that GINS4 was highly expressed in LUAD cells (p < 0.05). miR-133a-3p, the upstream gene of GINS4 in LUAD, negatively mediated GINS4 expression. Moreover, overexpressing GINS4 enhanced the proliferative, migratory, and invasive abilities of LUAD cells and inhibited cell apoptosis and the sensitivity to cisplatin, while overexpressing miR-133a-3p caused the contrary results. However, the promoting effects of GINS4 overexpression on LUAD could be offset by miR-133a-3p overexpression. miR-133a-3p could regulate malignant behaviors and cisplatin sensitivity of LUAD cells through negatively regulating GINS4. In conclusion, our findings demonstrated that GINS4 was overexpressed in LUAD and promoted the malignant behavior of LUAD cells. Moreover, miR-133a-3p could negatively regulate GINS4, thereby suppressing the malignant progression and increasing the cisplatin sensitivity of LUAD.
Collapse
Affiliation(s)
- Yafu Zhou
- The First-Affiliated Hospital of Hunan Normal University (Department of Cardiac Thoracic Surgery, Hunan Provincial People's Hospital), Changsha, China
| | - Jianhua Yan
- The First-Affiliated Hospital of Hunan Normal University (Department of Cardiac Thoracic Surgery, Hunan Provincial People's Hospital), Changsha, China
| | - Huiguo Chen
- The First-Affiliated Hospital of Hunan Normal University (Department of Cardiac Thoracic Surgery, Hunan Provincial People's Hospital), Changsha, China
| | - Wenwu Zhou
- The First-Affiliated Hospital of Hunan Normal University (Department of Cardiac Thoracic Surgery, Hunan Provincial People's Hospital), Changsha, China
| | - Jinsong Yang
- The First-Affiliated Hospital of Hunan Normal University (Department of Cardiac Thoracic Surgery, Hunan Provincial People's Hospital), Changsha, China
| |
Collapse
|
8
|
Shan DD, Zheng QX, Chen Z. Go-Ichi-Ni-San 2: A potential biomarker and therapeutic target in human cancers. World J Gastrointest Oncol 2022; 14:1892-1902. [PMID: 36310704 PMCID: PMC9611433 DOI: 10.4251/wjgo.v14.i10.1892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer incidence and mortality are increasing globally, leading to its rising status as a leading cause of death. The Go-Ichi-Ni-San (GINS) complex plays a crucial role in DNA replication and the cell cycle. The GINS complex consists of four subunits encoded by the GINS1, GINS2, GINS3, and GINS4 genes. Recent findings have shown that GINS2 expression is upregulated in many diseases, particularly tumors. For example, increased GINS2 expression has been found in cervical cancer, gastric adenocarcinoma, glioma, non-small cell lung cancer, and pancreatic cancer. It correlates with the clinicopathological characteristics of the tumors. In addition, high GINS2 expression plays a pro-carcinogenic role in tumor development by promoting tumor cell proliferation and migration, inhibiting tumor cell apoptosis, and blocking the cell cycle. This review describes the upregulation of GINS2 expression in most human tumors and the pathway of GINS2 in tumor development. GINS2 may serve as a new marker for tumor diagnosis and a new biological target for therapy.
Collapse
Affiliation(s)
- Dan-Dan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
9
|
Zhou C, Chen Z, Xiao B, Xiang C, Li A, Zhao Z, Li H. Comprehensive analysis of GINS subunits prognostic value and ceRNA network in sarcoma. Front Cell Dev Biol 2022; 10:951363. [PMID: 36092720 PMCID: PMC9462653 DOI: 10.3389/fcell.2022.951363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The GINS complex, composed of GINS1/2/3/4 subunits, is an essential structure of Cdc45-MCM-GINS (CMG) helicase and plays a vital role in establishing the DNA replication fork and chromosome replication. Meanwhile, GINS genes have been associated with the poor prognosis of various malignancies. However, the abnormal expression of GINS genes and their diagnostic and prognostic value in sarcomas (SARC) remain unclear. Methods: Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier Plotter, Cancer cell line encyclopedia (CCLE), The University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN), R studio, and Tumor Immune Estimation Resource (TIMER) were used to analyze the expression profiles, prognostic value, biological function, ceRNA, and immune infiltration associated with GINS genes in sarcomas. Results: We found that GINS1/2/3/4 genes exhibited significantly upregulated transcription levels in SARC samples compared to non-tumor tissues and exhibited high expression levels in sarcoma cell lines. In addition, SARC patients with increased expression levels of GINS1/2/3/4 showed poorer survival rates. Immune infiltration analysis showed that GINS subunits were closely associated with the infiltration of immune cells in sarcomas. Conclusion: Our research identified GINS subunits as potential diagnostic and prognostic biological targets in SARC and elucidated their underlying effects in the genesis and progression of SARC. These results may provide new opportunities and research directions for targeted sarcoma therapy.
Collapse
Affiliation(s)
- Chuqiao Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Zhuoyuan Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Bo Xiao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Cheng Xiang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Aoyu Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Ziyue Zhao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Hui Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
- *Correspondence: Hui Li,
| |
Collapse
|
10
|
A Panel of Eight miRNAs Is Deregulated in HTLV-2 Infected PBMCs and BJABGu Cell Line. Int J Mol Sci 2022; 23:ijms23147583. [PMID: 35886938 PMCID: PMC9320395 DOI: 10.3390/ijms23147583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
Despite human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 being retroviruses closely related at a genomic level, HTLV-2 differs from HTLV-1 in terms of pathogenicity in both single infection and coinfection contexts. Moreover, the HTLV-2 association with clinical outcomes is still debated and several mechanisms underlying HTLV-2 infection remain unexplored as well. Cellular miRNAs are key factors in the post-transcriptional regulation of gene expression and they are known to be potential targets for several pathogens to control the host microenvironment and, in particular, escape immune responses. Here, we identified a HTLV-2-related signature of eight miRNAs (miR-125a-3p, miR-381-3p, miR-502-5p, miR-708-5p, miR-548d-5p, miR-548c-5p, miR-1-3p, and miR-511-5p) in both HTLV-2 infected PBMC and BJABGu cell lines. Altered miRNA expression patterns were correlated with the impairment of Th cell differentiation and signaling pathways driven by cytokines and transcriptional factors such as the Runt-related transcription factor (RUNX) family members. Specifically, we demonstrated that the RUNX2 protein was significantly more expressed in the presence of Tax-2 compared with Tax-1 in an in vitro cell model. To the best of our knowledge, these data represent the first contribution to elucidating the HTLV-2 mediated alteration of host cell miRNA profiles that may impact on HTLV-2 replication and persistent infection.
Collapse
|
11
|
Cai Y, Jia Y. Circular RNA SOX5 promotes the proliferation and inhibits the apoptosis of the hepatocellular carcinoma cells by targeting miR-502-5p/synoviolin 1 axis. Bioengineered 2022; 13:3362-3370. [PMID: 35048790 PMCID: PMC8973662 DOI: 10.1080/21655979.2022.2029110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We aimed to explore the role of circ-SOX5 in the pathogenesis of hepatocellular carcinoma (HCC). The circRNAs in HCC were screened using the GEO database. RT-qPCR was used to detect mRNA expression. Targeting relationships were confirmed by dual luciferase reporter assay and RNA pull-down assay. CCK-8 and EDU staining were used to measure cell viability and proliferation, respectively. Cell apoptosis was determined using flow cytometry. Protein expression was determined by Western blotting. Circ-SOX5 expression was increased in HCC tissues. Inhibition of circ-SOX5 expression reduced the viability, proliferation, and colony formation, and increased the apoptosis of HCC cells. However, miR-502-5p inhibition or overexpression of synoviolin 1 (SYVN1) can reverse the effects of circ-SOX5 knockdown on proliferation and apoptosis. This study demonstrated that the circ-SOX5/miR-502-5p/SYVN1 axis promotes the development of HCC by regulating cell apoptosis. Therefore, circ-SOX5 may be a potential biomarker of HCC.
Collapse
Affiliation(s)
- Yu Cai
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Yuanyuan Jia
- Department of Faculty Development and Teaching Evaluation Office, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|