1
|
Cox SN, Porcelli V, Romano S, Palmieri L, Fratantonio D. Blueberry-derived exosome like nanovesicles carry RNA cargo into HIEC-6 cells and down-regulate LPS-induced inflammatory gene expression: A proof-of-concept study. Arch Biochem Biophys 2025; 764:110266. [PMID: 39674567 DOI: 10.1016/j.abb.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Exosome-like nanovesicles (ELNs) of food origin have received great attention in the last decade, due to the hypothesis that they contain bioactive molecules. ELNs purified from edible species have been shown to be protective and are able to regulate intestinal homeostasis. Despite ELNs being potential rising stars in modern healthy diets and biomedical applications, further research is needed to address underlying knowledge gaps, especially related to the specific molecular mechanism through which they exert their action. Here, we investigate the cellular uptake of blueberry-derived ELNs (B-ELNs) using a human stabilized intestinal cell line (HIEC-6) and assess the ability of B-ELNs to modulate the expression of inflammatory genes in response to lipopolysaccharide (LPS). Our findings show that B-ELNs are internalized by HIEC-6 cells and transport labeled RNA cargo into them. Pretreatment with B-ELNs reduces LPS-induced ROS generation and cell viability loss, while modulating the expression of 28 inflammatory genes compared to control. Pathway analysis demonstrates their ability to suppress inflammatory responses triggered by LPS. In conclusion, our data indicate that B-ELNs are up taken by HIEC-6 cells and can modulate inflammatory responses after LPS stimulation, suggesting a therapeutic potential. This study demonstrates the role of B-ELNs in regulating crucial biological processes, like anti-inflammatory responses, which could support intestinal health.
Collapse
Affiliation(s)
- Sharon Natasha Cox
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy.
| | - Vito Porcelli
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy.
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, Federico II, 5, 80131, Naples, Italy.
| | - Luigi Palmieri
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy.
| | | |
Collapse
|
2
|
He J, Huang C, Kong L, Huang Y, Ou Z, Yang M, Wu J, Yang Y, Yao H, Yi J, Liu S. Betulinic acid mitigates lipopolysaccharide-induced intestinal injury of weaned piglets through modulation of the mitochondrial quality control. Int Immunopharmacol 2025; 148:114097. [PMID: 39827669 DOI: 10.1016/j.intimp.2025.114097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Intestinal injury of weaned piglets often leads to reduced immunity, diarrhea and growth retardation, resulting in significant economic losses to agriculture. Betulinic acid (BA) is a natural plant-derived active ingredient with multiple pharmacological activities including immune modulation and anti-inflammatory. This study was aimed to investigate the potential mechanism that BA as a feed additive mitigated lipopolysaccharide (LPS)-induced intestinal injury in piglets. The results indicated that BA pretreatment improved the morphology and structure of the intestine, enhanced intestinal mucosal barrier function, and activated the PPAR signaling pathway to reduce the mRNA levels of intestinal CD40 and CXCL13. Meanwhile, BA pretreatment improved the LPS-induced disruption of intestinal microbiota by increasing the abundance of the Firmicutes and decreasing the abundance of the Bacteroidota and Proteobacteria. Furthermore, BA pretreatment activated the AMPK/SIRT1/PGC-1α signaling pathway to enhance mitochondrial biogenesis, restored a balance to mitochondrial dynamics, and modulated the PINK1/Parkin, BNIP3 and FUNDC1 signaling pathways to activate mitophagy, thereby alleviating LPS-induced intestinal injury. Overall, the present study elucidated that dietary supplementation with BA could alleviate LPS-induced intestinal injury in weaned piglets by regulating mitochondrial quality control, which provided a novel approach for alleviating intestinal stress in weaned piglets.
Collapse
Affiliation(s)
- Jiayu He
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chunlin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhaoping Ou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Mingqi Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jiao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yu Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Huan Yao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Shuiping Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Zhao J, Zhang X, Li F, Lei X, Ge L, Li H, Zhao N, Ming J. The Effects of Interventions with Glucosinolates and Their Metabolites in Cruciferous Vegetables on Inflammatory Bowel Disease: A Review. Foods 2024; 13:3507. [PMID: 39517291 PMCID: PMC11544840 DOI: 10.3390/foods13213507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract which affects millions of individuals worldwide. Despite advancements in treatment options, there is increasing interest in exploring natural interventions with minimal side effects. Cruciferous vegetables, such as broccoli, cabbage, and radishes, contain bioactive compounds known as glucosinolates (GLSs), which have shown promising effects in alleviating IBD symptoms. This review aims to provide a comprehensive overview of the physiological functions and mechanisms of cruciferous GLSs and their metabolites in the context of IBD. Reviewed studies demonstrated that GLSs attenuated all aspects of IBD, including regulating the intestinal microbiota composition, exerting antioxidant and anti-inflammatory effects, restoring intestinal barrier function, and regulating epigenetic mechanisms. In addition, a few interventions with GLS supplementation in clinical studies were also discussed. However, there are still several challenges and remaining knowledge gaps, including variations in animals' experimental outcomes, the bioavailability of certain compounds, and few clinical trials to validate their effectiveness in human subjects. Addressing these issues will contribute to a better understanding of the therapeutic potential of cruciferous GLSs and their metabolites in the management of IBD.
Collapse
Affiliation(s)
- Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, China; (J.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, China
| | - Xiaoqin Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (J.Z.)
| | - Fuhua Li
- College of Food Science, Southwest University, Chongqing 400715, China; (J.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, China; (J.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, China
| | - Lihong Ge
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Honghai Li
- College of Food Science, Southwest University, Chongqing 400715, China; (J.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, China
| | - Nan Zhao
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, China; (J.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Dmytriv TR, Storey KB, Lushchak VI. Intestinal barrier permeability: the influence of gut microbiota, nutrition, and exercise. Front Physiol 2024; 15:1380713. [PMID: 39040079 PMCID: PMC11260943 DOI: 10.3389/fphys.2024.1380713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/29/2024] [Indexed: 07/24/2024] Open
Abstract
The intestinal wall is a selectively permeable barrier between the content of the intestinal lumen and the internal environment of the body. Disturbances of intestinal wall permeability can potentially lead to unwanted activation of the enteric immune system due to excessive contact with gut microbiota and its components, and the development of endotoxemia, when the level of bacterial lipopolysaccharides increases in the blood, causing chronic low-intensity inflammation. In this review, the following aspects are covered: the structure of the intestinal wall barrier; the influence of the gut microbiota on the permeability of the intestinal wall via the regulation of functioning of tight junction proteins, synthesis/degradation of mucus and antioxidant effects; the molecular mechanisms of activation of the pro-inflammatory response caused by bacterial invasion through the TLR4-induced TIRAP/MyD88 and TRAM/TRIF signaling cascades; the influence of nutrition on intestinal permeability, and the influence of exercise with an emphasis on exercise-induced heat stress and hypoxia. Overall, this review provides some insight into how to prevent excessive intestinal barrier permeability and the associated inflammatory processes involved in many if not most pathologies. Some diets and physical exercise are supposed to be non-pharmacological approaches to maintain the integrity of intestinal barrier function and provide its efficient operation. However, at an early age, the increased intestinal permeability has a hormetic effect and contributes to the development of the immune system.
Collapse
Affiliation(s)
- Tetiana R. Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| | | | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
5
|
Tong YX, Zhu SY, Wang ZY, Zhao YX, Saleem MAU, Malh KK, Li XN, Li JL. Sulforaphane Ameliorate Cadmium-Induced Blood-Thymus Barrier Disruption by Targeting the PI3K/AKT/FOXO1 Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13382-13392. [PMID: 38814005 DOI: 10.1021/acs.jafc.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Cadmium (Cd) is a transition metal ion that is extremely harmful to human and animal biological systems. Cd is a toxic substance that can accumulate in the food chain and cause various health issues. Sulforaphane (SFN) is a natural bioactive compound with potent antioxidant properties. In our study, 80 1 day-old chicks were fed with Cd (140 mg/kg BW/day) and/or SFN (50 mg/kg BW/day) for 90 days. The blood-thymus barrier (BTB) is a selective barrier separating T-lymphocytes from blood and cortical capillaries in the thymus cortex. Our research revealed that Cd could destroy the BTB by downregulating Wnt/β-catenin signaling and induce immunodeficiency, leading to irreversible injury to the immune system. The study emphasizes the health benefits of SFN in the thymus. SFN could ameliorate Cd-triggered BTB dysfunction and pyroptosis in the thymus tissues. SFN modulated the PI3K/AKT/FOXO1 axis, improving the level of claudin-5 (CLDN5) in the thymus to alleviate BTB breakdown. Our findings indicated the toxic impact of Cd on thymus, and BTB could be the specific target of Cd toxicity. The finding also provides evidence for the role of SFN in maintaining thymic homeostasis for Cd-related health issues.
Collapse
Affiliation(s)
- Yu-Xuan Tong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhao-Yi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ying-Xin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | | | - Kanwar Kumar Malh
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
6
|
Zhang Y, Zhang W, Zhao Y, Peng R, Zhang Z, Xu Z, Simal-Gandara J, Yang H, Deng J. Bioactive sulforaphane from cruciferous vegetables: advances in biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38841734 DOI: 10.1080/10408398.2024.2354937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chronic inflammation-induced diseases (CID) are the dominant cause of death worldwide, contributing to over half of all global deaths. Sulforaphane (SFN) derived from cruciferous vegetables has been extensively studied for its multiple functional benefits in alleviating CID. This work comprehensively reviewed the biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications of SFN and its potential mechanisms against CID (e.g., cancer, obesity, type 2 diabetes, et al.), and neurological disorders based on a decade of research. SFN exerts its biological functions through the hydrolysis of glucosinolates by gut microbiota, and exhibits rapid metabolism and excretion characteristics via metabolization of mercapturic acid pathway. Microencapsulation is an important way to improve the stability and targeted delivery of SFN. The health benefits of SNF against CID are attributed to the multiple regulatory mechanisms including modulating oxidative stress, inflammation, apoptosis, immune response, and intestinal homeostasis. The clinical applications of SFN and related formulations show promising potential; however, further exploration is required regarding the sources, dosages, toxicity profiles, and stability of SFN. Together, SFN is a natural product with great potential for development and application, which is crucial for the development of functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yanli Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Renjie Peng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenzhen Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Liu X, Zhou Y, Zhang Y, Cui X, Yang D, Li Y. Octreotide attenuates intestinal barrier damage by maintaining basal autophagy in Caco2 cells. Mol Med Rep 2024; 29:90. [PMID: 38577927 PMCID: PMC11019401 DOI: 10.3892/mmr.2024.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
The intestinal mucosal barrier is of great importance for maintaining the stability of the internal environment, which is closely related to the occurrence and development of intestinal inflammation. Octreotide (OCT) has potential applicable clinical value for treating intestinal injury according to previous studies, but the underlying molecular mechanisms have remained elusive. This article is based on a cell model of inflammation induced by lipopolysaccharide (LPS), aiming to explore the effects of OCT in protecting intestinal mucosal barrier function. A Cell Counting Kit‑8 assay was used to determine cell viability and evaluate the effectiveness of OCT. Gene silencing technology was used to reveal the mediated effect of somatostatin receptor 2 (SSTR2). The changes in intestinal permeability were detected through trans‑epithelial electrical resistance and fluorescein isothiocyanate‑dextran 4 experiments, and the alterations in tight junction proteins were detected using immunoblotting and reverse transcription fluorescence‑quantitative PCR technology. Autophagosomes were observed by electron microscopy and the dynamic changes of the autophagy process were characterized by light chain (LC)3‑II/LC3‑I conversion and autophagic flow. The results indicated that SSTR2‑dependent OCT can prevent the decrease in cell activity. After LPS treatment, the permeability of monolayer cells decreased and intercellular tight junctions were disrupted, resulting in a decrease in tight junction protein zona occludens 1 in cells. The level of autophagy‑related protein LC3 was altered to varying degrees at different times. These abnormal changes gradually returned to normal levels after the combined application of LPS and SSTR2‑dependent OCT, confirming the role of OCT in protecting intestinal barrier function. These experimental results suggest that OCT maintains basal autophagy and cell activity mediated by SSTR2 in intestinal epithelial cells, thereby preventing the intestinal barrier dysfunction in inflammation injury.
Collapse
Affiliation(s)
- Xiaoli Liu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yan Zhou
- Department of Gastrointestinal Surgery, Yantai Mountain Hospital, Yantai, Shandong 264003, P.R. China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xigang Cui
- Department of Gastrointestinal and Thyroid Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Donglin Yang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yuling Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
8
|
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Isothiocyanates: Insights from Sulforaphane. Biomedicines 2024; 12:1169. [PMID: 38927376 PMCID: PMC11200786 DOI: 10.3390/biomedicines12061169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Isothiocyanates (ITCs) belong to a group of natural products that possess a highly reactive electrophilic -N=C=S functional group. They are stored in plants as precursor molecules, glucosinolates, which are processed by the tyrosinase enzyme upon plant tissue damage to release ITCs, along with other products. Isolated from broccoli, sulforaphane is by far the most studied antioxidant ITC, acting primarily through the induction of a transcription factor, the nuclear factor erythroid 2-related factor 2 (Nrf2), which upregulates downstream antioxidant genes/proteins. Paradoxically, sulforaphane, as a pro-oxidant compound, can also increase the levels of reactive oxygen species, a mechanism which is attributed to its anticancer effect. Beyond highlighting the common pro-oxidant and antioxidant effects of sulforaphane, the present paper was designed to assess the diverse anti-inflammatory mechanisms reported to date using a variety of in vitro and in vivo experimental models. Sulforaphane downregulates the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, cycloxyhenase-2, and inducible nitric oxide synthase. The signalling pathways of nuclear factor κB, activator protein 1, sirtuins 1, silent information regulator sirtuin 1 and 3, and microRNAs are among those affected by sulforaphane. These anti-inflammatory actions are sometimes due to direct action via interaction with the sulfhydryl structural moiety of cysteine residues in enzymes/proteins. The following are among the topics discussed in this paper: paradoxical signalling pathways such as the immunosuppressant or immunostimulant mechanisms; crosstalk between the oxidative and inflammatory pathways; and effects dependent on health and disease states.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
9
|
Deng G, Wen B, Jia L, Liu J, Yan Q. Clostridium butyricum upregulates GPR109A/AMPK/PGC-1α and ameliorates acute pancreatitis-associated intestinal barrier injury in mice. Arch Microbiol 2024; 206:265. [PMID: 38761195 DOI: 10.1007/s00203-024-04001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Acute pancreatitis frequently causes intestinal barrier damage, which aggravates pancreatitis. Although Clostridium butyricum exerts anti-inflammatory and protective effects on the intestinal barrier during acute pancreatitis, the underlying mechanism is unclear. The G protein-coupled receptors 109 A (GPR109A) and adenosine monophosphate-activated protein kinase (AMPK)/ peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) signaling pathways can potentially influence the integrity of the intestinal barrier. Our study generated acute pancreatitis mouse models via intraperitoneal injection of cerulein and lipopolysaccharides. After intervention with Clostridium butyricum, the model mice showed reduced small intestinal and colonic intestinal barrier damage, dysbiosis amelioration, and increased GPR109A/AMPK/PGC-1α expression. In conclusion, Clostridium butyricum could improve pancreatic and intestinal inflammation and pancreatic injury, and relieve acute pancreatitis-induced intestinal barrier damage in the small intestine and colon, which may be associated with GPR109A/AMPK/PGC-1α.
Collapse
Affiliation(s)
- Guiqing Deng
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Biyan Wen
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Lin Jia
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Jiaxin Liu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Qingqing Yan
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| |
Collapse
|
10
|
Alzahrani NA, Bahaidrah KA, Mansouri RA, Aldhahri RS, Abd El-Aziz GS, Alghamdi BS. Possible Prophylactic Effects of Sulforaphane on LPS-Induced Recognition Memory Impairment Mediated by Regulating Oxidative Stress and Neuroinflammatory Proteins in the Prefrontal Cortex Region of the Brain. Biomedicines 2024; 12:1107. [PMID: 38791068 PMCID: PMC11118062 DOI: 10.3390/biomedicines12051107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) presents a significant global health concern, characterized by neurodegeneration and cognitive decline. Neuroinflammation is a crucial factor in AD development and progression, yet effective pharmacotherapy remains elusive. Sulforaphane (SFN), derived from cruciferous vegetables and mainly from broccoli, has shown a promising effect via in vitro and in vivo studies as a potential treatment for AD. This study aims to investigate the possible prophylactic mechanisms of SFN against prefrontal cortex (PFC)-related recognition memory impairment induced by lipopolysaccharide (LPS) administration. METHODOLOGY Thirty-six Swiss (SWR/J) mice weighing 18-25 g were divided into three groups (n = 12 per group): a control group (vehicle), an LPS group (0.75 mg/kg of LPS), and an LPS + SFN group (25 mg/kg of SFN). The total duration of the study was 3 weeks, during which mice underwent treatments for the initial 2 weeks, with daily monitoring of body weight and temperature. Behavioral assessments via novel object recognition (NOR) and temporal order recognition (TOR) tasks were conducted in the final week of the study. Inflammatory markers (IL-6 and TNF), antioxidant enzymes (SOD, GSH, and CAT), and pro-oxidant (MDA) level, in addition to acetylcholine esterase (AChE) activity and active (caspase-3) and phosphorylated (AMPK) levels, were evaluated. Further, PFC neuronal degeneration, Aβ content, and microglial activation were also examined using H&E, Congo red staining, and Iba1 immunohistochemistry, respectively. RESULTS SFN pretreatment significantly improved recognition memory performance during the NOR and TOR tests. Moreover, SFN was protected from neuroinflammation and oxidative stress as well as neurodegeneration, Aβ accumulation, and microglial hyperactivity. CONCLUSION The obtained results suggested that SFN has a potential protective property to mitigate the behavioral and biochemical impairments induced by chronic LPS administration and suggested to be via an AMPK/caspase-3-dependent manner.
Collapse
Affiliation(s)
- Noor Ahmed Alzahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
| | - Khulud Abdullah Bahaidrah
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
| | - Rahaf Saeed Aldhahri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
- Department of Biochemistry, Faculty of Sciences, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Gamal S. Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Sah DK, Arjunan A, Park SY, Lee B, Jung YD. Sulforaphane Inhibits IL-1β-Induced IL-6 by Suppressing ROS Production, AP-1, and STAT3 in Colorectal Cancer HT-29 Cells. Antioxidants (Basel) 2024; 13:406. [PMID: 38671854 PMCID: PMC11047376 DOI: 10.3390/antiox13040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) stands as a major cause of cancer-related mortality globally, accounting for approximately 881,000 deaths each year. Traditional approaches such as chemotherapy and surgery have been the primary treatment modalities, yet the outcomes for patients with metastatic CRC are often unsatisfactory. Recent research has focused on targeting the pathways involved in oxidative stress, inflammation, and metastasis to enhance the survival of CRC patients. Within this context, sulforaphane (SFN), a notable phytochemical found predominantly in cruciferous vegetables, has been recognized as a potential anticancer agent. However, the specific mechanisms through which SFN may exert its chemopreventive effects in CRC remain unclear. This study explores the impact of SFN on IL-1β-induced IL-6 activation and MAPK and AP-1 signaling in HT-29 cells. Our findings reveal that SFN treatment not only diminishes IL-1β-stimulated IL-6 expression but also reduces oxidative stress by curtailing reactive oxygen species (ROS) production. Furthermore, it hinders the proliferation and invasiveness of HT-29 cells through the modulation of MAPK/AP-1 and STAT3 signaling pathways. These results indicate that SFN mitigates IL-1β-induced IL-6 expression in CRC cells by attenuating ROS production and disrupting MAPK/AP-1 signaling. This suggests that SFN holds significant potential as a chemotherapeutic agent for both treating and preventing CRC.
Collapse
Affiliation(s)
- Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| | - Archana Arjunan
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| | - Seon Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501190, Republic of Korea;
| | - Bora Lee
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| |
Collapse
|
12
|
Zhang L, Tan X, Song F, Li D, Wu J, Gao S, Sun J, Liu D, Zhou Y, Mei W. Activation of G-protein-coupled receptor 39 reduces neuropathic pain in a rat model. Neural Regen Res 2024; 19:687-696. [PMID: 37721302 PMCID: PMC10581569 DOI: 10.4103/1673-5374.380905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/13/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
Activated G-protein-coupled receptor 39 (GPR39) has been shown to attenuate inflammation by interacting with sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α). However, whether GPR39 attenuates neuropathic pain remains unclear. In this study, we established a Sprague-Dawley rat model of spared nerve injury-induced neuropathic pain and found that GPR39 expression was significantly decreased in neurons and microglia in the spinal dorsal horn compared with sham-operated rats. Intrathecal injection of TC-G 1008, a specific agonist of GPR39, significantly alleviated mechanical allodynia in the rats with spared nerve injury, improved spinal cord mitochondrial biogenesis, and alleviated neuroinflammation. These changes were abolished by GPR39 small interfering RNA (siRNA), Ex-527 (SIRT1 inhibitor), and PGC-1α siRNA. Taken together, these findings show that GPR39 activation ameliorates mechanical allodynia by activating the SIRT1/PGC-1α pathway in rats with spared nerve injury.
Collapse
Affiliation(s)
- Longqing Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xi Tan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fanhe Song
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiayi Wu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shaojie Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia Sun
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Daiqiang Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yaqun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Mei
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
13
|
Cheng X, Zhu Y, Huang J, Li Y, Jiang X, Yang Q. A neutral polysaccharide from Persicaria hydropiper (L.) Spach ameliorates lipopolysaccharide-induced intestinal barrier injury via regulating the gut microbiota and modulating AKT/PI3K/mTOR and MAPK signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117403. [PMID: 37952732 DOI: 10.1016/j.jep.2023.117403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Persicaria hydropiper (L.) Spach, a herb that is prevalent across Asia and Europe, finds utility as both a culinary ingredient and medicinal herb. In China, P. hydropiper decoction is commonly employed to alleviate dysentery, gastroenteritis, and diarrhea symptoms. AIM OF THE STUDY To assess the effects of a neutral polysaccharide from P. hydropiper (PHP) on the intestinal barrier (IB) injury induced by lipopolysaccharide (LPS) in mice, and elucidate the molecular mechanisms involved. MATERIALS AND METHODS PHP was extracted from dried P. hydropiper herb using hot water extraction, followed by ethanol precipitation. The extract underwent successive isolation and purification steps involving anion-exchange and gel filtration chromatography. The primary structure of PHP was determined using Fourier-transformed infrared spectroscopy, ion chromatography, gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy. Male BALB/c mice were randomly assigned to control (CON), model (MOD), berberine hydrochloride (BBR), and PHP (20, 40 and 80 mg/kg) groups. Histopathological changes in jejunal tissues were assessed through hematoxylin and eosin (HE) staining. The expression levels of proteins and genes involved in AKT/PI3K/mTOR and MAPK signaling pathways were evaluated using qRT-PCR and Western blotting, respectively. The composition and abundance of the gut microbiota in mice were analyzed using high-throughput 16S rRNA gene sequencing. Additionally, the concentrations of short-chain fatty acids (SCFAs) were determined using GC-MS. RESULTS The main components of PHP included arabinose, galactose, and glucose (molar ratio = 1.00:5.52:11.39). The backbone of PHP consisted of →4)-Glcp-(1→, →4,6)-Glcp-(1→, →4)-Galp-(1→, →4,6)-Galp-(1→. The branched chains primarily consisted of 5)-Araf-(1→ residues, which were attached to the backbone through →6)-Glcp-(1→ and →6)-Galp-(1→ at the 6-position. Histological analysis demonstrated that PHP exhibited a mitigating effect on intestinal damage induced by LPS. PHP could markedly reduce the mRNA levels of PI3K, AKT, mTOR, p70 S6K, Ras, Raf1, MEK1/2, p38, ERK1/2, and JNK, while downregulating the protein levels of p-mTOR, p-PI3K, p-AKT, p-p38, p-ERK, and p-JNK. PHP also modulated the diversities and abundances of the gut microbiota, resulting in an increase in the abundances of Lactobacillaceae, Anaerovoracaceae, Lachnospiraceae, Eggerthellaceae, and Desulfovibrionaceae and a decrease in the abundances of Muribaculaceae, Prevotellaceae, and Rikenellaceae. Additionally, PHP significantly increased the content of various SCFAs. CONCLUSION PHP emerges as a pivotal factor in the repair of IB injury by virtue of its ability to regulate the gut microbiota, elevate SCFA levels, and inhibit the MAPK and AKT/PI3K/mTOR pathways. It is worth noting that the therapeutic effect of high-dose PHP was remarkably significant, surpassing even the positive control of berberine hydrochloride.
Collapse
Affiliation(s)
- Xuanxuan Cheng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China; Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangzhou, China; Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, Guangzhou, China.
| | - Yuehua Zhu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China; Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangzhou, China; Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, Guangzhou, China.
| | - Jiahuan Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China; Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangzhou, China; Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, Guangzhou, China.
| | - Yufei Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China; Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangzhou, China; Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, Guangzhou, China.
| | - Xiaolin Jiang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China; Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangzhou, China; Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, Guangzhou, China.
| | - Quan Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China; Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangzhou, China; Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, Guangzhou, China.
| |
Collapse
|
14
|
Labes S, Froy O, Tabach Y, Shamir R, Shouval DS, Weintraub Y. Mucosal Genes Encoding Clock, Inflammation and Their Mutual Regulators Are Disrupted in Pediatric Patients with Active Ulcerative Colitis. Int J Mol Sci 2024; 25:1488. [PMID: 38338765 PMCID: PMC10855499 DOI: 10.3390/ijms25031488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Patients with active ulcerative colitis (UC) display a misalignment of the circadian clock, which plays a vital role in various immune functions. Our aim was to characterize the expression of clock and inflammation genes, and their mutual regulatory genes in treatment-naïve pediatric patients with UC. Using the Inflammatory Bowel Disease Transcriptome and Metatranscriptome Meta-Analysis (IBD TaMMA) platform and R algorithms, we analyzed rectal biopsy transcriptomic data from two cohorts (206 patients with UC vs. 20 healthy controls from the GSE-109142 study, and 43 patients with UC vs. 55 healthy controls from the GSE-117993 study). We compared gene expression levels and correlation of clock genes (BMAL1, CLOCK, PER1, PER2, CRY1, CRY2), inflammatory genes (IκB, IL10, NFκB1, NFκB2, IL6, TNFα) and their mutual regulatory genes (RORα, RORγ, REV-ERBα, PGC1α, PPARα, PPARγ, AMPK, SIRT1) in patients with active UC and healthy controls. The clock genes BMAL1, CLOCK, PER1 and CRY1 and the inflammatory genes IκB, IL10, NFκB1, NFκB2, IL6 and TNFα were significantly upregulated in patients with active UC. The genes encoding the mutual regulators RORα, RORγ, PGC1α, PPARα and PPARγ were significantly downregulated in patients with UC. A uniform pattern of gene expression was found in healthy controls compared to the highly variable expression pattern in patients with UC. Among the healthy controls, inflammatory genes were positively correlated with clock genes and they all showed reduced expression. The difference in gene expression levels was associated with disease severity and endoscopic score but not with histological score. In patients with active UC, clock gene disruption is associated with abnormal mucosal immune response. Disrupted expression of genes encoding clock, inflammation and their mutual regulators together may play a role in active UC.
Collapse
Affiliation(s)
- Sapir Labes
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (S.L.); (Y.T.)
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (S.L.); (Y.T.)
| | - Raanan Shamir
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel; (R.S.); (D.S.S.); (Y.W.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dror S. Shouval
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel; (R.S.); (D.S.S.); (Y.W.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yael Weintraub
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel; (R.S.); (D.S.S.); (Y.W.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
15
|
Guo F, Fu L, Lu Z. Effect of electroacupuncture combined with sulforaphane in the treatment of sarcopenia in SAMP8 mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:560-566. [PMID: 38629101 PMCID: PMC11017848 DOI: 10.22038/ijbms.2024.71345.15509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/17/2023] [Indexed: 04/19/2024]
Abstract
Objectives Skeletal muscles mitochondrial dysfunction is the main cause of sarcopenia. Both electroacupuncture (EA) and sulforaphane (SFN) have been shown to improve oxidative stress and inflammation levels to maintain mitochondrial function, but the effects and mechanisms of their combination on sarcopenia are unclear. This study aimed to investigate the regulatory effects of EA combined with SFN on sarcopenia. Materials and Methods SAMP8 mice were used and intervened with EA or SFN, respectively, and Masson and HE staining were used to observe pathological changes in skeletal muscle tissue. Transmission electron microscopy was used to detect tissue mitochondrial changes. TUNEL staining was used to assess apoptosis. The biochemical and molecular content was tested by ELISA, western blot, and qRT-PCR. Results The results showed that oxidative stress, apoptosis, and IL-6, TNF-α, Atrogin-1, and MuRF1 levels in skeletal muscles cells were suppressed and mitochondrial damage was repaired after EA or SFN intervention. In addition, we found that the above changes were associated with the activation of the AMPK/Sirt1/PGC-1α pathway in skeletal muscle tissues, and the promotion effect of combined EA and SFN intervention was more significant. Conclusion In conclusion, this study found that EA combined with SFN mediated the repair of mitochondrial damage through activation of the AMPK/Sirt1/PGC-1α pathway, thereby alleviating skeletal muscles morphology and function in sarcopenia. This study combines EA with SFN, which not only broadens the use of electroacupuncture and SFN but also provides a scientific experimental basis for the treatment of sarcopenia.
Collapse
Affiliation(s)
- Fei Guo
- Department of TCM Acupuncture, Huzhou Central Hospital & Affiliated Central Hospital Huzhou University, 313000, Huzhou, China
| | - Linlin Fu
- Department of Pathology, Huzhou Central Hospital & Affiliated Central Hospital Huzhou University, 313000, Huzhou, China
| | - Zhenchan Lu
- Department of Neurology, Huzhou Central Hospital & Affiliated Central Hospital Huzhou University, 313000, Huzhou, China
| |
Collapse
|
16
|
Wang G, Zhang H, Zhou Z, Jin W, Zhang X, Ma Z, Wang X. AQP3-mediated activation of the AMPK/SIRT1 signaling pathway curtails gallstone formation in mice by inhibiting inflammatory injury of gallbladder mucosal epithelial cells. Mol Med 2023; 29:116. [PMID: 37641009 PMCID: PMC10463418 DOI: 10.1186/s10020-023-00712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Inflammatory injury of gallbladder mucosal epithelial cells affects the development of cholelithiasis, and aquaporin 3 (AQP3) is an important regulator of inflammatory response. This study reports a mechanistic insight into AQP3 regulating gallstone formation in cholelithiasis based on high-throughput sequencing. METHODS A mouse model of cholelithiasis was induced using a high-fat diet, and the gallbladder tissues were harvested for high-throughput sequencing to obtain differentially expressed genes. Primary mouse gallbladder mucosal epithelial cells were isolated and induced with Lipopolysaccharides (LPS) to mimic an in vitro inflammatory injury environment. Cell biological phenotypes were detected by TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, flow cytometry, Cell Counting Kit-8 (CCK-8) assay, and Trypan blue staining. In addition, enzyme linked immunosorbent assay (ELISA) determined the production of inflammatory factors in mouse gallbladder mucosa. RESULTS Whole-transcriptome sequencing data analysis identified 489 up-regulated and 1007 down-regulated mRNAs. Bioinformatics analysis revealed that AQP3 was significantly down-regulated in mice with cholelithiasis. AQP3 might also confer an important role in LPS-induced gallbladder mucosal injury. Overexpression of AQP3 activated the AMPK (adenosine monophosphate-activated protein kinase) / SIRT1 (sirtuin-1) signaling pathway to reduce LPS-induced inflammatory injury of the gallbladder mucosa epithelium, thereby ameliorating gallbladder damage and repressing gallstone formation in mice. CONCLUSION Data from our study highlight the inhibitory role of AQP3 in gallbladder damage and gallstone formation in mice by reducing inflammatory injury of gallbladder mucosal epithelial cells, which is achieved through activation of the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Xin Zhang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zenghui Ma
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
17
|
Wen J, Yang F, Fang CX, Chen HL, Yang L. Sulforaphane triggers iron overload-mediated ferroptosis in gastric carcinoma cells by activating the PI3K/IRP2/DMT1 pathway. Hum Exp Toxicol 2023; 42:9603271231177295. [PMID: 37201195 DOI: 10.1177/09603271231177295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
OBJECTIVE Increasing evidence indicates that prolonged exposure to sulforaphane (SFN) can improve malignancies. However, the role of iron in SFN-triggered death in gastric carcinoma cells and the underlying molecular mechanisms remain unclear. Thus, the current study explored the effects of SFN on iron overload-mediated ferroptosis and the PI3K/IRP2/DMT1 pathway in gastric carcinoma cells. METHODS We utilized the MGC-803 cell line to assess whether SFN affected iron metabolism and whether this effect contributed to cell death. Pharmacological inhibition of iron metabolism also was performed to determine the molecular mechanism underlying SFN-triggered iron overload and the disturbance in iron metabolism. RESULTS Our data revealed that SFN treatment altered iron homeostasis and led to iron overload in vitro. Interestingly, SFN-stimulated cell death resulted from ferroptosis, a recently identified iron-dependent form of regulated cell death. Furthermore, an iron chelator, deferiprone, ameliorated the SFN-triggered mitochondrial dysfunction and reduced the iron overload. In addition, we found that the SFN-triggered iron overload was regulated by the PI3K/IRP2/DMT1 signaling pathway. CONCLUSION We discovered that disturbance in iron metabolism might be involved in the SFN-triggered cell death in gastric carcinoma cells. Blockade of the PI3K/IRP2/DMT1 axis could provide a feedback effect on SFN-induced ferroptosis to protect tumor cells from growth.
Collapse
Affiliation(s)
- Jing Wen
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R.China
| | - Fan Yang
- Department of General Surgery II, Minda Hospital of Hubei Minzu University, Enshi, P.R.China
| | - Cheng-Xiang Fang
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R.China
| | - Hong-Liu Chen
- Department of General Surgery II, Minda Hospital of Hubei Minzu University, Enshi, P.R.China
| | - Li Yang
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R.China
| |
Collapse
|
18
|
Inactivation of Soybean Trypsin Inhibitor by Dielectric-Barrier Discharge Plasma and Its Safety Evaluation and Application. Foods 2022; 11:foods11244017. [PMID: 36553759 PMCID: PMC9778619 DOI: 10.3390/foods11244017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
The trypsin inhibitor (TI) is one of the most important anti-nutritive elements in soybeans. As a new nonthermal technology, dielectric-barrier discharge (DBD) cold plasma has attracted increasing attention in food processing. In this research, we investigated the effect of dielectric-barrier discharge (DBD) plasma treatment on soybean trypsin inhibitor content and its structure, evaluated TI toxicity and the safety of its degradation products after treatment with DBD technology in vitro and in vivo, and applied the technology to soybean milk, which was analyzed for quality. Using the statistical analysis of Student’s t-test, the results demonstrated that DBD plasma treatment significantly decreased the content of TI (33.8 kV at 1, 3, or 5 min, p < 0.05, p < 0.01, p < 0.001) and destroyed the secondary and tertiary structures of TI. TI was toxic to Caco-2 cells and could inhibit body weight gain, damage liver and kidney functions, and cause moderate or severe lesions in mouse organ tissues, whereas these phenomena were alleviated in mice treated with degradation products of TI after DBD plasma treatment under the optimal condition (33.8 kV at 5 min). The content of TI in DBD-treated soymilk was also significantly reduced (p < 0.001), while the acidity, alkalinity, conductivity, color, and amino acid composition of soymilk were not affected, and there were no statistical differences (p > 0.05). In summary, DBD plasma is a promising non-thermal processing technology used to eliminate TI from soybean products.
Collapse
|
19
|
Alattar A, Alshaman R, Al-Gayyar MMH. Therapeutic effects of sulforaphane in ulcerative colitis: effect on antioxidant activity, mitochondrial biogenesis and DNA polymerization. Redox Rep 2022; 27:128-138. [PMID: 35754320 PMCID: PMC9246005 DOI: 10.1080/13510002.2022.2092378] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Objectives Ulcerative colitis (UC), an inflammatory bowel disease, affects mucosal lining of colon leading to inflammation and ulcers. Sulforaphane is a natural compound obtained from cruciferous vegetables. We aimed to investigate potential therapeutic effects of sulforaphane in experimentally induced UC in rats through affection antioxidant activity, mitochondrial biogenesis and DNA polymerization. Methods UC was induced in rats via an intracolonic single administration of 2 ml of 4% acetic acid. UC rats were treated with 15 mg/kg sulforaphane. Samples of colon were used to investigate gene expression and protein levels of peroxisome proliferator-activated receptor-gamma coactivator (PGC-1), mitochondrial transcription factor A (TFAM), mammalian target of rapamycin (mTOR), cyclin D1, nuclear factor erythroid 2-related factor-2 (Nrf2), heme Oxygenase-1 (HO-1) and proliferating cell nuclear antigen (PCNA). Results UC showed dark distorted Goblet cell nucleus with disarranged mucus granules and no distinct brush border with atypical microvilli. All morphological changes were improved by treating with sulforaphane. Finally, treatment with sulforaphane significantly increased expression of PGC-1, TFAM, Nrf2 and HO-1 associated with reduction in expression of mTOR, cyclin D1 and PCNA. Conclusion Sulforaphane could cure UC in rats. The protective activity can be explained by enhancing antioxidant activity, elevating mitochondrial biogenesis and inhibiting DNA polymerization.
Collapse
Affiliation(s)
- Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed M H Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
20
|
Microorganisms-An Effective Tool to Intensify the Utilization of Sulforaphane. Foods 2022; 11:foods11233775. [PMID: 36496582 PMCID: PMC9737538 DOI: 10.3390/foods11233775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Sulforaphane (SFN) was generated by the hydrolysis of glucoraphanin under the action of myrosinase. However, due to the instability of SFN, the bioavailability of SFN was limited. Meanwhile, the gut flora obtained the ability to synthesize myrosinase and glucoraphanin, which could be converted into SFN in the intestine. However, the ability of microorganisms to synthesize myrosinase in the gut was limited. Therefore, microorganisms with myrosinase synthesis ability need to be supplemented. With the development of research, microorganisms with high levels of myrosinase synthesis could be obtained by artificial selection and gene modification. Researchers found the SFN production rate of the transformed microorganisms could be significantly improved. However, despite applying transformation technology and regulating nutrients to microorganisms, it still could not provide the best efficiency during generating SFN and could not accomplish colonization in the intestine. Due to the great effect of microencapsulation on improving the colonization ability of microorganisms, microencapsulation is currently an important way to deliver microorganisms into the gut. This article mainly analyzed the possibility of obtaining SFN-producing microorganisms through gene modification and delivering them to the gut via microencapsulation to improve the utilization rate of SFN. It could provide a theoretical basis for expanding the application scope of SFN.
Collapse
|
21
|
Astorga J, Gasaly N, Dubois-Camacho K, De la Fuente M, Landskron G, Faber KN, Urra FA, Hermoso MA. The role of cholesterol and mitochondrial bioenergetics in activation of the inflammasome in IBD. Front Immunol 2022; 13:1028953. [PMID: 36466902 PMCID: PMC9716353 DOI: 10.3389/fimmu.2022.1028953] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/26/2022] [Indexed: 10/15/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is characterized by a loss of intestinal barrier function caused by an aberrant interaction between the immune response and the gut microbiota. In IBD, imbalance in cholesterol homeostasis and mitochondrial bioenergetics have been identified as essential events for activating the inflammasome-mediated response. Mitochondrial alterations, such as reduced respiratory complex activities and reduced production of tricarboxylic acid (TCA) cycle intermediates (e.g., citric acid, fumarate, isocitric acid, malate, pyruvate, and succinate) have been described in in vitro and clinical studies. Under inflammatory conditions, mitochondrial architecture in intestinal epithelial cells is dysmorphic, with cristae destruction and high dynamin-related protein 1 (DRP1)-dependent fission. Likewise, these alterations in mitochondrial morphology and bioenergetics promote metabolic shifts towards glycolysis and down-regulation of antioxidant Nuclear erythroid 2-related factor 2 (Nrf2)/Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling. Although the mechanisms underlying the mitochondrial dysfunction during mucosal inflammation are not fully understood at present, metabolic intermediates and cholesterol may act as signals activating the NLRP3 inflammasome in IBD. Notably, dietary phytochemicals exhibit protective effects against cholesterol imbalance and mitochondrial function alterations to maintain gastrointestinal mucosal renewal in vitro and in vivo conditions. Here, we discuss the role of cholesterol and mitochondrial metabolism in IBD, highlighting the therapeutic potential of dietary phytochemicals, restoring intestinal metabolism and function.
Collapse
Affiliation(s)
- Jessica Astorga
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Naschla Gasaly
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Karen Dubois-Camacho
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marjorie De la Fuente
- Laboratory of Biomedicine Research, School of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Glauben Landskron
- Laboratory of Biomedicine Research, School of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Félix A. Urra
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marcela A. Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
22
|
Zhao H, Yang Y, Si X, Liu H, Wang H. The Role of Pyroptosis and Autophagy in Ischemia Reperfusion Injury. Biomolecules 2022; 12:biom12071010. [PMID: 35883566 PMCID: PMC9313059 DOI: 10.3390/biom12071010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
Pyroptosis is a process of programmed cell death mediated by gasdermin (GSDM) found in recent years. In the process of pyroptosis, caspase-1 or caspase-11/4/5 is activated, which cleaves gasdermin D and separates its N-terminal pore-forming domain (PFD). The oligomers of PFD bind to the cell membrane and form macropores on the membrane, resulting in cell swelling and membrane rupture. Increasing evidence indicates that pyroptosis is involved in many diseases, including ischemia reperfusion injury. Autophagy is a highly conserved catabolic process in eukaryotic cells. It plays an important role in the survival and maintenance of cells by degrading organelles, proteins, and macromolecules in the cytoplasm and recycling degradation products. Increasing evidence shows that dysfunctional autophagy participates in many diseases. Recently, autophagy and pyroptosis have been reported to play a vital role in the process of ischemia/reperfusion injury, but the related mechanisms are not completely clear. Therefore, this article reviews the role of autophagy and pyroptosis in ischemia–reperfusion injury and analyzes the related mechanisms to provide a basis for future research.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Jinming Avenue, Kaifeng 475004, China;
| | - Yihan Yang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.Y.); (H.L.)
| | - Xinya Si
- School of Stomatology, Henan University, Kaifeng 475004, China;
| | - Huiyang Liu
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.Y.); (H.L.)
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.Y.); (H.L.)
- Correspondence:
| |
Collapse
|
23
|
Wang X, Zhang M, Zhang M, Han Y, Chen X, Zhao W, Han Z, Sun J. Salvianolic acid A promotes mitochondrial biogenesis and function via regulating the AMPK/PGC‑1α signaling pathway in HUVECs. Exp Ther Med 2022; 24:485. [PMID: 35761806 PMCID: PMC9214604 DOI: 10.3892/etm.2022.11412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Mitochondrial dysregulation is an important pathology that leads to endothelial dysfunction, and the occurrence and development of cardiovascular diseases. Salvianolic acid A (SAA) has been demonstrated to be effective in the treatment of vascular complications of type 2 diabetes mellitus. Limited information has been reported on the effects of SAA on mitochondrial function in endothelial cells. In the present study, the effects of SAA on mitochondrial biogenesis and the related underlying mechanisms were investigated in human umbilical vein endothelial cells (HUVECs). Mitotracker red staining and transmission electron microscopy were used to evaluate the effect of SAA on mitochondrial quality. The effect of SAA treatment on mitochondrial DNA/nuclear DNA ratio of HUVECs was detected by real-time quantitative PCR. Western blot was used to determine the protein expression levels of complex III and Complex IV of mitochondrial oxidative phosphorylation subunit, and ATP production was determined by ATP test kit. Real-time quantitative PCR and Western blot were used to determine the effects of SAA on the expression of peroxisome proliferator-activated receptor γ coactivator (PGC-1α) and its target genes nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) proteins and genes. Finally, in the presence of 5'AMP-activated protein kinase (AMPK) specific inhibitors, the expression of PGC-1α, NRF1 and TFAM proteins and the phosphorylation levels of AMPK and Acetyl CoA Carboxylase (ACC) were detected by Western blot or real-time quantitative PCR. The results showed that SAA treatment significantly promoted mitochondrial biogenesis and enhanced mitochondrial function of HUVECs. SAA significantly increased the expression levels of PGC-1α and its target genes NRF1 and (TFAM), a key regulator of mitochondrial biogenesis in HUVECs. These enhancements were accompanied by significantly increased phosphorylation of AMPK and ACC, and were significantly inhibited by specific AMPK inhibitors. These results suggest that SAA may promote mitochondrial biogenesis in endothelial cells by activating the AMPK-mediated PGC-1α/TFAM signaling pathway. These data provide new insights into the mechanism of action of SAA in treating diabetic vascular complications.
Collapse
Affiliation(s)
- Xuelian Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Mi Zhang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Mengyao Zhang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Wenwen Zhao
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zhiwu Han
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jialin Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
24
|
Yang M, Xi N, Gao M, Yu Y. Sitagliptin mitigates hypoxia/reoxygenation (H/R)-induced injury in cardiomyocytes by mediating sirtuin 3 (SIRT3) and autophagy. Bioengineered 2022; 13:13162-13173. [PMID: 35635037 PMCID: PMC9276022 DOI: 10.1080/21655979.2022.2074109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Potential ischemia/reperfusion (I/R) injuries are commonly induced during treatment of cardiovascular diseases, such as acute myocardial infarction (AMI). It is reported that oxidative stress and over-autophagy in cardiomyocytes are involved in the pathogenesis of I/R injury. Sitagliptin is an effective inhibitor of dipeptidyl peptidase 4 (DPP-4) for the treatment of diabetes, which is recently reported to regulate oxidative stress and autophagy. The present study is designed to explore the function of Sitagliptin on I/R injury. Hypoxia/reoxygenation (H/R) condition was used to simulate the I/R injury on cardiomyocytes. We found that the declined cell viability and elevated expression level of creatine kinase myocardial band (CK-MB) were observed in the H/R group, accompanied by the increased mitochondrial reactive oxygen species (ROS), elevated cellular malondialdehyde (MDA) level, and mitochondrial dysfunction. After Sitagliptin treatment, the damages in H9c2 cardiomyocytes, oxidative stress, and mitochondrial dysfunction were significantly alleviated. In addition, the overactivated autophagy and mitophagy in H/R-challenged cardiomyocytes were dramatically mitigated by Sitagliptin, accompanied by the upregulation of SIRT3. Lastly, the protective effect of Sitagliptin on H/R-induced mitophagy, autophagy, and damages in cardiomyocytes was dramatically abolished by the knockdown of SIRT3. Taken together, our data reveal that Sitagliptin ameliorated the H/R-induced injury in cardiomyocytes by mediating sirtuin 3 (SIRT3) and autophagy.
Collapse
Affiliation(s)
- Mao Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ningning Xi
- Department of Neurological Rehabilitation, The FourthAffiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Meng Gao
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanwei Yu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Bao ZK, Mi YH, Xiong XY, Wang XH. Sulforaphane Ameliorates the Intestinal Injury in Necrotizing Enterocolitis by Regulating the PI3K/Akt/GSK-3 β Signaling Pathway. Can J Gastroenterol Hepatol 2022; 2022:6529842. [PMID: 35600210 PMCID: PMC9117068 DOI: 10.1155/2022/6529842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Necrotizing enterocolitis (NEC) is a serious neonatal disease; this study aims to investigate the role of sulforaphane (SFN) in NEC-induced intestinal injury. Methods An animal model of NEC was established in newborn mice and intragastrically administrated with SFN; then, the general status and survival of the mice were observed. H&E staining was used to observe the pathological changes of intestinal tissues. ELISA, immunohistochemical staining, and flow cytometry assays were used to detect the levels of inflammatory factors, including TNF-α, IL-6, and IL-17, the expression of Bax, Bcl-2, TLR4, and NF-κB, and the percentages of the Th17 and Treg cells, respectively. GSK-3β expression levels were measured by immunofluorescence. IEC-6 and FHC cells were induced with LPS to mimic NEC in vitro and coincubated with SFN; then, the inflammatory factor levels and cell apoptosis rate were detected. Finally, Western blot was used to assess the expression of PI3K/Akt/GSK-3β pathway-related proteins in vitro and in vivo. Results SFN improved the survival rate of NEC mice during modeling, alleviated the severity of the intestinal injury, and reduced the proportion of Th17/Treg cells. SFN could inhibit TLR4 and NF-κB levels, decrease the release of inflammatory factors TNF-α and IL-6, suppress Bax expression, increase Bcl-2 expression, and inhibit apoptosis both in in vitro and in vivo models of NEC. Meanwhile, SFN regulated the expression of PI3K/Akt/GSK-3β pathway-related proteins in vitro and in vivo. Conclusion SFN relieved the inflammatory response and apoptosis by regulating the PI3K/Akt/GSK-3β signaling pathway, thereby alleviating NEC in model mice and cells.
Collapse
Affiliation(s)
- Zhong-Kun Bao
- Department of Radiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Hong Mi
- Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Xiao-Yu Xiong
- Department of Neonatology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xin-Hong Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
The enhanced mitochondrial dysfunction by cantleyoside confines inflammatory response and promotes apoptosis of human HFLS-RA cell line via AMPK/Sirt 1/NF-κB pathway activation. Biomed Pharmacother 2022; 149:112847. [PMID: 35364376 DOI: 10.1016/j.biopha.2022.112847] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Cantleyoside (CA) is a kind of iridoid glycosides in Pterocephalus hookeri (C. B. Clarke) Höeck. The purpose of this study was to investigate the effects of CA on human rheumatoid arthritis fibroblast synovial cells (HFLS-RA). METHODS Cell proliferation of HFLS-RA was assessed by CCK-8. ELISA was used to detect cytokines NO, TNF-α, IL-1β/6, MCP-1, MMP-1/3/9 and metabolism-related ATPase activities and ATP levels. JC-1, DCFH-DA, Fluo-3 AM and Calcein AM probes were used to detect mitochondrial membrane potential (MMP), reactive oxygen species (ROS), Ca2+ and mitochondrial permeability conversion pore (MPTP), respectively. Isolated mitochondria assay was used to detect mitochondrial swelling. Oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and real-time ATP production were measured using a Seahorse analyzer. Apoptosis was detected by TUNEL and Hoechst staining. Western blot was used to detect the expressions of AMPK/p-AMPK, Sirt 1, IκBα, NF-κB p65/p-NF-κB p65, Bcl-2 and Bax. Cytoplasmic nuclear isolation was also performed to detect the translocation of NF-κB. RESULTS CA significantly suppressed cell proliferation and the levels of NO, TNF-α, IL-1β/6, MCP-1 and MMP-1/3/9 in HFLS-RA. In addition, CA promoted the apoptosis of HFLS-RA by increasing TUNEL and Hoechst positive cells and the ratio of Bax/Bcl-2. Inhibition of energy metabolism in HFLS-RA by CA reduced OCR, ECAR and real-time ATP generation rate. Importantly, CA promoted p-AMPK and Sirt 1 expression, inhibited IκBα degradation to reduce p-NF-κB and translocation. CONCLUSION The results suggest that CA activates the AMPK/Sirt 1/NF-κB pathway by promoting mitochondrial dysfunction, thereby exerting anti-inflammatory and pro-apoptotic effects.
Collapse
|
27
|
Ye H, Yan J, Wang Q, Tian H, Zhou L. The protective effects of cabozantinib against high glucose-induced damages in in vitro renal glomerular endothelial cells model via inhibition of early growth response-1 (Egr-1). Bioengineered 2022; 13:10605-10616. [PMID: 35441585 PMCID: PMC9161968 DOI: 10.1080/21655979.2022.2063667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Cabozantinib is a tyrosine kinase inhibitor with anti-tumor activity in kidney cancer. However, the efficacy of cabozantinib in other renal diseases has never been reported. Here, we focused on exploring the effect of cabozantinib on diabetic nephropathy (DN). The biofunctions of cabozantinib in human renal glomerular endothelial cells (hGECs) under high glucose conditions have been investigated. We found that cabozantinib ameliorated high glucose-induced oxidative stress in hGECs with decreased production of mitochondrial reactive oxygen species (ROS) and increased glutathione peroxidase (GSH-PX) activity. Cabozantinib ameliorated high glucose-induced reduction in the expression of endothelial nitric oxide synthase (eNOS) and the production of nitric oxide (NO) in hGECs. It also suppressed the expression of pro-inflammatory mediators, interleukin-6 (IL-6) and monocyte chemokine protein 1 (MCP-1), against high glucose exposure in hGECs. Cabozantinib reduced the expression of early growth response-1 (Egr-1) in high glucose-treated hGECs, while Egr-1 overexpression abolished the protective effects of cabozantinib against high glucose in hGECs. In conclusion, cabozantinib protected hGECs from high glucose-induced oxidative stress, NO deficiency, and inflammation via regulating Egr-1. These findings suggest that cabozantinib might be used as an adjuvant to control DN.
Collapse
Affiliation(s)
- Hanlu Ye
- Department of Endocrine and Metabolic Diseases, Wuhan Hospital of Traditional Chinese Medicine, Wuhan City, Hubei Province, China
| | - Jingjing Yan
- Respiratory Department Attending Surgeon, Wuhan Hospital of Traditional Chinese Medicine, Wuhan City, Hubei Province, China
| | - Qiong Wang
- Department of Endocrine and Metabolic Diseases, Wuhan Hospital of Traditional Chinese Medicine, Wuhan City, Hubei Province, China
| | - Hui Tian
- Respiratory Department Attending Surgeon, Wuhan Hospital of Traditional Chinese Medicine, Wuhan City, Hubei Province, China
| | - Lei Zhou
- Nephrology Department Attending Surgeon, Wuhan Hospital of Traditional Chinese Medicine, Wuhan City, Hubei Province, China
| |
Collapse
|
28
|
Wang S, Tang YJ. Sulforaphane ameliorates amyloid-β-induced inflammatory injury by suppressing the PARP1/SIRT1 pathway in retinal pigment epithelial cells. Bioengineered 2021; 12:7079-7089. [PMID: 34982643 PMCID: PMC8973853 DOI: 10.1080/21655979.2021.1976503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Age-associated macular degeneration (AMD) is a progressive eye disorder that leads to irreversible impairment of central vision, and effective therapies are lacking. Here, we explore how oligomeric amyloid-β1-42 can trigger inflammatory injury in retinal pigment epithelial cells and how sulforaphane can mitigate such injury. ARPE-19 retinal pigment epithelial cells expressing low, endogenous, or high levels of poly(ADP-ribose) polymerase (PARP1) were treated with oligomeric amyloid-β1-42 in the presence or absence of various signaling inhibitors or sulforaphane. Cell viability, apoptosis, inflammatory responses, and activity of the PARP1/Sirtuin (SIRT1) axis were assayed. Treating ARPE-19 cells with oligomeric amyloid-β1-42 promoted the production of IL-1β, IL-6, IL-8, and TNF-ɑ, which was partially reversed by inhibiting PARP1 and activating SIRT1. PARP1 was found to act upstream of SIRT1, and expression of the two proteins correlated negatively with each other. Sulforaphane also mitigated the injury due to oligomeric amyloid-β1-42 through a mechanism involving inactivation of the PARP1/SIRT1 pathway. Oligomeric amyloid-β1-42 can trigger AMD-like injury in retinal pigment epithelium by activating PARP1 and repressing SIRT1. Moreover, sulforaphane can induce cell viability and SIRT1 expression, but reduce cell apoptosis, the activity of caspase-3 or -9, and PARP1 expression in oAβ1-42-treated cells. However, PARP1 inactivation or SIRT1 activation weaken these effects. In summary, sulforaphane reduces the inflammatory injury induced by oAβ1-42 in ARPE-19 cell by inactivating the PARP1/SIRT1 pathway. Thus, the compound may be an effective therapy against AMD.
Collapse
Affiliation(s)
- Song Wang
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yu-Jie Tang
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
29
|
Zhao Z, Yang J, Zhang L, Zhou Y. Enhancement of DUSP14 (dual specificity phosphatase 14) limits osteoarthritis progression by alleviating chondrocyte injury, inflammation and metabolic homeostasis. Bioengineered 2021; 12:7495-7507. [PMID: 34605731 PMCID: PMC8806663 DOI: 10.1080/21655979.2021.1979355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteoarthritis (OA) is a proverbial inflammatory degenerative joint disease associated with the acceleration of the aging process and is characterized by chondrocyte injury and articular cartilage degradation. Dual-specificity phosphatase 14 (Dusp14), a common member of the DUSP family, has been implicated in multiple inflammatory diseases and bone loss. Nevertheless, the function of DUSP14 in OA remains unclear. In the present study, down-regulation of DUSP14 was corroborated in anterior cruciate ligament transection (ACLT)-induced OA rats and interleukin-1β (IL-1β)-stimulated chondrocytes. Additionally, the gain of DUSP14 reversed IL-1β-induced inhibition of chondrocyte viability but attenuated cell apoptosis. Concomitantly, DUSP14 overexpression muted IL-1β-induced release of pro-inflammatory mediators NO and prostaglandin E2 (PGE2), as well as pro-inflammatory cytokine levels (IL-6 and TNF-α). Furthermore, up-regulation of DUSP14 overturned the effects of IL-1β on the inhibition of collagen II and aggrecan expression, and enhancement of A Disintegrin and Metalloproteinase with Thrombospondin Motifs 5 (ADAMTS5) and matrix metalloproteinases (MMPs; MMP3 and MMP-13). Mechanistically, DUSP14 elevation increased the p-Adenosine 5ʹ-monophosphate-activated protein activated protein kinase(AMPK), inhibitor of NF-κB (IκB) expression and decreased p-p65 NF-κB expression, indicating that DUSP14 might restore the AMPK-IκB pathway to restrain NF-κB signaling under IL-1β exposure. Notably, blockage of AMPK signaling muted the protective efficacy of DUSP14 elevation against IL-1β-induced inflammatory injury and metabolism disturbance in chondrocytes. Interestingly, histological evaluation substantiated that DUSP14 injection alleviated cartilage degradation in OA rats. Together, DUSP14 may ameliorate OA progression by affecting chondrocyte injury, inflammatory response and cartilage metabolism homeostasis, implying a promising therapeutic strategy against OA.
Collapse
Affiliation(s)
- Zandong Zhao
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center Xi'an, Shaanxi Province, China
| | - Jie Yang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center Xi'an, Shaanxi Province, China
| | - Liang Zhang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University Health Science Center Xi'an, Shaanxi Province, China
| | - Yunping Zhou
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center Xi'an, Shaanxi Province, China
| |
Collapse
|