1
|
Çelik E, Cemali Ö, Şahin TÖ, Deveci G, Biçer NÇ, Hirfanoğlu İM, Ağagündüz D, Budán F. Human Breast Milk Exosomes: Affecting Factors, Their Possible Health Outcomes, and Future Directions in Dietetics. Nutrients 2024; 16:3519. [PMID: 39458514 PMCID: PMC11510026 DOI: 10.3390/nu16203519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Human breast milk is a complex biological fluid containing multifaceted biological compounds that boost immune and metabolic system development that support the short- and long-term health of newborns. Recent literature suggests that human breast milk is a substantial source of nutrients, bioactive molecules, and exosomes. Objectives: This review examines the factors influencing exosomes noted in human milk and the impacts of exosomes on infant health. Furthermore, it discusses potential future prospects for exosome research in dietetics. Methods: Through a narrative review of the existing literature, we focused on exosomes in breast milk, exosome components and their potential impact on exosome health. Results: Exosomes are single-membrane extracellular vesicles of endosomal origin, with an approximate radius of 20-200 nm. They are natural messengers that cells secrete to transport a wide range of diverse cargoes, including deoxyribonucleic acid, ribonucleic acid, proteins, and lipids between various cells. Some studies have reported that the components noted in exosomes in human breast milk could be transferred to the infant and cause epigenetic changes. Thus, it can affect gene expression and cellular event regulation in several tissues. Conclusions: In this manner, exosomes are associated with several pathways, including the immune system, oxidative stress, and cell cycle, and they can affect the short- and long-term health of infants. However, there is still much to learn about the functions, effectiveness, and certain impacts on the health of human breast milk exosomes.
Collapse
Affiliation(s)
- Elif Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Süleyman Demirel University, Isparta 32260, Türkiye;
| | - Özge Cemali
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Trakya University, Edirne 22030, Türkiye;
| | - Teslime Özge Şahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Türkiye;
| | - Gülsüm Deveci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çankırı Karatekin University, Çankırı 18100, Türkiye;
| | - Nihan Çakır Biçer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul 34752, Türkiye;
| | | | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara 06490, Türkiye
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
2
|
Ge T, Ning B, Wu Y, Chen X, Qi H, Wang H, Zhao M. MicroRNA-specific therapeutic targets and biomarkers of apoptosis following myocardial ischemia-reperfusion injury. Mol Cell Biochem 2024; 479:2499-2521. [PMID: 37878166 DOI: 10.1007/s11010-023-04876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
MicroRNAs are single-stranded non-coding RNAs that participate in post-transcriptional regulation of gene expression, it is involved in the regulation of apoptosis after myocardial ischemia-reperfusion injury. For example, the alteration of mitochondrial structure is facilitated by MicroRNA-1 through the regulation of apoptosis-related proteins, such as Bax and Bcl-2, thereby mitigating cardiomyocyte apoptosis. MicroRNA-21 not only modulates the expression of NF-κB to suppress inflammatory signals but also activates the PI3K/AKT pathway to mitigate ischemia-reperfusion injury. Overexpression of MicroRNA-133 attenuates reactive oxygen species (ROS) production and suppressed the oxidative stress response, thereby mitigating cellular apoptosis. MicroRNA-139 modulates the extrinsic death signal of Fas, while MicroRNA-145 regulates endoplasmic reticulum calcium overload, both of which exert regulatory effects on cardiomyocyte apoptosis. Therefore, the article categorizes the molecular mechanisms based on the three classical pathways and multiple signaling pathways of apoptosis. It summarizes the targets and pathways of MicroRNA therapy for ischemia-reperfusion injury and analyzes future research directions.
Collapse
Affiliation(s)
- Teng Ge
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Bo Ning
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Yongqing Wu
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Xiaolin Chen
- School of Pharmacy, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Hongfei Qi
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Haifang Wang
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Mingjun Zhao
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Deputy 2, Weiyang West Road, Weicheng District, Xianyang, 712000, China.
| |
Collapse
|
3
|
Pizzamiglio S, Ciniselli CM, de Azambuja E, Agbor-Tarh D, Moreno-Aspitia A, Suter TM, Trama A, De Santis MC, De Cecco L, Iorio MV, Silvestri M, Pruneri G, Verderio P, Di Cosimo S. Circulating microRNAs and therapy-associated cardiac events in HER2-positive breast cancer patients: an exploratory analysis from NeoALTTO. Breast Cancer Res Treat 2024; 206:285-294. [PMID: 38689174 PMCID: PMC11182852 DOI: 10.1007/s10549-024-07299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/19/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE The relevance of cardiotoxicity in the context of HER2-positive breast cancer is likely to increase with increasing patient treatment exposure, number of treatment lines, and prolonged survival. Circulating biomarkers to early identify patients at risk of cardiotoxicity could allow personalized treatment and follow-up measures. The aim of this study is to examine the relationship between circulating microRNAs and adverse cardiac events in HER2-positive breast cancer patients. METHODS We based our work on plasma samples from NeoALTTO trial obtained at baseline, after 2 weeks of anti-HER2 therapy, and immediately before surgery. Eleven patients experienced either a symptomatic or asymptomatic cardiac event. Circulating microRNAs were profiled in all patients presenting a cardiac event (case) and in an equal number of matched patients free of reported cardiac events (controls) using microRNA-Ready-to-Use PCR (Human panel I + II). Sensitivity analyses were performed by increasing the number of controls to 1:2 and 1:3. Normalized microRNA expression levels were compared between cases and controls using the non-parametric Kruskal-Wallis test. RESULTS Eight circulating microRNAs resulted differentially expressed after 2 weeks of anti-HER2 therapy between patients experiencing or not a cardiac event. Specifically, the expression of miR-125b-5p, miR-409-3p, miR-15a-5p, miR-423-5p, miR-148a-3p, miR-99a-5p, and miR-320b increased in plasma of cases as compared to controls, while the expression of miR-642a-5p decreases. Functional enrichment analysis revealed that all these microRNAs were involved in cardiomyocyte adrenergic signaling pathway. CONCLUSION This study provides proof of concept that circulating microRNAs tested soon after treatment start could serve as biomarkers of cardiotoxicity in a very early stage in breast cancer patients receiving anti-HER2 therapy.
Collapse
Affiliation(s)
- S Pizzamiglio
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - C M Ciniselli
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - E de Azambuja
- Department of Medical Oncology, Institut Jules Bordet and L'Université Libre de Bruxelles (U.L.B), Brussels, Belgium
| | | | | | - T M Suter
- Swiss Cardiovascular Center, University Hospital Bern, Inselspital, Bern, Switzerland
| | - A Trama
- Unit of Evaluative Epidemiology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - M C De Santis
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - L De Cecco
- Unit of Molecular Mechanisms, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - M V Iorio
- Unit of Microenvironment and Biomarkers of Solid Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - M Silvestri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - G Pruneri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - P Verderio
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - S Di Cosimo
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
4
|
Lee S. Cardiovascular Disease and miRNAs: Possible Oxidative Stress-Regulating Roles of miRNAs. Antioxidants (Basel) 2024; 13:656. [PMID: 38929095 PMCID: PMC11200533 DOI: 10.3390/antiox13060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
MicroRNAs (miRNAs) have been highlighted as key players in numerous diseases, and accumulating evidence indicates that pathological expressions of miRNAs contribute to both the development and progression of cardiovascular diseases (CVD), as well. Another important factor affecting the development and progression of CVD is reactive oxygen species (ROS), as well as the oxidative stress they may impose on the cells. Considering miRNAs are involved in virtually every biological process, it is not unreasonable to assume that miRNAs also play critical roles in the regulation of oxidative stress. This narrative review aims to provide mechanistic insights on possible oxidative stress-regulating roles of miRNAs in cardiovascular diseases based on differentially expressed miRNAs reported in various cardiovascular diseases and their empirically validated targets that have been implicated in the regulation of oxidative stress.
Collapse
Affiliation(s)
- Seahyoung Lee
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
| |
Collapse
|
5
|
Wang S, Li J, Zhao Y. Construction and analysis of a network of exercise-induced mitochondria-related non-coding RNA in the regulation of diabetic cardiomyopathy. PLoS One 2024; 19:e0297848. [PMID: 38547044 PMCID: PMC10977711 DOI: 10.1371/journal.pone.0297848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/09/2024] [Indexed: 04/02/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major factor in the development of heart failure. Mitochondria play a crucial role in regulating insulin resistance, oxidative stress, and inflammation, which affect the progression of DCM. Regular exercise can induce altered non-coding RNA (ncRNA) expression, which subsequently affects gene expression and protein function. The mechanism of exercise-induced mitochondrial-related non-coding RNA network in the regulation of DCM remains unclear. This study seeks to construct an innovative exercise-induced mitochondrial-related ncRNA network. Bioinformatic analysis of RNA sequencing data from an exercise rat model identified 144 differentially expressed long non-coding RNA (lncRNA) with cutoff criteria of p< 0.05 and fold change ≥1.0. GSE6880 and GSE4745 were the differentially expressed mRNAs from the left ventricle of DCM rat that downloaded from the GEO database. Combined with the differentially expressed mRNA and MitoCarta 3.0 dataset, the mitochondrial located gene Pdk4 was identified as a target gene. The miRNA prediction analysis using miRanda and TargetScan confirmed that 5 miRNAs have potential to interact with the 144 lncRNA. The novel lncRNA-miRNA-Pdk4 network was constructed for the first time. According to the functional protein association network, the newly created exercise-induced ncRNA network may serve as a promising diagnostic marker and therapeutic target, providing a fresh perspective to understand the molecular mechanism of different exercise types for the prevention and treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shuo Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Jiacong Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Yungang Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
6
|
Chi K, Liu J, Li X, Wang H, Li Y, Liu Q, Zhou Y, Ge Y. Biomarkers of heart failure: advances in omics studies. Mol Omics 2024; 20:169-183. [PMID: 38224222 DOI: 10.1039/d3mo00173c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Heart failure is a complex syndrome characterized by progressive circulatory dysfunction, manifesting clinically as pulmonary and systemic venous congestion, alongside inadequate tissue perfusion. The early identification of HF, particularly at the mild and moderate stages (stages B and C), presents a clinical challenge due to the overlap of signs, symptoms, and natriuretic peptide levels with other cardiorespiratory pathologies. Nonetheless, early detection coupled with timely pharmacological intervention is imperative for enhancing patient outcomes. Advances in high-throughput omics technologies have enabled researchers to analyze patient-derived biofluids and tissues, discovering biomarkers that are sensitive and specific for HF diagnosis. Due to the diversity of HF etiology, it is insufficient to study the diagnostic data of early HF using a single omics technology. This study reviewed the latest progress in genomics, transcriptomics, proteomics, and metabolomics for the identification of HF biomarkers, offering novel insights into the early clinical diagnosis of HF. However, the validity of biomarkers depends on the disease status, intervention time, genetic diversity and comorbidities of the subjects. Moreover, biomarkers lack generalizability in different clinical settings. Hence, it is imperative to conduct multi-center, large-scale and standardized clinical trials to enhance the diagnostic accuracy and utility of HF biomarkers.
Collapse
Affiliation(s)
- Kuo Chi
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Jing Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Xinghua Li
- Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China.
| | - He Wang
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yanliang Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Qingnan Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yabin Zhou
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yuan Ge
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
7
|
Sun Y, Chu S, Wang R, Xia R, Sun M, Gao Z, Xia Z, Zhang Y, Dong S, Wang T. Non-coding RNAs modulate pyroptosis in myocardial ischemia-reperfusion injury: A comprehensive review. Int J Biol Macromol 2024; 257:128558. [PMID: 38048927 DOI: 10.1016/j.ijbiomac.2023.128558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Reperfusion therapy is the most effective treatment for acute myocardial infarction. However, reperfusion itself can also cause cardiomyocytes damage. Pyroptosis has been shown to be an important mode of myocardial cell death during ischemia-reperfusion. Non-coding RNAs (ncRNAs) play critical roles in regulating pyroptosis. The regulation of pyroptosis by microRNAs, long ncRNAs, and circular RNAs may represent a new mechanism of myocardial ischemia-reperfusion injury. This review summarizes the currently known regulatory roles of ncRNAs in myocardial ischemia-reperfusion injury and interactions between ncRNAs. Potential therapeutic strategies using ncRNA modulation are also discussed.
Collapse
Affiliation(s)
- Yi Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujuan Chu
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rong Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rui Xia
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Meng Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhixiong Gao
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Zhang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Siwei Dong
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| | - Tingting Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
8
|
Zhu Q, Ren S, Sun Z, Qin J, Sheng X. Identification of biomarkers of renal ischemia-reperfusion injury by bioinformatics analysis and single-cell sequencing analysis combined with in vivo validation. Transpl Immunol 2023; 81:101928. [PMID: 37704087 DOI: 10.1016/j.trim.2023.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (IRI) is a serious clinical complication of kidney injury. This research dealt with investigating the hub genes and pathways associated with renal IRI. METHODS The transcriptome expression dataset of mouse renal ischemia samples (GSE39548) was obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were filtered by R software for key genes utilized for gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and gene enrichment analysis (GSEA). The gene co-expression network was developed by WGCNA analysis to screen important modules. Hub genes from the intersection of DEGs and WGCNA were subjected to protein-protein interaction (PPI) network. The biomarkers obtained by SVM-REF and LASSO algorithm were validated by other datasets and subjected to GSEA analysis. The expression of biomarkers in renal IRI was detected by qRT-PCR and subjected to single-cell analysis. RESULTS A total of 157 DEGs were discovered. Biological function analysis depicted that the DEGs were primarily involved in cytokine-cytokine receptor interaction, as well as the signaling pathways IL-17, MAPK, and TNF. The intersection of DEGs and the genes obtained by WGCNA analysis yielded 149 hubs genes. Based on SVM-REF and LASSO algorithm, cyp1a1 and pdk4 were determined as potential biomarkers in individuals with renal ischemia and showed good diagnostic value. qRT-PCR results depicted that cyp1a1 and pdk4 were significantly up-regulated in renal ischemia mice (P < 0.05). Finally, the single-cell analysis identified the expression of Cyp1a1 and Pdk4 in mice kidney tissue. CONCLUSION cyp1a1 and pdk4 were identified to play important roles in renal IRI. This research provides a new perspective and basis for studying the pathogenesis of renal IRI and developing new treatments.
Collapse
Affiliation(s)
- Qin Zhu
- Department of Hand Surgery, Nantong University Affiliated Hospital, Nantong 226001, China
| | - Shiqi Ren
- Department of Hand Surgery, Nantong University Affiliated Hospital, Nantong 226001, China
| | - Zhaoyang Sun
- Department of Hand Surgery, Nantong University Affiliated Hospital, Nantong 226001, China
| | - Jun Qin
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Xiaoming Sheng
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
9
|
Shi W, Zhou X, Li X, Peng X, Chen G, Li Y, Zhang C, Yu H, Feng Z, Gou X, Fan J. Human Umbilical Cord Mesenchymal Stem Cells Protect against Renal Ischemia-Reperfusion Injury by Secreting Extracellular Vesicles Loaded with miR-148b-3p That Target Pyruvate Dehydrogenase Kinase 4 to Inhibit Endoplasmic Reticulum Stress at the Reperfusion Stages. Int J Mol Sci 2023; 24:ijms24108899. [PMID: 37240246 DOI: 10.3390/ijms24108899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Renal ischemia-reperfusion (I/R) injury is a leading cause of acute kidney injury (AKI), with high mortality. Recent studies have reported that human umbilical cord mesenchymal stem cells (HucMSCs) play an important role in repairing organ and tissue injuries because of their unique characteristics. However, the potential of HucMSC extracellular vesicles (HucMSC-EVs) to promote the repair of renal tubular cells remains to be explored. This study found that HucMSC-EVs derived from HucMSCs played a protective role and were associated with kidney I/R injury. We found that miR-148b-3p in HucMSC-EVs had a protective effect against kidney I/R injury. HK-2 cells overexpressing miR-148b-3p were protected against I/R injury by inhibiting apoptosis. Next, the target mRNA of miR-148b-3p was predicted online, and the target mRNA, pyruvate dehydrogenase kinase 4 (PDK4), was identified and verified using dual luciferase. We discovered that I/R injury significantly increased endoplasmic reticulum (ER) stress, whereas siR-PDK4 inhibited these effects and protected against I/R injury. Interestingly, after administrating HucMSC-EVs to HK-2 cells, PDK4 expression and ER stress induced by I/R injury were significantly inhibited. HK-2 ingested miR-148b-3p from HucMSC-EVs, and its ER induced by I/R injury was significantly deregulated. This study suggests that HucMSC-EVs protect kidneys from I/R injury during the early I/R stage. These results suggest a new mechanism for HucMSC-EVs in treating AKI and provide a new treatment strategy for I/R injury.
Collapse
Affiliation(s)
- Wei Shi
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinyuan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiang Peng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guo Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yang Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chunlin Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haitao Yu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhenwei Feng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jing Fan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
De Freitas JH, Bragato JP, Rebech GT, Costa SF, Dos Santos MO, Soares MF, Eugênio FDR, Dos Santos PSP, De Lima VMF. MicroRNA-21 and microRNA-148a affects PTEN, NO and ROS in canine leishmaniasis. Front Genet 2023; 14:1106496. [PMID: 37124626 PMCID: PMC10137164 DOI: 10.3389/fgene.2023.1106496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Canine Visceral leishmaniasis (CanL) poses a severe public health threat in several countries. Disease progression depends on the degree of immune response suppression. MicroRNAs (miRs) modulate mRNA translation into proteins and regulate various cellular functions and pathways associated with immune responses. MiR-21 and miR-148a can alter the parasite load and M1 macrophages are the principal cells in dogs' leishmanicidal activity. A previous study found increased miR-21 and miR-148a in splenic leukocytes (SL) of dogs with CanL using microarray analysis and in silico analysis identified PTEN pathway targets. PTEN is involved in the immune regulation of macrophages. We measured PTEN and the production of reactive oxygen species (ROS) and nitric oxide (NO) before and after transfection SLs of dogs with CanL with mimic and inhibition of miR-21 and miR-148a. PTEN levels increased, NO and ROS decreased in SLs from dogs with CanL. Inhibition of miRNA-21 resulted in PTEN increase; in contrast, PTEN decreased after miR-148a inhibition. Nitrite (NO2) levels increased after transfection with miR-21 inhibitor but were decreased with miR-148a inhibitor. The increase in miR-21 promoted a reduction in ROS and NO levels, but miR-148a inhibition increased NO and reduced ROS. These findings suggest that miR-21 and miR-148a can participate in immune response in CanL, affecting PTEN, NO, and ROS levels.
Collapse
|
11
|
Shree N, Ding Z, Flaws J, Choudhury M. Role of microRNA in Endocrine Disruptor-Induced Immunomodulation of Metabolic Health. Metabolites 2022; 12:1034. [PMID: 36355117 PMCID: PMC9695656 DOI: 10.3390/metabo12111034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 01/22/2025] Open
Abstract
The prevalence of poor metabolic health is growing exponentially worldwide. This condition is associated with complex comorbidities that lead to a compromised quality of life. One of the contributing factors recently gaining attention is exposure to environmental chemicals, such as endocrine-disrupting chemicals (EDCs). Considerable evidence suggests that EDCs can alter the endocrine system through immunomodulation. More concerning, EDC exposure during the fetal development stage has prominent adverse effects later in life, which may pass on to subsequent generations. Although the mechanism of action for this phenomenon is mostly unexplored, recent reports implicate that non-coding RNAs, such as microRNAs (miRs), may play a vital role in this scenario. MiRs are significant contributors in post-transcriptional regulation of gene expression. Studies demonstrating the immunomodulation of EDCs via miRs in metabolic health or towards the Developmental Origins of Health and Disease (DOHaD) Hypothesis are still deficient. The aim of the current review was to focus on studies that demonstrate the impact of EDCs primarily on innate immunity and the potential role of miRs in metabolic health.
Collapse
Affiliation(s)
- Nitya Shree
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| | - Zehuan Ding
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| | - Jodi Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| |
Collapse
|
12
|
Jin L, Zhang Y, Jiang Y, Tan M, Liu C. Circular RNA Rbms1 inhibited the development of myocardial ischemia reperfusion injury by regulating miR-92a/BCL2L11 signaling pathway. Bioengineered 2022; 13:3082-3092. [PMID: 35068339 PMCID: PMC8973616 DOI: 10.1080/21655979.2022.2025696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acute myocardial infarction (AMI) is characterized by high morbidity and mortality rates. Circular RNAs collectively participate in the initiation and development of AMI. The purpose of this study was to investigate the role of circRbms1 in AMI. Ischemia-reperfusion (I/R) was performed to establish an AMI model. RT-qPCR and Western blotting were performed to detect mRNA and analyze protein expression, respectively. The interaction between miR-92a and circRbms1/BCL2L11 was confirmed by luciferase and RNA pull-down assays. circRbms1 is overexpressed in AMI. However, circRbms1 knockdown alleviated H9c2 cell apoptosis and reduced the release of reactive oxygen species. circRbms1 targeted miR-92a, the downregulation of which alleviated the effects of circRbms1 knockdown and increased oxidative stress and H9c2 cell apoptosis. Moreover, circRbms1 sponged miR-92a to upregulate BCL2L11, which modulated the expression of apoptosis-related genes. circRbms1 participated in myocardial I/R injury by regulating the miR-92a/BCL2L11 signaling pathway, which may provide a new strategy for the treatment of AMI.
Collapse
Affiliation(s)
- Ling Jin
- Department of Clinical Laboratory, Nanjing First Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Yuan Zhang
- Department of Clinical Laboratory, Nanjing First Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Yun Jiang
- Department of Clinical Laboratory, Nanjing First Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Mingjuan Tan
- Department of Clinical Laboratory, Nanjing First Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Caidong Liu
- Department of Clinical Laboratory, Nanjing First Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|