1
|
Wu KL, Chen CL, Thi Nguyen MH, Tsai JC, Wang SC, Chiang WF, Hsiao PJ, Chan JS, Hou JJ, Ma N. MicroRNA regulators of vascular pathophysiology in chronic kidney disease. Clin Chim Acta 2023; 551:117610. [PMID: 37863246 DOI: 10.1016/j.cca.2023.117610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Coronary artery disease (CAD) is a severe comorbidity in chronic kidney disease (CKD) due to heavy calcification in the medial layer and inflamed plaques. Chronic inflammation, endothelial dysfunction and vascular calcification are major contributors that lead to artherosclerosis in CKD. The lack of specific symptoms and signs of CAD and decreased accuracy of noninvasive diagnostic tools result in delayed diagnosis leading to increased mortality. MicroRNAs (miRNAs) are post-transcriptional regulators present in various biofluids throughout the body. In the circulation, miRNAs have been reported to be encapsulated in extracellular vesicles and serve as stable messengers for crosstalk among cells. miRNAs are involved in pathophysiologic mechanisms including CAD and can potentially be extended from basic research to clinical translational practice.
Collapse
Affiliation(s)
- Kun-Lin Wu
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan; Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Lung Chen
- Division of Nephrology, Department of Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Mai-Huong Thi Nguyen
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Jen-Chieh Tsai
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan; Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Sun-Chong Wang
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Wen-Fang Chiang
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Jen Hsiao
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jenq-Shyong Chan
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ju Jung Hou
- Kaohsiung Medical University Hospital, Department of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Nianhan Ma
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Zhao Y, Song X, Ma Y, Liu X, Peng Y. Circulating mir-483-5p as a novel diagnostic biomarker for acute coronary syndrome and its predictive value for the clinical outcome after PCI. BMC Cardiovasc Disord 2023; 23:360. [PMID: 37464313 DOI: 10.1186/s12872-023-03387-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND MicroRNA (miRNA) plays a critical function in the progression of acute coronary syndrome (ACS) and is associated with major adverse cardiovascular events (MACEs) after undergoing percutaneous coronary intervention (PCI). This research was designed to probe the diagnostic accuracy of miR-483-5p in patients with ACS and its predictive value of MACEs. METHODS 118 patients with ACS (40 with unstable angina pectoris [UAP] and 78 with acute myocardial infarction [AMI]) and 75 healthy controls were enrolled. Serum miR-483-5p was detected in the subjects by reverse transcription-quantitative real-time PCR (RT-qPCR). ROC curve and logistic regression models were employed to estimate the diagnosis. Patients were monitored for 6 months after PCI to document the occurrence of MACEs. Kaplan-Meier survival was conducted to explore the predictive significance of miR-483-5p for the MACEs. RESULTS Serum miR-483-5p levels were higher in ACS patients and associated with SYNTAX score and Gensini score. miR-483-5p was effective in identifying ACS patients from healthy individuals (AUC = 0.919) and AMI patients from ACS patients (AUC = 0.867), demonstrating a high diagnostic value, proven by logistic regression (OR = 9.664, 95%CI = 4.462-20.928, P < 0.001). The prevalence of MACEs during follow-up were 24.58%, and a higher prevalence of MACEs were observed in patients with elevated miR-483-5p (P = 0.01). miR-483-5p was also an effective predictor of MACE occurrence (HR = 5.955, 95%CI = 1.928-18.389, P = 0.002). CONCLUSION Expression of serum miR-483-5p can be utilized as a non-invasive marker for diagnosing ACS and predicting the onset of MACE after PCI.
Collapse
Affiliation(s)
- Yuying Zhao
- Department of Cardiology, No. 980 Hospital of PLA Joint Logistics Support Force, No 398, Zhongshan West Road, Shijiazhuang, 050082, Hebei, China.
| | - Xinxing Song
- Department of Cardiology, No. 980 Hospital of PLA Joint Logistics Support Force, No 398, Zhongshan West Road, Shijiazhuang, 050082, Hebei, China
| | - Yanzhuo Ma
- Department of Cardiology, No. 980 Hospital of PLA Joint Logistics Support Force, No 398, Zhongshan West Road, Shijiazhuang, 050082, Hebei, China
| | - Xiang Liu
- Department of Cardiology, No. 980 Hospital of PLA Joint Logistics Support Force, No 398, Zhongshan West Road, Shijiazhuang, 050082, Hebei, China
| | - Yuhong Peng
- Department of Cardiology, No. 980 Hospital of PLA Joint Logistics Support Force, No 398, Zhongshan West Road, Shijiazhuang, 050082, Hebei, China
| |
Collapse
|
3
|
Balashkevich N, Kazymov M, Syzdykbayev M, Adylova A. Molecular basis of acute coronary syndrome. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2022; 27:40. [PMID: 35968216 PMCID: PMC9374151 DOI: 10.4103/jrms.jrms_695_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/08/2021] [Accepted: 01/24/2022] [Indexed: 11/04/2022]
Abstract
Cardiovascular diseases (CVD) comprise of various heart and blood vessels-related diseases. Acute coronary syndrome (ACS) is one of them. Basic researchers and cardiologists have witnessed landmark developments related to ACS and despite rapid refinement in our understanding; scientists are seeking answers for more questions. Scientists have mapped wide ranging proteins and intricate protein networks which play central role in the pathogenesis in ACS. In this review, we have attempted to summarize underlying causes of ACS. Better understanding of the disease pathology will enable us to get a step closer to an effective clinical management.
Collapse
Affiliation(s)
| | - Maxut Kazymov
- Department of Family Medicine, Semey Medical University, Semey, Kazakhstan
| | - Marat Syzdykbayev
- Department of Anesthesiology, Reanimatology and Narcology, Semey Medical University, Semey, Kazakhstan
| | - Aima Adylova
- Department of Public Health, Kazakhstan School of Public Health, Almaty, Kazakhstan,Address for correspondence: Dr. Aima Adylova, Kazakhstan School of Public Health, Almaty, Kazakhstan. E-mail:
| |
Collapse
|
4
|
Chen T, Zhang X, Qian W, Zhou R, Su M, Ma Y. Serum miR-497-5p serves as a diagnostic biomarker for acute coronary syndrome and predicts the occurrence of major adverse cardiovascular events after percutaneous coronary intervention. Bioengineered 2022; 13:8266-8276. [PMID: 35302437 PMCID: PMC9161957 DOI: 10.1080/21655979.2022.2051885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the diagnostic value of microRNA (miR)-497-5p in acute coronary syndrome (ACS) and its predictive value for the occurrence of adverse major adverse cardiovascular events (MACEs). Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to detect the expression of serum miR-497-5p in 110 ACS patients and 82 controls. And miR-497-5p levels were found to be significantly elevated in the patients (P < 0.001). Pearson correlation coefficient confirmed that miR-497-5p was positively correlated with Gensini scores (r = 0.684). The area under the Receiver-operating characteristic (ROC) curve was 0.861, which significantly identified patients with ACS, and was confirmed by logistic regression (OR = 8.533, 95%CI = 4.113–17.787, P < 0.001). Kaplan-Meier and Cox regression was performed to evaluate the predictive value of miR-497-5p in the occurrence of MACEs during a 6-month follow-up after percutaneous coronary intervention (PCI) in patients with ACS. The results demonstrated that miR-497-5p was an independent predictor of MACEs (HR = 4.773, 95%CI = 1.569–12.036, P = 0.013) and that patients with high level of miR-497-5p were more likely to develop MACEs after PCI (long-rank P = 0.019). Finally, miR-497-5p positively correlated with endothelial proinflammatory and adhesion factors. Our study suggests that serum miR-497-5p is a potential diagnostic marker for ACS and its elevated levels can predict a high risk of MACEs in ACS patients after PCI. And this may be associated with vascular endothelial injury.
Collapse
Affiliation(s)
- Tao Chen
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xueshan Zhang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Qian
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ran Zhou
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingyu Su
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yanfeng Ma
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Shen M, Gong R, Li H, Yang Z, Wang Y, Li D. Identification of key molecular markers of acute coronary syndrome using peripheral blood transcriptome sequencing analysis and mRNA-lncRNA co-expression network construction. Bioengineered 2021; 12:12087-12106. [PMID: 34753383 PMCID: PMC8809957 DOI: 10.1080/21655979.2021.2003932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Acute coronary syndrome (ACS) is a term used to describe major cardiovascular diseases, and treatment of in-stent restenosis in patients with ACS remains a major clinical challenge. Further investigation into molecular markers of ACS may aid early diagnosis, and the treatment of ACS and post-treatment recurrence. In the present study, total RNA was extracted from the peripheral blood samples of 3 patients with ACS, 3 patients with percutaneous coronary intervention (PCI)_non-restenosis, 3 patients with PCI_restenosis and 3 healthy controls. Subsequently, RNA library construction and high-throughput sequencing were performed. DESeq2 package in R was used to screen genes that were differentially expressed between the different samples. Moreover, the intersection of the differentially expressed mRNAs (DEmRNAs) and differentially expressed long noncoding RNAs (DElncRNAs) obtained. GeneCodis4.0 was used to perform function enrichment for DEmRNAs, and lncRNA-mRNA co-expression network was constructed. The GSE60993 dataset was utilized for diagnostic analysis, and the aforementioned investigations were verified using in vitro studies. Results of the present study revealed a large number of DEmRNAs and DElncRNAs in the different groups. We selected genes in the top 10 of differential expression and also involved in the co-expression of lncRNA-mRNA for diagnostic analysis in the GSE60993 dataset. The area under curve (AUC) of PDZK1IP1 (0.747), PROK2 (0.769) and LAMP3 (0.725) were all >0.7. These results indicated that the identified mRNAs and lncRNAs may act as potential clinical biomarkers, and more specifically, PDZK1IP1, PROK2 and LAMP3 may act as potential biomarkers for the diagnosis of ACS.
Collapse
Affiliation(s)
- Ming Shen
- Department of Cardiology, The First Hospital of Hebei Medical University
| | - Rui Gong
- Department of internal medicine-Endocrinology, Children's Hospital of Hebei
| | - Haibin Li
- Department of General Medicine, the Third Hospital of Hebei Medical University
| | - Zhihui Yang
- Department of General Medicine, the Third Hospital of Hebei Medical University
| | - Yunpeng Wang
- Department of General Medicine, the Third Hospital of Hebei Medical University
| | - Dandan Li
- Department of General Medicine, the Third Hospital of Hebei Medical University
| |
Collapse
|