1
|
Ma XN, Li MY, Qi GQ, Wei LN, Zhang DK. SUMOylation at the crossroads of gut health: insights into physiology and pathology. Cell Commun Signal 2024; 22:404. [PMID: 39160548 PMCID: PMC11331756 DOI: 10.1186/s12964-024-01786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
SUMOylation, a post-translational modification involving the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target substrates, plays a pivotal role at the intersection of gut health and disease, influencing various aspects of intestinal physiology and pathology. This review provides a comprehensive examination of SUMOylation's diverse roles within the gut microenvironment. We examine its critical roles in maintaining epithelial barrier integrity, regulating immune responses, and mediating host-microbe interactions, thereby highlighting the complex molecular mechanisms that underpin gut homeostasis. Furthermore, we explore the impact of SUMOylation dysregulation in various intestinal disorders, including inflammatory bowel diseases and colorectal cancer, highlighting its implications as a potential diagnostic biomarker and therapeutic target. By integrating current research findings, this review offers valuable insights into the dynamic interplay between SUMOylation and gut health, paving the way for novel therapeutic strategies aimed at restoring intestinal equilibrium and combating associated pathologies.
Collapse
Affiliation(s)
- Xue-Ni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Mu-Yang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Guo-Qing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Li-Na Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - De-Kui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China.
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
2
|
Huang X, Gu F, Zhao M, Huang W, Han W, Chen R, Wang Y. Function and Therapeutic Potential of Non-Coding RNA in Ameloblastoma. Onco Targets Ther 2024; 17:643-653. [PMID: 39131904 PMCID: PMC11316470 DOI: 10.2147/ott.s474038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Ameloblastoma (AB) is a common odontogenic tumor that develops in the mouth. Despite its benign nature, AB exhibits significant invasiveness leading to tumor metastasis and high postoperative recurrence rates. Studies have shown a relationship between the occurrence and development of various tumors and non-coding RNA (ncRNA). NcRNA, transcribed from the genomes of mammals and other complex organisms, are often products of alternative splicing and processing into smaller products. MicroRNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNA) are the main types of ncRNA. NcRNA play increasingly significant roles in the pathogenesis of human cancers, regulating their occurrence and progression as oncogenes or tumor suppressors. They are involved in tumor development and progression through alternative splicing of pre-mRNA, transcriptional regulation, mRNA stability, protein translation, and chromatin remodeling and modification. The importance of ncRNA in AB has received significant attention in recent years. However, the biological functions and mechanisms of ncRNA in AB remain largely unknown. In this review, we not only explore the functions and roles of ncRNA in AB, but also describe and envision their potential functional roles as biomarkers in AB diagnosis. In particular, we highlight the potential of miR-29a as a molecular marker for diagnosis and therapy. As promising novel therapeutic targets, the biological functions of ncRNA need further study, which is indispensable.
Collapse
Affiliation(s)
- Xu Huang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Feihan Gu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Mingyu Zhao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Wenkai Huang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Wenjia Han
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Ran Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| |
Collapse
|
3
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Key Signaling Pathways and ncRNAs in Colorectal Cancer. Int J Mol Sci 2024; 25:4548. [PMID: 38674135 PMCID: PMC11050203 DOI: 10.3390/ijms25084548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-β (TGF-β) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Zhu J, Li Q, Wu Z, Xu W, Jiang R. Circular RNA-mediated miRNA sponge & RNA binding protein in biological modulation of breast cancer. Noncoding RNA Res 2024; 9:262-276. [PMID: 38282696 PMCID: PMC10818160 DOI: 10.1016/j.ncrna.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Circular RNAs (circRNAs) and small non-coding RNAs of the head-to-junction circle in the construct play critical roles in gene regulation and are significantly associated with breast cancer (BC). Numerous circRNAs are potential cancer biomarkers that may be used for diagnosis and prognosis. Widespread expression of circRNAs is regarded as a feature of gene expression in highly diverged eukaryotes. Recent studies show that circRNAs have two main biological modulation models: sponging and RNA-binding. This review explained the biogenesis of circRNAs and assessed emerging findings on their sponge function and role as RNA-binding proteins (RBPs) to better understand how their interaction alters cellular function in BC. We focused on how sponges significantly affect the phenotype and progression of BC. We described how circRNAs exercise the translation functions in ribosomes. Furthermore, we reviewed recent studies on RBPs, and post-protein modifications influencing BC and provided a perspective on future research directions for treating BC.
Collapse
Affiliation(s)
- Jing Zhu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qian Li
- Medical Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhongping Wu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rilei Jiang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
5
|
Liang Z, Shi Y, Guan Z. CircECE1 promotes osteosarcoma progression through regulating RAB3D by sponging miR-588. J Orthop Surg Res 2023; 18:587. [PMID: 37559140 PMCID: PMC10410784 DOI: 10.1186/s13018-023-04045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been confirmed to be involved in cancer pathogenesis. However, the underlying mechanism of circRNA endothelin converting enzyme 1 (circECE1) in osteosarcoma (OS) development is still not understood. METHODS The expression levels of circECE1, microRNA-588 (miR-588) and RAB3D, member RAS oncogene family (RAB3D) were gauged by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. OS cell proliferation was assessed by cell counting kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) assay. OS cell apoptosis rate and metastasis were identified by flow cytometry and transwell assay. Dual-luciferase reporter analysis and RNA immunoprecipitation (RIP) assay were performed to confirm the interactions among circECE1, miR-588 and RAB3D. Xenograft tumor models were established to explore circECE1 function in vivo. Immunohistochemistry (IHC) assay was applied to analyze RAB3D level after circECE1 knockdown. RESULTS In OS, circECE1 expression was higher than that in normal chondroma tissues. High levels of circECE1 were positively linked to OS cell viability, proliferation, migration and invasion, and negatively linked to OS cell apoptosis rate. It was found that circECE1 was a miR-588 sponge, and miR-588 inhibitor abrogated the influence of si-circECE1 on OS cells. MiR-588 targeted RAB3D to further regulate the pathological process of OS. Moreover, silencing circECE1 blocked OS tumor growth in vivo. CONCLUSION We elucidated the function of a novel circECE1/miR-588/RAB3D axis in OS progression.
Collapse
Affiliation(s)
- Zhizhong Liang
- Department of Bone and Soft Tissue Oncology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Zhigong New Street, Xinghualing District, Taiyuan, 030013, China
| | - Yuxia Shi
- Department of Bone and Soft Tissue Oncology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Zhigong New Street, Xinghualing District, Taiyuan, 030013, China
| | - Zhe Guan
- Department of Bone and Soft Tissue Oncology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Zhigong New Street, Xinghualing District, Taiyuan, 030013, China.
| |
Collapse
|
6
|
Zhu X, Luo X, Long X, Jiang S, Xie X, Zhang Q, Wang H. CircAGO2 promotes colorectal cancer progression by inhibiting heat shock protein family B (small) member 8 via miR-1-3p/retinoblastoma binding protein 4 axis. Funct Integr Genomics 2023; 23:78. [PMID: 36881338 DOI: 10.1007/s10142-023-00990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
This paper was to uncover the mechanism of circular RNA Argonaute 2 (circAGO2) in colorectal cancer (CRC) progression. The expression of circAGO2 was detected in CRC cells and tissues, and the relationship between clinicopathological features of CRC and circAGO2 level was evaluated. The growth and invasion of CRC cells and subcutaneous xenograft of nude mice were measured to evaluate the effect of circAGO2 on CRC development. Bioinformatics databases were applied to analyze levels of retinoblastoma binding protein 4 (RBBP4) and heat shock protein family B 8 (HSPB8) in cancer tissues. The relevance of circAGO2 and RBBP4 expression and the relationship between RBBP4 and HSPB8 during histone acetylation were assessed. The targeting relationship between miR-1-3p and circAGO2 or RBBP4 was predicted and confirmed. The effects of miR-1-3p and RBBP4 on biological functions of CRC cells were also verified. CircAGO2 was upregulated in CRC. CircAGO2 promoted the growth and invasion of CRC cells. CircAGO2 competitively bound to miR-1-3p and regulated RBBP4 expression, thus inhibiting HSPB8 transcription by promoting histone deacetylation. Silencing circAGO2 enhanced miR-1-3p expression and reduced RBBP4 expression, while suppression of miR-1-3p downgraded levels of miR-1-3p, up-regulated RBBP4, and facilitated cell proliferation and invasion in the presence of silencing circAGO2. RBBP4 silencing decreased RBBP4 expression and reduced proliferation and invasion of cells where circAGO2 and miR-1-3p were silenced. CircAGO2 overexpression decoyed miR-1-3p to increase RBBP4 expression, which inhibited HSPB8 transcription via histone deacetylation in HSPB8 promoter region, promoting proliferation and invasion of CRC cells.
Collapse
Affiliation(s)
- Xijia Zhu
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Guilin Medical University, No. 212 Renmin Road, Lingui District, Guilin, Guangxi, 541100, People's Republic of China
| | - Xishun Luo
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Guilin Medical University, No. 212 Renmin Road, Lingui District, Guilin, Guangxi, 541100, People's Republic of China
| | - Xiangkai Long
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Guilin Medical University, No. 212 Renmin Road, Lingui District, Guilin, Guangxi, 541100, People's Republic of China
| | - Shiyu Jiang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Guilin Medical University, No. 212 Renmin Road, Lingui District, Guilin, Guangxi, 541100, People's Republic of China
| | - Xinyang Xie
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Guilin Medical University, No. 212 Renmin Road, Lingui District, Guilin, Guangxi, 541100, People's Republic of China
| | - Qiqi Zhang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Guilin Medical University, No. 212 Renmin Road, Lingui District, Guilin, Guangxi, 541100, People's Republic of China
| | - Haipeng Wang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Guilin Medical University, No. 212 Renmin Road, Lingui District, Guilin, Guangxi, 541100, People's Republic of China.
| |
Collapse
|
7
|
Fang G, Xu D, Zhang T, Wang G, Qiu L, Gao X, Miao Y. Biological functions, mechanisms, and clinical significance of circular RNA in colorectal cancer. Front Oncol 2023; 13:1138481. [PMID: 36950552 PMCID: PMC10025547 DOI: 10.3389/fonc.2023.1138481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide due to the lack of effective diagnosis and prognosis biomarkers and therapeutic targets, resulting in poor patient survival rates. Circular RNA (circRNA) is a type of endogenous non-coding RNA (ncRNA) with a closed-loop structure that plays a crucial role in physiological processes and pathological diseases. Recent studies indicate that circRNAs are involved in the diagnosis, prognosis, drug resistance, and development of tumors, particularly in CRC. Therefore, circRNA could be a potential new target for improving CRC diagnosis, prognosis, and treatment. This review focuses on the origin and biological functions of circRNA, summarizes recent research on circRNA's role in CRC, and discusses the potential use of circRNAs as clinical biomarkers for cancer diagnosis and prognosis, as well as therapeutic targets for CRC treatment.
Collapse
Affiliation(s)
- Guida Fang
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People’s Hospital, Bengbu Medical College, Lianyungang, China
| | - Dalai Xu
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People’s Hospital, Bengbu Medical College, Lianyungang, China
| | - Gang Wang
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Lei Qiu
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Xuzhu Gao
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People’s Hospital, Bengbu Medical College, Lianyungang, China
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
- Institute of Clinical Oncology, The Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yongchang Miao
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People’s Hospital, Bengbu Medical College, Lianyungang, China
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
| |
Collapse
|
8
|
Sun W, Lei X, Lu Q, Wu Q, Ma Q, Huang D, Zhang Y. LncRNA FRMD6-AS1 promotes hepatocellular carcinoma cell migration and stemness by regulating SENP1/HIF-1α axis. Pathol Res Pract 2023; 243:154377. [PMID: 36827886 DOI: 10.1016/j.prp.2023.154377] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Long non-cording RNAs (lncRNAs) drive the malignant progression of hepatocellular carcinoma (HCC), a cancer with high mortality rates but the function of FERM Domain Containing 6 antisense RNA 1 (FRMD6-AS1) in HCC has not been fully addressed. Hypoxia-inducible factors (HIFs) are transcription factors relevant to HCC under hypoxia and are regulated by SUMO-specific protease 1 (SENP1) through its deSUMOylation of HIF-1α. The current study investigated the role of FRMD6-AS1 in the regulation of SENP1-mediated deSUMOylation of HIF-1α. METHODS HUH7 and MHCC97H cells were treated with CoCl2 to mimic hypoxia in vitro and lentiviral vector-mediated FRMD6-AS1 overexpressing HCC cells were established. Wound-healing, Transwell, sphere formation assay, Western blotting analysis and animal experiments were performed. Expression of FRMD6-AS1, SENP1 mRNA and HIF-1α mRNA was assessed by RT-qPCR and of HIF-1α and SENP1 protein by Western blot. DeSUMOylation of HIF-1α was detected by immunoprecipitation. RNA immunoprecipitation with SENP1 antibody or IgG was performed to assess endogenous interactions between SENP1 and FRMD6-AS1. RESULTS FRMD6-AS1 was upregulated in HCC tissues and cells and its upregulation indicated poor prognosis for HCC patients. FRMD6-AS1 promoted HCC cells migration and stemness in vitro and also promoted tumor growth in an in vivo mouse xenograft model. Mechanistic studies showed that FRMD6-AS1 regulated the level of HIF-1α protein but not the mRNA and this effect was achieved by binding to SENP1 protein and enhancing its protease activity. Rescue experiments demonstrated the oncogenic role of the FRMD6-AS1/SENP1/ HIF-1α axis in HCC cells. CONCLUSIONS High FRMD6-AS1 expression was associated with poor prognosis of HCC patients. FRMD6-AS1 may have an oncogenic role in HCC via regulation of the SENP1/HIF-1α axis and may be a prognostic biomarker for HCC. Blockade of FRMD6-AS1 may offer a novel therapeutic approach to restrict HCC progression.
Collapse
Affiliation(s)
- Wen Sun
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Xiangxiang Lei
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Qiliang Lu
- Qingdao medical college, Qingdao university, Qingdao 266000, China
| | - Qingsong Wu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Qiancheng Ma
- College of Bioscience Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 8, Yikang Street, Lin'an District, Hangzhou 310014, China.
| | - Yaping Zhang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 8, Yikang Street, Lin'an District, Hangzhou 310014, China.
| |
Collapse
|
9
|
Lara-Ureña N, Jafari V, García-Domínguez M. Cancer-Associated Dysregulation of Sumo Regulators: Proteases and Ligases. Int J Mol Sci 2022; 23:8012. [PMID: 35887358 PMCID: PMC9316396 DOI: 10.3390/ijms23148012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
SUMOylation is a post-translational modification that has emerged in recent decades as a mechanism involved in controlling diverse physiological processes and that is essential in vertebrates. The SUMO pathway is regulated by several enzymes, proteases and ligases being the main actors involved in the control of sumoylation of specific targets. Dysregulation of the expression, localization and function of these enzymes produces physiological changes that can lead to the appearance of different types of cancer, depending on the enzymes and target proteins involved. Among the most studied proteases and ligases, those of the SENP and PIAS families stand out, respectively. While the proteases involved in this pathway have specific SUMO activity, the ligases may have additional functions unrelated to sumoylation, which makes it more difficult to study their SUMO-associated role in cancer process. In this review we update the knowledge and advances in relation to the impact of dysregulation of SUMO proteases and ligases in cancer initiation and progression.
Collapse
Affiliation(s)
| | | | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain; (N.L.-U.); (V.J.)
| |
Collapse
|
10
|
Competing Endogenous RNAs" (ceRNAs) in Colorectal Cancer: a review article. Expert Rev Mol Med 2022; 24:e27. [PMID: 35748050 DOI: 10.1017/erm.2022.21] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Wang X, Zhu Y, Xie Q. The promising role and prognostic value of miR-198 in human diseases. Am J Transl Res 2022; 14:2749-2766. [PMID: 35559396 PMCID: PMC9091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
The importance of microRNAs (miRNAs or miRs) has attracted more and more attention. MiRNA is an approximately 22-nucleotide, single-stranded, non-coding RNA molecule that affects the expression of downstream target genes. MiRNAs regulate the occurrence and development of human diseases. The objective of this article is to explore the abnormal expression of miR-198 in a variety of human diseases. The relationships between abnormally expressed miR-198 and clinicopathological characteristics are also summarized. Its roles in various diseases and potential molecular mechanisms include involvement in many biological processes, such as cell cycle regulation, proliferation, invasion, migration, apoptosis, and drug resistance. The potential value of miR-198 for disease diagnosis, treatment, and especially, prognosis, are discussed. More in-depth research on miRNA will support the conversion from basic research to clinical applications of this molecule.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, P. R. China
| | - Yanxia Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, P. R. China
| | - Qiuli Xie
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, P. R. China
| |
Collapse
|
12
|
Zhang Y, Zeng S, Wang T. Circular RNA hsa_circ_0002360 promotes non-small cell lung cancer progression through upregulating matrix metalloproteinase 16 and sponging multiple micorRNAs. Bioengineered 2021; 12:12767-12777. [PMID: 34747300 PMCID: PMC8809917 DOI: 10.1080/21655979.2021.1999370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Dysregulated circular RNAs (circRNAs) are involved in the progression of non-small cell lung cancer (NSCLC). However, the role of has_circ_0002360 (circ_0002360) in NSCLC has rarely been reported. In this study, circ_0002360 expression in NSCLC tissues and cell lines was measured using microarray data and quantitative real-time PCR (qRT-PCR). After gain-of-function and loss-of-function, cell models were established; 5-bromo-2-deoxyuridine (BrdU) and transwell assays were conducted to detect NSCLC cell growth, migration, and invasion. What is more, bioinformatic analysis and dual-luciferase reporter assay were adopted to show how circ_0002360, microRNAs (miR-127-5p, miR-145-5p, miR-585-3p, and miR-758-3p), and matrix metalloproteinase 16 (MMP16) 3ʹUTR interact with each other. Western blotting was executed to probe the regulatory effects of circ_0002360 and these miRNAs on MMP16 protein expression in NSCLC cells. We found that circ_0002360 expression was raised in NSCLC tissues. High circ_0002360 expression predicted a short overall survival time for NSCLC patients. Circ_0002360 overexpression promoted NSCLC cell proliferative, migrative, and invasive abilities, and circ_0002360 depletion worked oppositely. MiR-127-5p, miR-145-5p, miR-585-3p, and miR-758-3p were the targets of circ_0002360, and circ_0002360 could regulate MMP16 expression by competitively binding with the above miRNAs. In summary, circ_0002360 serves as a competitive endogenous RNA to raise MMP16 expressions by competitively binding to miR-127-5p, miR-145-5p, miR-585-3p, and miR-758-3p, thereby promoting NSCLC progression.
Collapse
Affiliation(s)
- Yunting Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Shaolin Zeng
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| |
Collapse
|