1
|
Kapturska KM, Pawlak A. New molecular targets in canine hemangiosarcoma-Comparative review and future of the precision medicine. Vet Comp Oncol 2023; 21:357-377. [PMID: 37308243 DOI: 10.1111/vco.12917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
Human angiosarcoma and canine hemangiosarcoma reveal similarities not only in their aggressive clinical behaviour, but especially in molecular landscape and genetic alterations involved in tumorigenesis and metastasis formation. Currently, no satisfying treatment that allows for achieving long overall survival or even prolonged time to progression does not exist. Due to the progress that has been made in targeted therapies and precision medicine the basis for a new treatment design is to uncover mutations and their functions as possible targets to provide tailored drugs for individual cases. Whole exome or genome sequencing studies and immunohistochemistry brought in the last few years important discoveries and identified the most common mutations with probably crucial role in this tumour development. Also, despite a lack of mutation in some of the culprit genes, the cancerogenesis cause may be buried in main cellular pathways connected with proteins encoded by those genes and involving, for example, pathological angiogenesis. The aim of this review is to highlight the most promising molecular targets for precision oncology treatment from the veterinary perspective aided by the principles of comparative science. Some of the drugs are only undergoing laboratory in vitro studies and others entered the clinic in the management of other cancer types in humans, but those used in dogs with promising responses have been mentioned as priorities.
Collapse
Affiliation(s)
- Karolina Małgorzata Kapturska
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
- Veterinary Clinic NEOVET s.c. Hildebrand, Jelonek, Michalek-Salt, Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
2
|
Pires SF, Barros JSD, Costa SSD, Carmo GBD, Scliar MDO, Lengert AVH, Boldrini É, Silva SRMD, Vidal DO, Maschietto M, Krepischi ACV. Analysis of the Mutational Landscape of Osteosarcomas Identifies Genes Related to Metastasis and Prognosis and Disrupted Biological Pathways of Immune Response and Bone Development. Int J Mol Sci 2023; 24:10463. [PMID: 37445641 DOI: 10.3390/ijms241310463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/15/2023] Open
Abstract
Osteosarcoma (OS) is the most prevalent type of bone tumor, but slow progress has been achieved in disentangling the full set of genomic events involved in its initiation and progression. We assessed by NGS the mutational spectrum of 28 primary OSs from Brazilian patients, and identified 445 potentially deleterious SNVs/indels and 1176 copy number alterations (CNAs). TP53 was the most recurrently mutated gene, with an overall rate of ~60%, considering SNVs/indels and CNAs. The most frequent CNAs (~60%) were gains at 1q21.2q21.3, 6p21.1, and 8q13.3q24.22, and losses at 10q26 and 13q14.3q21.1. Seven cases presented CNA patterns reminiscent of complex events (chromothripsis and chromoanasynthesis). Putative RB1 and TP53 germline variants were found in five samples associated with metastasis at diagnosis along with complex genomic patterns of CNAs. PTPRQ, KNL1, ZFHX4, and DMD alterations were prevalent in metastatic or deceased patients, being potentially indicative of poor prognosis. TNFRSF11B, involved in skeletal system development and maintenance, emerged as a candidate for osteosarcomagenesis due to its biological function and a high frequency of copy number gains. A protein-protein network enrichment highlighted biological pathways involved in immunity and bone development. Our findings reinforced the high genomic OS instability and heterogeneity, and led to the identification of novel disrupted genes deserving further evaluation as biomarkers due to their association with poor outcomes.
Collapse
Affiliation(s)
- Sara Ferreira Pires
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| | - Juliana Sobral de Barros
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| | - Silvia Souza da Costa
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| | - Gabriel Bandeira do Carmo
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| | - Marília de Oliveira Scliar
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| | | | - Érica Boldrini
- Barretos Children's Cancer Hospital, Barretos 14784-400, Brazil
| | | | - Daniel Onofre Vidal
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos 14784-384, Brazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-884, Brazil
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo 05508-090, Brazil
| |
Collapse
|
3
|
Xia X, Fan J, Fan Z. Hsa_circ_0129047 sponges miR-665 to attenuate lung adenocarcinoma progression by upregulating protein tyrosine phosphatase receptor type B. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:131-141. [PMID: 36815253 PMCID: PMC9968949 DOI: 10.4196/kjpp.2023.27.2.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 02/24/2023]
Abstract
Compelling evidence has demonstrated the critical role of circular RNAs (circRNAs) during lung adenocarcinoma (LUAD) progression. Herein, we explored a novel circRNA, circ_0129047, and detailed its mechanism of action. The expression of circ 0129047, microRNA-665 (miR-665), and protein tyrosine phosphatase receptor type B (PTPRB) in LUAD tissues and cells was determined using reverse transcription quantitative polymerase chain reaction and Western blotting. Cell Counting Kit-8 and colony formation assays were conducted to detect LUAD cell proliferation, and western blotting was performed to quantify apoptosis-related proteins (Bcl-2 and Bax). Luciferase reporter and RNA immunoprecipitation assays were used to validate the predicted interaction between miR-665 and circ_0129047 or PTPRB. A xenograft assay was used for the in vivo experiments. Circ_0129047 and PTPRB were downregulated in LUAD tissues and cells, whereas miR-665 expression was upregulated. Overexpression of circ_0129047 suppresses LUAD growth in vivo and in vitro. Circ_0129047 is the target of miR-665, and the miR-665 mimic ablated the antiproliferative and pro-apoptotic phenotypes of LUAD cells by circ_0129047 augmentation. MiR-665 targets the 3'UTR of PTPRB and downregulates PTPRB expression. PTPRB overexpression offsets the pro-proliferative potential of miR-665 in LUAD cells. Circ_0129047 sequestered miR-665 and upregulated PTPRB expression, thereby reducing LUAD progression, suggesting a promising approach for preventing LUAD.
Collapse
Affiliation(s)
- Xiaofan Xia
- Department of Respiratory and Critical Care Medicine, Wuhan Red Cross Hospital, Wuhan No.11 Hospital, Wuhan 430015, China
| | - Jinxiu Fan
- Department of Respiratory and Critical Care Medicine, Wuhan Red Cross Hospital, Wuhan No.11 Hospital, Wuhan 430015, China
| | - Zhongjie Fan
- Department of Respiratory and Critical Care Medicine, Wuhan Red Cross Hospital, Wuhan No.11 Hospital, Wuhan 430015, China,Correspondence Zhongjie Fan, E-mail:
| |
Collapse
|
4
|
Lv Z, Wang T, Cao X, Sun M, Qu Y. The role of receptor‐type protein tyrosine phosphatases in cancer. PRECISION MEDICAL SCIENCES 2023. [DOI: 10.1002/prm2.12090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Zhengyuan Lv
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
| | - Tianming Wang
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
- Central Laboratory, Translational Medicine Research Center The Affiliated Jiangning Hospital with Nanjing Medical University Nanjing China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
| | - Mengting Sun
- Biobank of Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Yuan Qu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
5
|
Dong Z, Chang X, Xie L, Wang Y, Hou Y. Increased expression of SRPK1 (serine/arginine-rich protein-specific kinase 1) is associated with progression and unfavorable prognosis in cervical squamous cell carcinoma. Bioengineered 2022; 13:6100-6112. [PMID: 35192432 PMCID: PMC8973769 DOI: 10.1080/21655979.2022.2034705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/15/2022] Open
Abstract
Previous studies suggest that SRPK1 (serine/arginine-rich protein-specific kinase 1) is involved in tumorigenesis and closely related to unfavorable outcomes. However, its expression pattern in cervical squamous cell carcinoma (CESC) remains uncovered. In this study, we initially investigated the clinical significance and function of SRPK1 in human CESC. Data mining and analysis on SRPK1 mRNA expression in CESC samples were conducted using TCGA database, which indicated that SRPK1 mRNA was significantly upregulated in CESC samples. Protein expression of SRPK1 was tested by immunohistochemistry in a retrospective cohort (n = 122), revealing a higher SRPK1 protein abundance in CESC specimens whose aberrant up-regulation was obviously related to worse survival. Cox proportional hazards regression analysis further confirmed the role of SRPK1 as an independent prognostic factor of CESC. Cellular experiments validated that SRPK1 may function through enhancing CESC proliferation, migration, and invasion. In conclusion, aberrant up-regulation of SRPK1 is remarkably related to progression and unfavorable prognosis of CESC, which can serve as a novel prognostic biomarker and therapeutic target for CESC.
Collapse
Affiliation(s)
- Zhanfei Dong
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xuezhi Chang
- Department of Radiation Oncology, Yili Friendship Hospital, Yili, Xinjiang, China
| | - Li Xie
- Department of Radiation Gynecological Oncology, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yina Wang
- Department of Radiation Gynecological Oncology, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Youxiang Hou
- Department of Radiation Gynecological Oncology, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
6
|
Zhang P, Zhao F, Jia K, Liu X. The LOXL1 antisense RNA 1 (LOXL1-AS1)/microRNA-423-5p (miR-423-5p)/ectodermal-neural cortex 1 (ENC1) axis promotes cervical cancer through the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. Bioengineered 2022; 13:2567-2584. [PMID: 35015607 PMCID: PMC8973666 DOI: 10.1080/21655979.2021.2018975] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As the fourth commonest malignancy among females worldwide, cervical cancer (CC) poses a huge challenge to human health. The pivotal regulatory roles of lncRNAs in cancers have been highlighted. LOXL1 antisense RNA 1 (LOXL1-AS1) has been reported to play a key role in cervical squamous cell carcinoma and other various cancers. Thus, we investigated the roles and mechanisms of lncRNA LOXL1-AS1 in CC. The in vivo experiments demonstrated that LOXL1-AS1 downregulation inhibited tumor growth and metastasis and proliferation of CC cells. The results of RT-qPCR demonstrated that LOXL1-AS1 and ectodermal-neural cortex 1 (ENC1) expression levels were upregulated in CC cells and tissues, while microRNA-423-5p (miR-423-5p) level was downregulated. As subcellular fractionation assays, RNA pull down assays and luciferase reporter assays revealed, LOXL1-AS1 bound to miR-423-5p and miR-423-5p targeted ENC1. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, wound healing and colony formation assays demonstrated that miR-423-5p upregulation and LOXL1-AS1 downregulation inhibited CC cell proliferation and migration, while ENC1 upregulation attenuated the inhibitory effects of miR-423-5p upregulation on the malignant phenotypes of CC cells. Western blotting was conducted to measure protein levels and the results showed that ENC1 knockdown inhibited the activation of ERK/MEK pathway. In summary, the LOXL1-AS1/miR-423-5p/ENC1 axis accelerates CC development through the MEK/ERK pathway.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Gynaecology, The Frist People's Hospital of Zhangjiagang Affiliated to Suzhou University, Zhangjiagang, China
| | - Fang Zhao
- Department of Gynaecology, The Frist People's Hospital of Zhangjiagang Affiliated to Suzhou University, Zhangjiagang, China
| | - Ke Jia
- Department of Gynaecology, The Frist People's Hospital of Zhangjiagang Affiliated to Suzhou University, Zhangjiagang, China
| | - Xiaoli Liu
- Department of Gynaecology, The Frist People's Hospital of Zhangjiagang Affiliated to Suzhou University, Zhangjiagang, China
| |
Collapse
|