1
|
Mach N. The forecasting power of the mucin-microbiome interplay in livestock respiratory diseases. Vet Q 2024; 44:1-18. [PMID: 38606662 PMCID: PMC11018052 DOI: 10.1080/01652176.2024.2340003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Complex respiratory diseases are a significant challenge for the livestock industry worldwide. These diseases considerably impact animal health and welfare and cause severe economic losses. One of the first lines of pathogen defense combines the respiratory tract mucus, a highly viscous material primarily composed of mucins, and a thriving multi-kingdom microbial ecosystem. The microbiome-mucin interplay protects from unwanted substances and organisms, but its dysfunction may enable pathogenic infections and the onset of respiratory disease. Emerging evidence also shows that noncoding regulatory RNAs might modulate the structure and function of the microbiome-mucin relationship. This opinion paper unearths the current understanding of the triangular relationship between mucins, the microbiome, and noncoding RNAs in the context of respiratory infections in animals of veterinary interest. There is a need to look at these molecular underpinnings that dictate distinct health and disease outcomes to implement effective prevention, surveillance, and timely intervention strategies tailored to the different epidemiological contexts.
Collapse
Affiliation(s)
- Núria Mach
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
2
|
Matos AGDM, Silva GEB, Barbosa EDS, de Andrade MS, Santos Lages J, Corrêa RDGCF, Oliveira AGC, Teixeira EB, da Silva MGDOP, da Fonseca SSS, Teixeira-Júnior AAL, Alves MS, Alencar Junior AM, Khayat AS, Pinho JD. What is the role of circRNAs in the pathogenesis of cervical cancer? A systematic literature review. Front Genet 2024; 15:1287869. [PMID: 38859935 PMCID: PMC11163134 DOI: 10.3389/fgene.2024.1287869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
Cervical Cancer (CC) is one of the most prevalent neoplasms among women, considered the leading cause of gynecological death worldwide, and the fourth most common type of cancer. Regional metastasis is closely related to the low effectiveness of treatment, and validating biomarkers can optimize accuracy in diagnosis and prognosis. Among the potential biomarkers associated with disease metastasis are circular RNAs (circRNAs), whose altered expression has been linked to CC progression. In this context, this systematic review aims to compile information on the clinical-pathological significance and describe the biological function of circRNAs. Inclusion and exclusion criteria were used to include relevant literature, followed by in silico analysis. Additionally, we employed the UALCAN tools to search for host genes of circRNAs and expression data, miRTargetLink 2.0 to predict interactions of microRNA target genes and the Cytoscape software to predict possible interactions of microRNA target genes. According to the research, most circRNAs were found to be overexpressed and described as regulators of processes such as invasion, cell proliferation, apoptosis and migration. They were also implicated in clinical significance, including metastasis, TNM staging and microRNA interactions. CircRNAs may participate in critical processes in tumorigenesis; therefore, understanding the underlying molecular mechanisms of gene regulation in CC can contribute to the accuracy of diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
| | - Gyl Eanes Barros Silva
- Postgraduate Program in Adult Health, Federal University of Maranhão, São Luís, Brazil
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- Molecular Pathology Study Group, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | | | | | - Joyce Santos Lages
- University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Rita da Graça Carvalhal Frazão Corrêa
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | | | | | | | | | - Antonio Augusto Lima Teixeira-Júnior
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- Molecular Pathology Study Group, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Matheus Silva Alves
- State University of the Tocantina Region of Maranhão, Department of Health Sciences, Imperatriz, Maranhão, Brazil
| | - Antonio Machado Alencar Junior
- Molecular Pathology Study Group, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - André Salim Khayat
- Oncology Research Center, Federal University of Pará, Belém, Pará, Brazil
| | - Jaqueline Diniz Pinho
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- Molecular Pathology Study Group, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- State University of Maranhão, Zé Doca, Maranhão, Brazil
- Oncology Research Center, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
3
|
Shao X, Zhang M, Fang J, Ge R, Su Y, Liu H, Zhang D, Wang Q. Analysis of the lncRNA-miRNA-mRNA network to explore the regulation mechanism in human traumatic brain injury. Neuroreport 2024; 35:328-336. [PMID: 38407897 DOI: 10.1097/wnr.0000000000002008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Traumatic brain injury (TBI) refers to brain dysfunction with or without traumatic structural injury induced by an external force. Nevertheless, the molecular mechanism of TBI remains undefined. Differentially expressed (DE) lncRNAs, DEmRNAs and DEmiRNAs were selected between human TBI tissues and the adjacent histologically normal tissue by high-throughput sequencing. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis of overlapping DEmRNAs between predicted mRNAs of DEmiRNAs and DEmRNAs. The competitive endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA was established in light of the ceRNA theory. In the ceRNA network, the key lncRNAs were screened out. Then key lncRNAs related ceRNA subnetwork was constructed. After that, qRT-PCR was applied to validate the expression levels of hub genes. 114 DElncRNAs, 1807 DEmRNAs and 6 DEmiRNAs were DE in TBI. The TBI-related ceRNA network was built with 73 lncRNA nodes, 81 mRNA nodes and 6 miRNAs. According to topological analysis, two hub lncRNAs (ENST00000562897 and ENST00000640877) were selected to construct the ceRNA subnetwork. Subsequently, key lncRNA-miRNA-mRNA regulatory axes constructed by two lncRNAs including ENST00000562897 and ENST00000640877, two miRNAs including miR-6721-5p and miR-129-1-3p, two mRNAs including ketohexokinase (KHK) and cyclic nucleotide-gated channel beta1 (CNGB1), were identified. Furthermore, qRT-PCR results displayed that the expression of ENST00000562897, KHK and CNGB1 were significantly decreased in TBI, while the miR-6721-5p expression levels were markedly increased in TBI. The results of our study reveal a new insight into understanding the ceRNA regulation mechanism in TBI and select key lncRNA-miRNA-mRNA axes for prevention and treatment of TBI.
Collapse
Affiliation(s)
- Xuefei Shao
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| | - Maosong Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| | - Jincheng Fang
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| | - Ruixiang Ge
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| | - Yue Su
- Graduate School of Wannan Medical College, Wuhu, China
| | - Hongbing Liu
- Graduate School of Wannan Medical College, Wuhu, China
| | - Daojin Zhang
- Graduate School of Wannan Medical College, Wuhu, China
| | - Qifu Wang
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| |
Collapse
|
4
|
Wang W, Li H, Shi Y, Zhou J, Khan GJ, Zhu J, Liu F, Duan H, Li L, Zhai K. Targeted intervention of natural medicinal active ingredients and traditional Chinese medicine on epigenetic modification: Possible strategies for prevention and treatment of atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155139. [PMID: 37863003 DOI: 10.1016/j.phymed.2023.155139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Atherosclerosis is a deadly consequence of cardiovascular disease and has very high mortality rate worldwide. The epigenetic modifications can regulate the pervasiveness and progression of atherosclerosis through its involvement in regulation of inflammation, oxidative stress, lipid metabolism and several other factors. Specific non-coding RNAs, DNA methylation, and histone modifications are key regulatory factors of atherosclerosis. Natural products from traditional Chinese medicine have shown promising therapeutic potential against atherosclerosis by means of regulating the expression of specific genes, stabilizing arterial plaques and protecting vascular endothelial cells. OBJECTIVE Our study is focusing to explore the pathophysiology and probability of traditional Chinese medicine and natural medicinal active ingredients to treat atherosclerosis. METHODS Comprehensive literature review was conducted using PubMed, Web of Science, Google Scholar and China National Knowledge Infrastructure with a core focus on natural medicinal active ingredients and traditional Chinese medicine prying in epigenetic modification related to atherosclerosis. RESULTS Accumulated evidence demonstrated that natural medicinal active ingredients and traditional Chinese medicine have been widely studied as substances that can regulate epigenetic modification. They can participate in the occurrence and development of atherosclerosis through inflammation, oxidative stress, lipid metabolism, cell proliferation and migration, macrophage polarization and autophagy respectively. CONCLUSION The function of natural medicinal active ingredients and traditional Chinese medicine in regulating epigenetic modification may provide a new potential strategy for the prevention and treatment of atherosclerosis. However, more extensive research is essential to determine the potential of these natural medicinal active ingredients to treat atherosclerosis because of least clinical data.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Han Li
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ying Shi
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jing Zhou
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Juan Zhu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Fawang Liu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China.
| |
Collapse
|
5
|
Tian C, Gao J, Yang L, Yuan X. Non-coding RNA regulation of macrophage function in asthma. Cell Signal 2023; 112:110926. [PMID: 37848099 DOI: 10.1016/j.cellsig.2023.110926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
As a chronic respiratory disease, asthma is related to airway inflammation and remodeling. Macrophages are regarded as main innate immune cells in the airway that exert various functions like antigen recognition and presentation, phagocytosis, and pathogen clearance, playing a crucial role in the pathogeneses of asthma. Non-coding RNAs (ncRNAs), mainly include microRNA, long non-coding RNA and circular RNA, have been extensively investigated on the regulation of pathological process in asthma. Recent studies have indicated that ncRNA-regulated macrophages affect macrophage polarization, airway inflammation, immune regulation and airway remodeling, which suggests that modulating macrophages by ncRNAs may be a promising strategy for the treatment of asthma. This review summarizes the effect of macrophages in asthma and the regulatory mechanisms of ncRNAs, as well as focuses on the role of ncRNAs-regulated macrophages in asthma, for the development of novel therapeutic strategies in this disease.
Collapse
Affiliation(s)
- Chunyan Tian
- Heilongjiang University of Chinese Medicine, Harbin 150040, China; Department of Respiratory Medicine, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jiawei Gao
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Liuxin Yang
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin 150040, China; Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China.
| |
Collapse
|
6
|
Qian F, He S, Yang X, Chen X, Zhao S, Wang J. Circular RNA DHTKD1 targets miR‑338‑3p/ETS1 axis to regulate the inflammatory response in human bronchial epithelial cells. Exp Ther Med 2023; 26:316. [PMID: 37273760 PMCID: PMC10236136 DOI: 10.3892/etm.2023.12015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/27/2023] [Indexed: 06/06/2023] Open
Abstract
Asthma is a chronic inflammatory airway disease and the airway epithelium is involved in airway inflammation and innate immunity. However, whether circular RNA (circRNA) is involved in the pathogenesis of asthma remains unclear. The present study aimed to determine the functions and molecular mechanisms of circRNA targeting dehydrogenase E1 (circDHTKD1) in the inflammation response of human bronchial epithelial cells. BEAS-2B cells were stimulated with lipopolysaccharide (LPS) to establish a model of in vitro airway inflammation. Cell viability was assessed using Cell Counting Kit-8 assay. CircDHTKD1 was characterised by nucleocytoplasmic isolation and Sanger sequencing. The RNA expression levels of circDHTKD1, microRNA (miR)-338-3p and potential ERK pathway downstream genes were evaluated by reverse transcription-quantitative polymerase chain reaction. Western blot analysis was performed to measure associated protein levels. The levels of inflammatory cytokines were detected by ELISA. The interaction between circDHTKD1 and miR-338-3p was confirmed by dual-luciferase reporter assay. circDHTKD1 expression was significantly upregulated by LPS treatment, whereas miR-338-3p expression was decreased. Furthermore, circDHTKD1 directly targeted miR-338-3p, which negatively regulated expression of E26 transformation specific-1 (ETS1). Inflammatory cytokine and ETS1 expression levels decreased following transfection with small interfering RNA targeting circDHTKD1 or miR-338-3p mimics. In addition, co-transfection with miR-338-3p inhibitor reversed the effects caused by circDHTKD1 knockdown. The knockdown of ETS1 in LPS-induced BEAS-2B cells resulted in decreased cytokine production and inhibition of the ERK signalling pathway. Overall, these results suggested that the knockdown of circDHTKD1 alleviated the LPS-induced production of inflammatory cytokines and activation of the ERK pathway in BEAS-2B cells through the miR-338-3p/ETS1 axis. In summary, circDHTKD1 exacerbated LPS-triggered inflammation responses in BEAS-2B cells by regulating ETS1 expression by interacting with miR-338-3p, suggesting that circDHTKD1 may serve as a potential therapeutic target against asthma.
Collapse
Affiliation(s)
- Fenhong Qian
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Shanchuan He
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xianmiao Yang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xingxing Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Siting Zhao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jingzhi Wang
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
7
|
D’Amico G, Santonocito R, Vitale AM, Scalia F, Marino Gammazza A, Campanella C, Bucchieri F, Cappello F, Caruso Bavisotto C. Air Pollution: Role of Extracellular Vesicles-Derived Non-Coding RNAs in Environmental Stress Response. Cells 2023; 12:1498. [PMID: 37296619 PMCID: PMC10252408 DOI: 10.3390/cells12111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Air pollution has increased over the years, causing a negative impact on society due to the many health-related problems it can contribute to. Although the type and extent of air pollutants are known, the molecular mechanisms underlying the induction of negative effects on the human body remain unclear. Emerging evidence suggests the crucial involvement of different molecular mediators in inflammation and oxidative stress in air pollution-induced disorders. Among these, non-coding RNAs (ncRNAs) carried by extracellular vesicles (EVs) may play an essential role in gene regulation of the cell stress response in pollutant-induced multiorgan disorders. This review highlights EV-transported ncRNAs' roles in physiological and pathological conditions, such as the development of cancer and respiratory, neurodegenerative, and cardiovascular diseases following exposure to various environmental stressors.
Collapse
Affiliation(s)
- Giuseppa D’Amico
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Radha Santonocito
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Alessandra Maria Vitale
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Antonella Marino Gammazza
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Claudia Campanella
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Fabio Bucchieri
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Francesco Cappello
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
8
|
Yang H, Liang J, Li X, Yan L, Zhang Y. Inhibition of lincRNA-Cox2 alleviates apoptosis and inflammatory injury of lipopolysaccharide-stimulated human bronchial epithelial cells via the Nrf2/HO-1 axis. J Clin Biochem Nutr 2023; 72:234-241. [PMID: 37251964 PMCID: PMC10209602 DOI: 10.3164/jcbn.22-102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 05/31/2023] Open
Abstract
This study mainly explored the role and mechanism of lincRNA-Cox2 in inflammatory injury of human bronchial epithelial cells. BEAS-2B cells were stimulated with lipopolysaccharide to establish an in vitro inflammatory injury model. Real-time polymerase chain reaction was used to detect lincRNA-Cox2 expression in LPS-stimulated BEAS-2B. Cell viability and apoptosis of cells were assessed using CCK-8 and Annexin V-PI double staining. The contents of inflammatory factors were determined by enzyme-linked immunosorbent assay kits. The protein levels of nuclear factor erythrocyte 2-related factor 2 and haem oxygenase 1 protein levels were measured by Western blot. The results showed that lincRNA-Cox2 was upregulated in LPS-stimulated BEAS-2B cells. lincRNA-Cox2 knockdown inhibited apoptosis and the release of tumour necrosis factor alpha, interleukin 1beta (IL-1β), IL-4, IL-5, and IL-13 in BEAS-2B cells. lincRNA-Cox2 overexpression had the opposite effect. lincRNA-Cox2 knockdown also inhibited LPS-induced oxidative damage in BEAS-2B cells. Further mechanistic studies showed that inhibition of lincRNA-Cox2 upregulated the levels of Nrf2 and HO-1, and si-Nrf2 reversed the effects of si-lincRNA-Cox2. In conclusion, lincRNA-Cox2 knockdown inhibited BEAS-2B apoptosis and the level of inflammatory factors by activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hua Yang
- Department of Pediatrics, Xi’an Children’s Hospital, Xi’an, Shaanxi 710003, China
| | - Jing Liang
- Department of Children Healthcare, Xi’an Fourth Hospital, Xi’an, Shaanxi 710004, China
| | - Xiangni Li
- Department of Pediatrics, Xi’an Children’s Hospital, Xi’an, Shaanxi 710003, China
| | - Liping Yan
- Department of Pediatrics, Xi’an Children’s Hospital, Xi’an, Shaanxi 710003, China
| | - Yi Zhang
- Department of Pediatrics, Xi’an Children’s Hospital, Xi’an, Shaanxi 710003, China
| |
Collapse
|
9
|
Ao X, Ding W, Li X, Xu Q, Chen X, Zhou X, Wang J, Liu Y. Non-coding RNAs regulating mitochondrial function in cardiovascular diseases. J Mol Med (Berl) 2023; 101:501-526. [PMID: 37014377 DOI: 10.1007/s00109-023-02305-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of disease-related death worldwide and a significant obstacle to improving patients' health and lives. Mitochondria are core organelles for the maintenance of myocardial tissue homeostasis, and their impairment and dysfunction are considered major contributors to the pathogenesis of various CVDs, such as hypertension, myocardial infarction, and heart failure. However, the exact roles of mitochondrial dysfunction involved in CVD pathogenesis remain not fully understood. Non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, have been shown to be crucial regulators in the initiation and development of CVDs. They can participate in CVD progression by impacting mitochondria and regulating mitochondrial function-related genes and signaling pathways. Some ncRNAs also exhibit great potential as diagnostic and/or prognostic biomarkers as well as therapeutic targets for CVD patients. In this review, we mainly focus on the underlying mechanisms of ncRNAs involved in the regulation of mitochondrial functions and their role in CVD progression. We also highlight their clinical implications as biomarkers for diagnosis and prognosis in CVD treatment. The information reviewed herein could be extremely beneficial to the development of ncRNA-based therapeutic strategies for CVD patients.
Collapse
Affiliation(s)
- Xiang Ao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xiaoge Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Qingling Xu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xinhui Chen
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
10
|
Huang F, Tong X, Hu C, Zhang Q, Wei Y, Hu M, Kong L, Fu R, Li X, Xie Y, Ming X, Chen B, Lin Y, Xiong L. CAVO Inhibits Airway Inflammation and ILC2s in OVA-Induced Murine Asthma Mice. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8783078. [PMID: 39282108 PMCID: PMC11401656 DOI: 10.1155/2023/8783078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 09/18/2024]
Abstract
Cang-ai volatile oil (CAVO) is an aromatic Chinese medicine and is widely used to treat upper respiratory tract infections in children. However, the mechanism of CAVO in asthma treatment is unclear. In this study, we investigated the effects of CAVO on airway inflammation and the mechanism of inhibiting Group-2 innate lymphoid cells (ILC2s) in asthmatic mice, which was induced with Ovalbumin (OVA). CAVO improved AHR and airway inflammation in asthmatic mice. CAVO reduced the production of interleukin (IL)-2, IL-4, IL-5, IL-6, IL-7, IL-9, IL-13, IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) in the bronchoalveolar lavage fluid (BALF), while increased the production of IL-10, significantly. CAVO also inhibited the suppressor of tumorigenicity 2 (ST2) and IL-33 expressions in the lung tissue. Moreover, flow analyses demonstrated that CAVO inhibited ILC2s activation by reducing the sedimentation of its upstream cytokines, thus alleviating downstream cytokines. This could be because of the downregulated microRNA-155 and upregulated microRNA-146a. CAVO inhibits ILC2s activation, thus further attenuating airway inflammation and AHR in asthmatic mice. These effects may be related to the downregulation of microRNA-155 and upregulation of microRNA-146a.
Collapse
Affiliation(s)
- Feng Huang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyun Tong
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Chunyan Hu
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Qiushi Zhang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Yijie Wei
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
- Department of Pharmacy, Tengchong Hospital of Chinese Medicine, Baoshan, China
| | - Min Hu
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Lingqi Kong
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Rongbing Fu
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
- Department of Ethnic Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Xiaohong Li
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuhuan Xie
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Xi Ming
- The First Affiliated Hospital of Yunnan University of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Bojun Chen
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuping Lin
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Xiong
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
11
|
Albano GD, Gagliardo R, Montalbano AM, Profita M. Non-Coding RNAs in Airway Diseases: A Brief Overview of Recent Data. Cancers (Basel) 2022; 15:cancers15010054. [PMID: 36612051 PMCID: PMC9817765 DOI: 10.3390/cancers15010054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Inflammation of the human lung is mediated in response to different stimuli (e.g., physical, radioactive, infective, pro-allergenic, or toxic) such as cigarette smoke and environmental pollutants. These stimuli often promote an increase in different inflammatory activities in the airways, manifesting themselves as chronic diseases (e.g., allergic airway diseases, asthma chronic bronchitis/chronic obstructive pulmonary disease, or even lung cancer). Non-coding RNA (ncRNAs) are single-stranded RNA molecules of few nucleotides that regulate the gene expression involved in many cellular processes. ncRNA are molecules typically involved in the reduction of translation and stability of the genes of mRNAs s. They regulate many biological aspects such as cellular growth, proliferation, differentiation, regulation of cell cycle, aging, apoptosis, metabolism, and neuronal patterning, and influence a wide range of biologic processes essential for the maintenance of cellular homeostasis. The relevance of ncRNAs in the pathogenetic mechanisms of respiratory diseases has been widely established and in the last decade many papers were published. However, once their importance is established in pathogenetic mechanisms, it becomes important to further deepen the research in this direction. In this review we describe several of most recent knowledge concerning ncRNA (overall miRNAs) expression and activities in the lung.
Collapse
|
12
|
Zhang X, Zhang X, Feng S, Wang X, Guo B, Liu J, Xu D, Liu F. The Specific microRNA Profile and Functional Networks for Children with Allergic Asthma. J Asthma Allergy 2022; 15:1179-1194. [PMID: 36059920 PMCID: PMC9439701 DOI: 10.2147/jaa.s378547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Allergic asthma is the most common type of asthma and often occurs in early life with increasing comorbidities, including atopic dermatitis and allergic rhinitis. MicroRNAs (miRNAs) are involved in the pathogenesis of numerous immune and inflammatory disorders, particularly allergic inflammation. The specific miRNA profiles of children with allergic asthma have not been fully delineated and still require in-depth study. Objective This study aimed to identify the expression profile of miRNAs and constructed a network of the interactions between differentially expressed miRNAs and target mRNAs to provide novel insights into understanding the pathogenesis of allergic asthma. Materials and Methods In this study, we performed high-throughput sequencing of peripheral blood mononuclear cells (PBMCs) from children in the acute phase of asthma. Bioinformatics approaches, including miRanda, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, were employed to predict novel therapeutic and diagnostic targets for allergic asthma. Real-time quantitative PCR was conducted to detect the expression of aberrantly expressed miRNAs. Results One hundred and sixty-one differentially expressed miRNAs were identified in children with allergic asthma, including 140 conserved miRNAs and 21 novel miRNAs. A total of 8929 targeted mRNAs (44,186 transcripts) associated with differentially expressed miRNAs were predicted and significantly enriched in the cGMP-PKG signalling pathway, cholinergic synapse, and salivary secretion. We also found that miRNA-370-3p targeted PKG and MLCP molecules in the cGMP-PKG signalling pathway and was involved in the pathogenesis of allergic asthma. Conclusion We identified the miRNA profile of PBMCs in children with allergic asthma and also found that miRNA-370-3p targeted PKG and MLCP molecules in the cGMP-PKG signalling pathway, which provides a novel insight into understanding the pathogenesis of allergic asthma and investigating new targets for the treatment of allergic asthma in children.
Collapse
Affiliation(s)
- Xiyan Zhang
- Department of Allergy, Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Xude Zhang
- Department of Allergy, Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Shaojie Feng
- Department of Allergy, Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Xijuan Wang
- Department of Allergy, Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Beibei Guo
- Department of Allergy, Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Jingjing Liu
- Department of Allergy, Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Donghua Xu
- Clinical Medicine College, Weifang Medical University, Weifang, People’s Republic of China
- Department of Rheumatology, The First Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China
| | - Fengxia Liu
- Department of Allergy, Weifang People’s Hospital, Weifang, People’s Republic of China
- Correspondence: Fengxia Liu; Donghua Xu, Email ;
| |
Collapse
|
13
|
Sharma S, Yang IV, Schwartz DA. Epigenetic regulation of immune function in asthma. J Allergy Clin Immunol 2022; 150:259-265. [PMID: 35717251 PMCID: PMC9378596 DOI: 10.1016/j.jaci.2022.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022]
Abstract
Asthma is a common complex respiratory disease characterized by chronic airway inflammation and partially reversible airflow obstruction resulting from genetic and environmental determinants. Because epigenetic marks influence gene expression and can be modified by both environmental exposures and genetic variation, they are increasingly recognized as relevant to the pathogenesis of asthma and may be a key link between environmental exposures and asthma susceptibility. Unlike changes to DNA sequence, epigenetic signatures are dynamic and reversible, creating an opportunity for not only therapeutic targets but may serve as biomarkers to follow disease course and identify molecular subtypes in heterogeneous diseases such as asthma. In this review, we will examine the relationship between asthma and 3 key epigenetic processes that modify gene expression: DNA methylation, modification of histone tails, and noncoding RNAs. In addition to presenting a comprehensive assessment of the existing epigenetic studies focusing on immune regulation in asthma, we will discuss future directions for epigenetic investigation in allergic airway disease.
Collapse
Affiliation(s)
- Sunita Sharma
- Divisions of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo.
| | - Ivana V Yang
- Divisions of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo; Divisions of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - David A Schwartz
- Divisions of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| |
Collapse
|
14
|
Qiao X, Hou G, He YL, Song DF, An Y, Altawil A, Zhou XM, Wang QY, Kang J, Yin Y. The Novel Regulatory Role of the lncRNA–miRNA–mRNA Axis in Chronic Inflammatory Airway Diseases. Front Mol Biosci 2022; 9:927549. [PMID: 35769905 PMCID: PMC9234692 DOI: 10.3389/fmolb.2022.927549] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/19/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammatory airway diseases, characterized by airway inflammation and airway remodelling, are increasing as a cause of morbidity and mortality for all age groups and races across the world. The underlying molecular mechanisms involved in chronic inflammatory airway diseases have not been fully explored. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have recently attracted much attention for their roles in the regulation of a variety of biological processes. A number of studies have confirmed that both lncRNAs and miRNAs can regulate the initiation and progression of chronic airway diseases by targeting mRNAs and regulating different cellular processes, such as proliferation, apoptosis, inflammation, migration, and epithelial–mesenchymal transition (EMT). Recently, accumulative evidence has shown that the novel regulatory mechanism underlying the interaction among lncRNAs, miRNAs and messenger RNAs (mRNAs) plays a critical role in the pathophysiological processes of chronic inflammatory airway diseases. In this review, we comprehensively summarized the regulatory roles of the lncRNA–miRNA–mRNA network in different cell types and their potential roles as biomarkers, indicators of comorbidities or therapeutic targets for chronic inflammatory airway diseases, particularly chronic obstructive pulmonary disease (COPD) and asthma.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yu-Lin He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Fang Song
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Abdullah Altawil
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Ming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| | - Qiu-Yue Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiao-Ming Zhou, ; Yan Yin,
| |
Collapse
|
15
|
Expression of LINC00847 in Peripheral Blood Mononuclear Cells of Children with Asthma and Its Prediction between Asthma Exacerbation and Remission. Genet Res (Camb) 2022; 2022:5678257. [PMID: 35356750 PMCID: PMC8958088 DOI: 10.1155/2022/5678257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022] Open
Abstract
Objective. Asthma is defined as a heterogeneous disease that is usually characterized by chronic airway inflammation. Long noncoding RNAs play important roles in various biological processes including inflammation. To know more about the relationships between lncRNAs and asthma, we sought to the role of LINC00847 in peripheral blood mononuclear cells (PBMCs) of children with asthma exacerbation or asthma remission. Methods. Microarray analysis was performed on GSE143192 and GSE165934 datasets to screen differentially expressed lncRNAs (DElncRNAs) in human PBMCs between asthma patients and normal controls. LINC00847 was selected from DElncRNAs in human PBMCs between asthma patients and normal controls for further investigation. The expression levels of LINC00847 were quantified in PBMCs collected from 54 children with asthma exacerbation, 54 children with asthma remission, and 54 healthy children by real-time qPCR. The forced expiratory volume in the first second in percent predicted values (FEV1%), ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC), and peak expiratory flow rate (PEF%) were tested for evaluation of lung function. The concentration of immunoglobulin E (IgE) and eosinophil count was examined. The serum levels of interleukin-4 (IL-4), interferon-γ (IFN-γ), and IL-17A were determined by the ELISA method. Results. The expression level of LINC00847 in PBMCs of asthma exacerbation children was remarkably higher than that in PBMCs of asthma remission children and healthy children (
); the expression level of LINC00847 in PBMCs of asthma remission children was notably higher than that in PBMCs of healthy children (
). Pearson correlation analysis revealed that the expression levels of LINC00847 in PBMCs of asthma children were negatively correlated with FEV1% (r = −0.489), FEV1/FVC (r = −0.436), PEF% (r = −0.626), and IFN-γ level (r = −0.614) of asthma children, but positively correlated with IgE concentration (r = 0.680), eosinophil count (r = 0.780), IL-4 (r = 0.524), and IL-17A (r = 0.622) levels. When LINC00847 expression was used to distinguish asthma exacerbation from asthma remission, a 0.871 AUC (95% CI: 0.805–0.936) was yielded with sensitivity of 79.63% and specificity of 77.78%. Conclusion. The study demonstrates that increased LINC00847 expression may be associated with the development and progression of asthma, possibly serving as a novel biomarker for predicting asthma exacerbation from asthma remission.
Collapse
|
16
|
Jiang ZY, Liu MZ, Fu ZH, Liao XC, Xu B, Shi LL, Li JQ, Guo GH. The expression profile of lung long non-coding RNAs and mRNAs in a mouse model of smoke inhalation injury. Bioengineered 2022; 13:4978-4990. [PMID: 35152840 PMCID: PMC8973775 DOI: 10.1080/21655979.2022.2037922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
To study the potential expression of lung long non-coding RNAs (lncRNAs) and mRNAs during smoke inhalation injury (SII), using a SII mouse model that we created in our previous work. Microarray was used to investigate the lncRNAs and mRNAs profiles. A bioinformatics analysis was performed. Changes in the top 10 down-regulated and 10 up-regulated lncRNAs were validated using Quantitative Reverse Transcription-PCR (RT-qPCR). The acute lung injury (ALI) mouse model was successfully induced by smoke inhalation, as confirmed by the aberrantly modified cell numbers of red blood cells and neutrophils counts, increased levels of TNF-α, IL-1β, Bax, caspase-7, caspase-3, and decreased Bcl-2 content in lung tissues. When compared to the control mice, 577 lncRNAs and 517 mRNAs were found to be aberrantly expressed in the SII mice. According to the Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, the altered mRNAs were enriched in acute-phase response, oxidoreductase activity, oxidation-reduction process, glutathione metabolism, the wnt signaling pathway, and ferroptosis. A lncRNA-related competitive endogenous RNA (ceRNA) network, including 383 lncRNAs, 318 MicroRNAs (miRNAs), and 421 mRNAs specific to SII, was established. The changes in NONMMUT026843.2, NONMMUT065071.2, ENSMUST00000235858.1, NONMMUT131395.1, NONMMUT122516.1, NONMMUT057916.2, and NONMMUT013388.2 in the lung matched the microarray results. Our findings help to provide a more comprehensive understanding of the pathogenesis of SII as well as new insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Zheng-Ying Jiang
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Ming-Zhuo Liu
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Zhong-Hua Fu
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Xin-Cheng Liao
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Bin Xu
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Liang-Liang Shi
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Jia-Qi Li
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Guang-Hua Guo
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| |
Collapse
|
17
|
Liang J, Liu XH, Chen XM, Song XL, Li W, Huang Y. Emerging Roles of Non-Coding RNAs in Childhood Asthma. Front Pharmacol 2022; 13:856104. [PMID: 35656293 PMCID: PMC9152219 DOI: 10.3389/fphar.2022.856104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease in children characterized by airway inflammation, airway hyperresponsiveness and airway remodeling. Childhood asthma is usually associated with allergy and atopy, unlike adult asthma, which is commonly associated with obesity, smoking, etc. The pathogenesis and diagnosis of childhood asthma also remains more challenging than adult asthma, such as many diseases showing similar symptoms may coexist and be confused with asthma. In terms of the treatment, although most childhood asthma can potentially be self-managed and controlled with drugs, approximately 5-10% of children suffer from severe uncontrolled asthma, which carries significant health and socioeconomic burdens. Therefore, it is necessary to explore the pathogenesis of childhood asthma from a new perspective. Studies have revealed that non-coding RNAs (ncRNAs) are involved in the regulation of respiratory diseases. In addition, altered expression of ncRNAs in blood, and in condensate of sputum or exhalation affects the progression of asthma via regulating immune response. In this review, we outline the regulation and pathogenesis of asthma and summarize the role of ncRNAs in childhood asthma. We also hold promise that ncRNAs may be used for the development of biomarkers and support a new therapeutic strategy for childhood asthma.
Collapse
Affiliation(s)
- Juan Liang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiao-Hua Liu
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xue-Mei Chen
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiu-Ling Song
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Wen Li
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuge Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
18
|
Yang H, Na FY, Guo L, Liang X, Zhang RF. The landscape of DNA methylation in asthma: a data mining and validation. Bioengineered 2021; 12:10063-10072. [PMID: 34714718 PMCID: PMC8809922 DOI: 10.1080/21655979.2021.1997088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Human asthma is caused by interactions between a range of genetic and environmental factors. However, the specific pathogenesis of asthma remains controversial. This study explored the contribution of DNA methylation to asthma using computer learning methods. Relevant datasets and information related to patients with asthma were collected from the Gene Expression Omnibus (GEO) database. A multivariate linear regression model was established. Differentially expressed genes and DNA methylation sites were identified. The results showed that the expression of 169 genes was significantly different between the two groups. Through differential analysis of methylation and differential analysis of gene expression, 44 differentially expressed genes that may be affected by DNA methylation modification were identified. The results of the multiple linear regression model showed that DNA methylation could explain 9.81% of the variation in gene expression. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that the differentially expressed genes, HLA-DMB, IL4, HLA-DPB1, and CD40LG, were related to the occurrence of asthma, and HLA-DMB expression was significantly reduced in allergic asthma. There was a positive correlation between cg04933135 and HLA-DMB expression, and cg04933135 was a differential site for DNA methylation. Using blood samples from asthma patients, we confirmed that HLA-DMB expression is down-regulated, which may be affected by abnormal DNA methylation. DNA methylation plays an important role in the development of asthma, and HLA-DMB which modified by abnormal DNA methylation can be regarded as a new biomarker of asthma.
Collapse
Affiliation(s)
- Hui Yang
- The Area B of International Medical Department, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, 730000, People's Republic of China
| | - Fei-Yang Na
- The Area B of International Medical Department, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, 730000, People's Republic of China
| | - Li Guo
- The Area B of International Medical Department, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, 730000, People's Republic of China
| | - Xuan Liang
- The Area B of International Medical Department, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, 730000, People's Republic of China
| | - Rong-Fang Zhang
- The Area B of International Medical Department, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, 730000, People's Republic of China
| |
Collapse
|