1
|
Liu Y, Sun F, Wang X, Guo G. Long non-coding RNA small nucleolar RNA host gene 8 (SNHG8) sponges miR-34b-5p to prevent sepsis-induced cardiac dysfunction and inflammation and serves as a diagnostic biomarker. Arch Med Sci 2024; 20:1268-1280. [PMID: 39439678 PMCID: PMC11493079 DOI: 10.5114/aoms/175468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/19/2023] [Indexed: 10/25/2024] Open
Abstract
Introduction The study aimed to evaluate, for the first time, the diagnostic value of long non-coding RNA (lncRNA) small nucleolar RNA host gene 8 (SNHG8) in sepsis and its molecular mechanisms in sepsis-induced inflammation and cardiac dysfunction. Material and methods A total of 126 sepsis patients and 81 healthy controls were enrolled. Serum SNHG8 levels were assessed by RT-qPCR. Levels of pro-inflammatory factors were examined via ELISA. The ROC curve was employed to assess the diagnostic significance of SNHG8. Cardiomyocytes were exposed to lipopolysaccharide (LPS) to simulate sepsis-induced cardiac dysfunction in vitro. Cell proliferation and apoptosis were measured through CCK-8 and flow cytometry. Dual luciferase reporter gene assay and RIP assay were conducted to verify the target relationship between SNHG8 and miR-34b-5p. Results SNHG8 was reduced in sepsis patients (p < 0.05) and negatively correlated with procalcitonin, C-reactive protein, and pro-inflammatory factors (p < 0.05). SNHG8 had outstanding performance in distinguishing sepsis patients from healthy individuals with the AUC of 0.878. Among septic patients, those with cardiac dysfunction had significantly downregulated SNHG8 levels (p < 0.05). For septic patients, SNHG8 was found to be an independent predictor for the occurrence of cardiac dysfunction (HR = 5.466, 95% CI = 2.230-13.397, p < 0.001). Elevated SNHG8 reversed LPS-induced cell apoptosis, and attenuated the over-secretion of inflammatory factors. miR-34b-5p was significantly upregulated in septic patients and negatively correlated with SNHG8, indicating that it acted as a sponge for SNHG8. Conclusions Reduced SNHG8 is a potential diagnostic biomarker for sepsis. It is involved in sepsis-induced inflammatory response and cardiac dysfunction through sponging miR-34b-5p.
Collapse
Affiliation(s)
- Yongfu Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fanting Sun
- Department of Emergency, Binzhou Medical University Hospital, Binhzhou, China
| | - Xiaoyu Wang
- Department of Emergency, Binzhou Medical University Hospital, Binhzhou, China
| | - Guancheng Guo
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Zhao Z, Zheng X, Wang H, Guo J, Liu R, Yang G, Huo M. LncRNA-PCat19 acts as a ceRNA of miR-378a-3p to facilitate microglia activation and accelerate chronic neuropathic pain in rats by promoting KDM3A-mediated BDNF demethylation. Mol Immunol 2024; 170:88-98. [PMID: 38643689 DOI: 10.1016/j.molimm.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/05/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
The pathogenesis of neuropathic pain (NP) is complex, and there are various pathological processes. Previous studies have suggested that lncRNA PCAT19 is abnormally expressed in NP conduction and affects the occurrence and development of pain. The aim of this study is to analyze the role and mechanism of PCAT19 in NP induced by chronic compressive nerve injury (CCI) in mice. In this study, C57BL/6 mice were applied to establish the CCI model. sh-PCAT19 was intrathecally injected once a day for 5 consecutive days from the second day after surgery. We discovered that PCat19 level was gradually up-regulated with the passage of modeling time. Downregulation of Iba-1-positive expression, M1/M2 ratio of microglia, and pro-inflammatory factors in the spinal cords of CCI-mice after PCat19 knock-downed was observed. Mechanically, the expression of miR-378a-3p was negatively correlated with KDM3A and PCat19. Deletion of KDM3A prevented H3K9me2 demethylation of BDNF promoter and suppressed BDNF expression. Further, KDM3A promotes CCI-induced neuroinflammation and microglia activation by mediating Brain-derived neurotrophic factor (BDNF) demethylation. Together, the results suggest that PCat19 may be involved in the development of NP and that PCat19 shRNA injection can attenuate microglia-induced neuroinflammation by blocking KDM3A-mediated demethylation of BDNF and BDNF release.
Collapse
Affiliation(s)
- Ziyu Zhao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Xingxing Zheng
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Hui Wang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Jiao Guo
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Ruixia Liu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Guang Yang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Miao Huo
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China.
| |
Collapse
|
3
|
Nie X, Deng W, Zhou H, Wang Z. Long noncoding RNA MCM3AP-AS1 attenuates sepsis-induced cardiomyopathy by improving inflammation, oxidative stress, and mitochondrial function through mediating the miR-501-3p/CADM1/STAT3 axis. Int Immunopharmacol 2024; 128:111500. [PMID: 38237222 DOI: 10.1016/j.intimp.2024.111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Oxidative stress and inflammation are highly important for sepsis-mediated myocardial damage. The long noncoding RNA (lncRNA) MCM3AP-AS1 is involved in inflammatory diseases, but its function in acute myocardial injury during sepsis has not been fully elucidated. LPS and cecal ligation and puncture (CLP) were used to construct in vitro and in vivo sepsis-induced myocardial damage models, respectively. qRT-PCR was used to evaluate alterations in MCM3AP-AS1 and miR-501-3p alterations. After the MCM3AP-AS1 and miR-501-3p knockdown or overexpression models were established, the viability, apoptosis, inflammation, oxidative stress, and mitochondrial function of the myocardial cells were examined. Dual luciferase activity assay, RNA immunoprecipitation, and fluorescence in situ hybridization (FISH) confirmed the correlation among MCM3AP-AS1, miR-501-3p, and CADM1. Previous studies revealed that MCM3AP-AS1 was downregulated in sepsis patients, myocardial cells treated with LPS, and in the CLP mouse sepsis model, whereas miR-501-3p expression was increased. MCM3AP-AS1 overexpression hampered myocardial damage mediated by LPS and abated inflammation, oxidative stress, and mitochondrial dysfunction in myocardial cells and THP-1 cells. In contrast, MCM3AP-AS1 knockdown or miR-501-3p overexpression promoted all the effects of LPS. In vivo, MCM3AP-AS1 overexpression increased the survival rate of CLP mice; ameliorated myocardial injury; decreased the levels of TNF-α, IL-1β, IL-6, iNOS, COX2, ICAM1, VCAM1, PGE2, and MDA; and increased the levels of SOD, GSH-PX, Nrf2, and HO-1. Mechanistic studies demonstrated that MCM3AP-AS1 acted as a competitive endogenous RNA to repress miR-501-3p, enhance CADM1 expression, and dampen STAT3/nuclear factor-kappaB (NF-κB) activation. MCM3AP-AS1 suppresses myocardial injury elicited by sepsis by mediating the miR-501-3p/CADM1/STAT3/NF-κB axis.
Collapse
Affiliation(s)
- Xiangbi Nie
- Department of Emergency, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, NanChang 330006, Jiangxi, China
| | - Wu Deng
- Department of Emergency, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, NanChang 330006, Jiangxi, China
| | - Han Zhou
- Department of Emergency, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, NanChang 330006, Jiangxi, China
| | - Zenggeng Wang
- Department of Emergency, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, NanChang 330006, Jiangxi, China.
| |
Collapse
|
4
|
Yang X, Wu J, Cheng H, Chen S, Wang J. DEXMEDETOMIDINE AMELIORATES ACUTE BRAIN INJURY INDUCED BY MYOCARDIAL ISCHEMIA-REPERFUSION VIA UPREGULATING THE HIF-1 PATHWAY. Shock 2023; 60:678-687. [PMID: 37647083 DOI: 10.1097/shk.0000000000002217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
ABSTRACT Objective: Neurological complications after myocardial ischemia/reperfusion (IR) injury remain high and seriously burden patients and their families. Dexmedetomidine (Dex), an α 2 agonist, is endowed with analgesic-sedative and anti-inflammatory effects. Therefore, our study aims to explore the mechanism and effect of Dex on brain damage after myocardial IR injury. Methods C57BL/6 mice were randomly divided into sham, IR, and IR + Dex groups, and myocardial IR models were established. The impact of Dex on brain injury elicited by myocardial IR was assessed via ELISA for inflammatory factors in serum and brain; Evans blue for blood-brain barrier permeability; hematoxylin-eosin staining for pathological injury in brain; immunofluorescence for microglia activation in brain; Morris water maze for cognitive dysfunction; western blot for the expression level of HIF-1α, occludin, cleaved caspase-3, NF-κB p65, and p-NF-κB p65 in the brain. In addition, HIF-1α knockout mice were used to verify whether the neuroprotective function of Dex is associated with the HIF-1 pathway. Results: Dex was capable of reducing myocardial IR-induced brain damage including inflammatory factor secretion, blood-brain barrier disruption, neuronal edema, microglial activation, and acute cognitive dysfunction. However, the protective role of Dex was attenuated in HIF-1α knockout mice. Conclusion: Dex protects against myocardial IR-induced brain injury, and the neuroprotection of Dex is at least partially dependent on the activation of the HIF-1 pathway.
Collapse
Affiliation(s)
- Xue Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | | | | | | | | |
Collapse
|
5
|
Wu Z, Xia Y, Wang C, Lu W, Zuo H, Wu D, Li Y, Guo R, Lu J, Zhang L. Electroacupuncture at Neiguan (PC6) attenuates cardiac dysfunction caused by cecal ligation and puncture via the vagus nerve. Biomed Pharmacother 2023; 162:114600. [PMID: 36996679 DOI: 10.1016/j.biopha.2023.114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE Previous studies proved the benefits of electroacupuncture (EA) on heart in ischemia reperfusion injury and chronic heart failure. However, the role of EA on sepsis-induced cardiac dysfunction has rarely been elucidated before. In this study, we aimed to investigate the effects of EA on cardiac dysfunction in a rat model of sepsis and to speculate the underlying mechanisms. METHODS Sepsis was induced by cecum ligation and puncture in anesthetized rats. EA at the acupoint "Neiguan (PC6)" was applied 0.5 h after the induction of sepsis for 20 min. Heart rate variability was obtained immediately after EA to evaluate autonomic balance. Echocardiography was performed at 6 h and 24 h after sepsis induction in vivo. Measurements of hemodynamics, blood gases, cytokines and biochemistry were collected at 24 h. Cardiac tissue underwent immunofluorescence staining to determine the expression of α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages. RESULTS EA increased vagus nerve activity, prevented the development of hyperlactatemia, attenuated the decline of left ventricle ejection fraction, suppressed systemic and cardiac inflammation and alleviated the histopathological manifestations of heart in sepsis rats. Furthermore, the cardiac tissue from EA treated rats showed increased expressions of α7nAChR on macrophages. The cardio-protective and anti-inflammatory effects of EA were partly or completely prevented in rats with vagotomy. CONCLUSION EA at PC6 attenuates left ventricle dysfunction and decreases inflammation in sepsis-induced cardiac dysfunction. The cardio-protective effects of EA are mediated through vagus nerve mediated cholinergic pathway.
Collapse
Affiliation(s)
- Zhiyang Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China.
| | - Yiqiu Xia
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chaofan Wang
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, China.
| | - Wenjun Lu
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Han Zuo
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Dawei Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China.
| | - Yu Li
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Rui Guo
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Jun Lu
- Department of Intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China.
| | - Luyao Zhang
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| |
Collapse
|
6
|
Zheng X, Zhang Y, Lin S, Li Y, Hua Y, Zhou K. Diagnostic significance of microRNAs in sepsis. PLoS One 2023; 18:e0279726. [PMID: 36812225 PMCID: PMC9946237 DOI: 10.1371/journal.pone.0279726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/13/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Sepsis is a life-threatening condition that induce tens of million death each year, yet early diagnosis remains a formidable challenge. Many studies have focused on the diagnostic accuracy of microRNAs (miRNAs) for sepsis in recent years, particularly miR-155-5p, miR-21, miR-223-3p, miR-146a, and miR-125a. Thus, we conducted this meta-analysis to explore if miRNAs may be used as a biomarker for sepsis detection. METHODS We searched PubMed, the Cochrane Central Register of Controlled Trials, EMBASE, and China National Knowledge Infrastructure through May 12, 2022. This meta-analysis was conducted using Meta-disc 1.4 and STATA 15.1 in a fixed/random-effect model. RESULTS The analysis included a total of 50 relevant studies. The overall performance of total miRNAs detection was: pooled sensitivity, 0.76 (95% confidence interval [CI], 0.75 to 0.77); pooled specificity, 0.77 (95%CI, 0.75 to 0.78); and area under the summary receiver operating characteristic curves value (SROC), 0.86. The subgroup analysis suggested that detection in miR-155-5p group had the highest area under the curve (AUC) of SROC among all miRNAs: pooled sensitivity, 0.71 (95%CI, 0.67 to 0.75); pooled specificity, 0.82 (95%CI, 0.76 to 0.86); and SROC, 0.85. MiR-21, miR-223-3p, miR-146a, and miR-125a had SROC values of 0.67, 0.78, 0.69, and 0.74, respectively. The specimen type was found to be a source of heterogeneity in the meta-regression study. The SROC of serum was higher than that of plasma (0.87 and 0.83, respectively). CONCLUSIONS Our meta-analysis revealed that miRNAs, specifically miR-155-5p, could be useful biomarkers for detecting sepsis. A clinical serum specimen is also indicated for diagnostic purposes.
Collapse
Affiliation(s)
- Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- * E-mail: (YL); (YH); (KZ)
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- * E-mail: (YL); (YH); (KZ)
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- * E-mail: (YL); (YH); (KZ)
| |
Collapse
|
7
|
Zhang T, Yang YH, Liu YP, Zhang TN, Yang N. REGULATORY ROLE OF NONCODING RNA IN SEPSIS AND SEPSIS-ASSOCIATED ORGAN DYSFUNCTION: AN UPDATED SYSTEMATIC REVIEW. Shock 2022; 58:434-456. [PMID: 36155389 DOI: 10.1097/shk.0000000000002000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABSTRACT Background: The exact molecular mechanisms underlying sepsis remain unclear. Accumulating evidence has shown that noncoding RNAs (ncRNAs) are involved in sepsis and sepsis-associated organ dysfunction (SAOD). Methods: We performed this updated systematic review focusing mainly on research conducted in the last 5 years regarding ncRNAs associated with sepsis and SAOD. The following medical subject headings were used in the PubMed database from October 1, 2016, to March 31, 2022: "microRNA," "long noncoding RNA," "circular RNA," "sepsis," and/or "septic shock." Studies investigating the role of ncRNAs in the pathogenesis of sepsis and as biomarkers or therapeutic targets in the disease were included. Data were extracted in terms of the role of ncRNAs in the pathogenesis of sepsis and their applicability for use as biomarkers or therapeutic targets in sepsis. The quality of the studies was assessed using a modified guideline from the Systematic Review Center for Laboratory Animal Experimentation. Results: A total of 537 original studies investigated the potential roles of ncRNAs in sepsis and SAOD. Experimental studies in the last 5 years confirmed that long ncRNAs have important regulatory roles in sepsis and SAOD. However, studies on circular RNAs and sepsis remain limited, and more studies should be conducted to elucidate this relationship. Among the included studies, the Systematic Review Center for Laboratory Animal Experimentation scores ranged from 3 to 7 (an average score of 3.78). Notably, 94 ncRNAs were evaluated as potential biomarkers for sepsis, and selective reporting of the sensitivity, specificity, and receiver operating characteristic curve was common. A total of 117 studies demonstrated the use of ncRNAs as potential therapeutic targets in sepsis and SAOD. At a molecular level, inflammation-related pathways, mitochondrial dysfunction, cell apoptosis, and/or oxidative stress were the most extensively studied. Conclusion: This review suggests that ncRNAs could be good biomarkers and therapeutic candidates for sepsis and SAOD. Prospective, large-scale, and multicenter cohort studies should be performed to evaluate specific ncRNAs as biomarkers and test the organ-specific delivery of these regulatory molecules when used as therapeutic targets.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
8
|
Zhang L, Zhang TJ, Li Y, Xiong WJ. Shenqi Yanshen Formula (SQYSF) protects against chronic kidney disease by modulating gut microbiota. Bioengineered 2022; 13:5625-5637. [PMID: 35184655 PMCID: PMC8974014 DOI: 10.1080/21655979.2021.2023789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this study, we make an elucidation toward both the therapeutic effect and the mechanism of Shenqi Yanshen Formula (SQYSF) to chronic kidney disease (CKD). CKD mouse model was established and achieved in a way of adenine (200 mg/kg) perfusion. Six weeks later, those mice in the model group were fed with SQYSF (3.60 g/kg/day) every day (the captopril group was given 12.5 mg/kg/day by gavage every day, and control group and the model group were both given the gavage of equal volumes of normal saline); 4 weeks after the administration, we had our detection to physiological indicators of mice, performed ELISA assay to detect inflammatory factor expressions, then assay of 16S sequencing was used to reveal the difference of intestinal flora. Our results showed that after SQYSF treatment, both the expressions of serum creatinine (Scr) and blood urea nitrogen (BUN) came with a significant decline, indicating the outstanding performances of SQYSF in alleviating impairment in renal function and elevating mice’s physiological function. SQYSF significantly reduced the degree of renal fibrosis in CKD mice, and remarkably down-regulated the expressions of toll-like receptor 5 (TLR5), nuclear factor-kappaB (NF-κb), p65, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6. Additionally, SQYSF has more than ability in significantly changing the composition in mice’s intestinal flora, but also in greatly increasing the abundance of Succinivibrionaceae and Aeromonadales in the mouse intestine. This study clarified the therapeutic effect of SQYSF on CKD and regulation of inflammatory factors and intestinal flora, and provided new ideas for treatment on CKD.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, Jiangbei, China
| | - Tai-Jun Zhang
- The Office of Academic Affairs, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, Jiangbei, China
| | - Ying Li
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, Jiangbei, China
| | - Wei-Jian Xiong
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, Jiangbei, China
| |
Collapse
|
9
|
Liu J, Yang Y, Lu R, Liu Q, Hong S, Zhang Z, Hu G. MicroRNA-381-3p signatures as a diagnostic marker in patients with sepsis and modulates sepsis-steered cardiac damage and inflammation by binding HMGB1. Bioengineered 2021; 12:11936-11946. [PMID: 34784841 PMCID: PMC8810158 DOI: 10.1080/21655979.2021.2006967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/18/2023] Open
Abstract
Immune response imbalance and cardiac dysfunction caused by sepsis are the main reasons for death in sepsis. This study aimed to confirm the expression and diagnostic possibility of microRNA-381-3p (miR-381-3p) and its mechanism in sepsis. Quantitative real-time PCR (qRT-PCR) and receiver operating characteristic (ROC) were used to reveal the levels and clinical significance of miR-381-3p. Pearson correlation was conducted to provide the correlations between miR-381-3p and several indexes of sepsis. The H9c2 cell models were constructed by lipopolysaccharide (LPS), and cecal ligation and puncture (CLP) was applied to establish the Sprague-Dawley (SD) rat models. Cell Counting Kit-8 (CCK-8) and flow cytometry were the methods to detect the cell viability and death rate of H9c2. Enzyme-linked immunosorbent assay (ELISA) was performed to evaluate the concentration of inflammatory cytokines. The target gene of miR-381-3p was validated via the luciferase report system. The low expression of miR-381-3p was found in the serum of patients with sepsis. The lessened miR-381-3p could be a marker in the discrimination of sepsis patients. Overexpression of miR-381-3p could repress the mRNA expression of HMGB1, inhibit the cell apoptosis and inflammatory response, and motivate the viability of sepsis cells. At the same time, enhanced miR-381-3p promoted the inhibition of inflammation and cardiac dysfunction in the rat model of sepsis. Collectively, reduced levels of serum miR-381-3p can be used as an index to detect sepsis patients. MiR-381-3p restored the inflammatory response and myocardial dysfunction caused by sepsis via HMGB1.
Collapse
Affiliation(s)
- Jian Liu
- Department of Intensive Medicine, Shengli Oilfield Central Hospital, Dongying, China
| | - Yadong Yang
- Department of Emergency, Shengli Oilfield Central Hospital, Dongying, China
| | - Rong Lu
- Department of Laboratory, Shengli Oilfield Central Hospital, Dongying, China
| | - Qin Liu
- Department of Intensive Medicine, Shengli Oilfield Central Hospital, Dongying, China
| | - Shukun Hong
- Department of Intensive Medicine, Shengli Oilfield Central Hospital, Dongying, China
| | - Zhaolong Zhang
- Department of Intensive Medicine, Shengli Oilfield Central Hospital, Dongying, China
| | - Guoxin Hu
- Department of Emergency, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|